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Abs t r ac t .  ht this paper, we present methods and techniques for cal- 
ibrating cameras of a head-eye system, which has computer controlled 
focusing, zooming, and iris. The idea is to build up look-up-tables for 
intrinsic parameters so we can index them. Extensive experiments were 
carried out and results ztre reported here. 

1 I n t r o d u c t i o n  a n d  B a c k g r o u n d  

Camera  calibration is useflll, if not necessary, in many vision problems, e.g., 3D 
reconstruction from stereo, vergency, fixation, etc. This problem usually involves 
two parts.  The first part  is to determine internal parameters  of a camera,  the so- 
called intrinsic parameters ,  such as focal length, lens distortion, principal point, 
and aspect ratio of the pixel array. The second part  is the pose est imation of 
a camera (system) relative to a 3-D world reference system, including rotat ion 
and translation between these two systems. These are the so-called extrinsic 
parameters .  

In an active vision system, i.e., a visual system which is able to manipula te  
its visual parameters  in a controlled manner  [9], one changes (manipulates)  the 
visual parameters  of the system all the time. At any t ime one wants to know the 
intrinsic as well as the extrinsic parameters  of the system in order to perform 
certain vision tasks. This imposes difficulties for camera calibration. It  is difficult 
to perform real-tilne calibration, if possible at all. On the other hand, the move- 
ments of the system are controlled, i.e., we know how much we moved relatively 
f rom some initial position. If  we pre-calibrate the system, we can then compute  
(index) the parameters  at any time. In this way, we can perform "real-time" 
calibration. Fig. l (a)  shows the KTt I  head-eye system, which consists of a pair 
of cameras (eyes) mounted on a head and the head is mounted on a shoulder 
(platform).  The system has 13 degrees of freedom, see [8] and [9] for details. In 
this paper,  we address the first part  of the calibration of the system, i.e., the cal- 
ibration of intrinsic parameters  and try to build up look-up-tables for them. The 
second par t  of the calibration, i.e., the dynamic pose est imation or the kinematic 
calibration, is addressed in [7]. 

In our study, we use a pin-hoh: camera model, as depicted in Fig. l(b). The 
pin-hole model does not hold for zoom lens [10, 5], but for a fixed zoom, the tens 
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Fig. 1. (a) The KTH-head-eye system. (b) The pin-hole camera model, image geometry 
and coordinate systems. 

system can be abstracted as a pin-hole model. Through this paper, the following 
notations are used. W - X Y Z  is a 3D world reference system, o-xy  is a 2D image 
pixel system with origin at the low-left corner of the image. 5 - ~  is a 2D image 
coordinate system with .~ and ~3 parallel to the ones of o-xy  and with origin at 
the principal point 5. c-:~2 is a 3D camera coordinate with origin at the optical 
center c, f-axis coincides with the optical axis and 2", y parallel to the ones of 
o-xy.  

2 P r i n c i p a l  P o i n t  C a l i b r a t i o n  b y  F o c u s i n g / Z o o m i n g  

Principal point is defined as the intersection point of optical axis and image 
plane. Under the pin-hole camera model, focusing and zooming is equivalently 
to change distance between optical center and image plane, see Fig. 2. When 
focusing or zooming, each image point will move radiately along a line passing 
through the principal point. If we take a sequence of images by changing focus 
and/or  zooming, find tile corresponding image points on each image and over- 
lay them together, Fig. 2.(b), the lines determined by the same image point at 
different images will intersect at a common point, which is the principal point. 
In practice, due to various errors, the lines will not intersect precisely at a com- 
mon point, a least squares estimation may be used to determine the common 
intersection point, i.e., the principal point. This technique has been proposed by 
Tsai [11] and used by Lavest et. al. [5]. 
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Fig. 2. D,~terrnine principal poin~ by focusing/zooming, 

3 Calibration Using Vanishing Points 

Using vanishing point technique for camera calibration has been studied by, e.g., 
[2], [3], [12], and [4]. For a set of parallel line segments in 3D when projected 
onto an image plane, their projections (line segments) will intersect at a com- 
mon point on the image plane, that  is the so-called vanishing point. One useful 
property of vanishing point is that  the direction from the projection center to 
the vanishing point is parallel to the direction of the 3D line segments. The ba- 
sic idea is to using three vanishing points of three orthogonal groups of parallel 
lines in 3D space to recover some of the intrinsic parameters and the rotation 
matrix.  The advantage of this technique is that it is relatively simple to recon- 
struct such a calibration object and parameters can be computed in closed form. 
One drawback is that it does not, allow a fifll intrinsic and extrinsic parameters 
calibration (the translation vector cannot be computed from vanishing points) 
and the accuracy is limited. 

3.1 C a l i b r a t i n g  I n t r i n s i c  P a r a m e t e r s  

Given three sets of multi-orthogonal parallel lines in 3D space: 61,  G2, and 
G3, see Fig. 3, and their corresponding vanishing points on the image plane: 
gl(xl, Yl), g2(x2, Y2), and g3(.v3, Y3)- Let the principal point be (x0, y0), the fo- 
cal length be f ,  and the scale factors of pixel array be s , ,  s u. Then the three 
vanishing point vectors (not unit) in the camera system are: 

gl  : [ ( X l  - -  Xt,)Sx, ( Y l  - -  yo)Sy, __f]T 

g~ = [(x2 - x0)s=, (y~ - yo)su, _f]T I (1) 
g 3  = - - v 0 ) s y ,  _ f i t  

As G1, G~ and G3 are orthogonal to each other, so are g, ,  g~ and g3 according 
to the vanishing point property, i.e., gl �9 g~ -- 0, g~ �9 ga = 0, g3 " g~ -- 0, or 
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Fig. 3. Geometry of vanishing points 

( x l - x o ) ( x ' 2 - X o ) + ( Y l - X o ) ( Y ' 2 - x o ) k ~ + f ~ = i }  
(~~ ~0)(:,:~ x,,) + (y~ :r0)(y~ .~-o)k ~ + f~ (2) 
(x~ x,,)(.~:~ x,,) + (y~ x(,)(~j~ xo)~ ~ + 

where, k = L~ is the aspect ratio of the pixel, and f~ --- ~ is the focal length 
8 a  x 

expressed in pixel in x-direction. We have four parameters: k, f=, x0, y0, but only 
three equations. Either we know k and solve for x0, Y0 and f= or we know x0, Y0 
and solve for k and f~. In both cases they can be computed directly from (2). 

3.2 C a l i b r a t i n g  R o t a t i o n  M a t r i x  

If we let the three multi-orthogonal vectors coincide with X, Y, and Z axes of an 
object space coordinate system, we can compute the rotation matrix R directly 
in closed form. Let G1, G2 and G3 be in X, Y and Z direction respectively, 
see Fig. 3. The three unit vectors Nc1, NG~, and Na:, along G1, G2, and G3 
in W - X Y Z  system are: Nal  = E= = (1, 0, 0) T, Na~ = Ey = (0, 1, 0) T, Na~ = 
Ez  = (0, 0, 1) T. On the other hand, we have their corresponding unit vanishing 
point vectors in the camera system: ng 1 = ~ --- g~ ~ As Ig~l 'ng~ Ig21' rig3 = Ig~l" ngi 
is the rotated result of Na~ by rotation matrix R, so we have: 

n q~ = R N G I  = R E =  "~ 
ng~ = R NG~ = R Ey I (3) 
ng a = R NG~ = R Ez 

Then the rotation matrix R can be computed directly from (3): 

R = (-,~l,-,.~,-,g~) (4) 
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4.1 T h e  M a t h e m a t i c a l  M o d e l  

The transformation from object space to image space can be expressed as: 

�9 ".'5"i = A i R ( X i  - T )  
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Simultaneously Calibration by Least Squares Technique 

(5 )  

where in (5), ~.i = (:~i, Yi, 51) T is an image point in the camera system as defined 
in Fig. 1 and -21 -- f ,  i.e., the focal length of the camera, Ai is a scale factor 
which maps a point in object space to the image plane, X i  = (Xi ,  Yi, Zi)  T is 
an point in W - X Y Z  system, T = (T~,Tu,Tz)  T is the translation vector, and 
R is the rotation matrix, which is represented here by three rotation angles: c~ 
around X-axis, fl around Y-axis, and 7 around Z-axis. Eliminating Ai in (5) and 
omit the subscript i, we have: 

f rH(X-T=)+r12(Y-Ty)+r13(Z-T~)  } 
J: = - .  , - ~ ~  

- _ f r21(X-T~)+r~(Y-T~ , )+r~3(Z-T . )  (6)  
Y r3,(X-T~)+,':~(Y-Ty)+r33(Z-T,) 

Transforming (2, .0) into the pixel coordinate system (x, y), that is 

Y = (x -4- vx -- xo - dx,. - dxt)sz  } 
9 (y  + y,, - - d ,)sy . (7 )  

here vx, Vy are measurement errors of x, y. (dxr, dyr) are Tudial distortion com- 
ponents and (dxt,  dyt) are tangculial distortion components. We use two models 
which are often used in photogrammetry [1]: 

d;/: v : (~r: -- ~[:0)((/,1 r2 "4" a 2 r  4 ~- (/3I "6) / 
dy  r (y y ( , ) ( a l r 2  ..~ a2F4 2v a3r6  ) j (8)  

dyt = [[p~[r2 + 2(y y0) 2] + 2t,1(x - x ( , ) ( y -  y0)]4 (1 + p3r2 ) ] (9) 

where in (7), (8), and (9), xo, y0 are the principal point, in the pixel system, 
al, a2, a3 are the radial lens distortion parameters, Pl, P2,P3 are the tangential 
distortion parameters, and s , ,  Sy are the scale factors of pixel system in x and y 
directions respectively, and r is the radial distance from the principal point. Let 
f~ = J-~-, ]~ = ~ ,  substituting (7), (8) and (9) into (6), it becomes: 

Z q_ Vx ,:o_F rl . . . .  .1,.. _ 4" rl ,(X-T=.)+, 'I ' . , (Y-Ty)+r,3(Z-T.)  "= ~ x ( ~ )  ) 
. . . . . .  r -3- .... t Jz" r3,(X-T~:)+r32(Y-T~)+ra3(Z-T~) f (10)  

,l,, . ,1~, .e r=,l(X-T.)+r2u(Y-T~)+r23(Z-T~) ~yy(~Ib) y + vy Yo + ,,v,. 7- ,,:Jr - ~y ~ 

here ~ is the parameter vector, i.e.,~ = [(.~:o,~jo,al,a2,as,Pl,PZ,i)3, fz.,fy); 
(T~., Ty, Tz, a, ~, 7)] T. The first part, is the intrinsic parameters and the second 
part is the extrinsic parameters. The problem is now to solve for �9 through 

rain ~ (v~, + v~,) (11) 
i----1 
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In (10) F~.(4~) and .7"y(4~) are non-linear functions of 4~, the minimization is a 
non-linear problem. One way of solving it is to linearize (10) with some initial 
value 4~0 and solve for z i~ .  Then by adding /t4~ to 4'0 as new approximate 
values we solve for new A@. Repeating this until convergency is reached. 

4.2 M u l t i - i m a g e  C a l i b r a t i o n  

One major  source of errors in calibration is the measurement errors. In order to 
increase accuracy, one can use more than one image taken by the same camera 
from the same or different positions. In such a case, the intrinsic parameters 
are the same for all images and some of the extrinsic parameters are the same 
as well (if the camera is not moved). By simulations, it is found that  accuracy 
increases linearly with tile increasing of number of images, see [6] for details. 
The multi-image technique has also been suggested by Tsai [11]. 

Fig. 4. Some examples of images used for determining principal point by zooming. 

5 E x p e r i m e n t s  a n d  R e s u l t s  

5.1 D e t e r m i n i n g  P r i n c i p a l  P o i n t  b y  Z o o m i n g  

The principal point is calibrated first, separately using the zooming technique 
described in Section 2. A chess board pattern is used for the calibration. The 
zooming motor  steps has been mapped to [0, 1.0] with "continuous" stepping. By 
keeping the calibration object still and taking image by stepping 0.05 steps, we 
get a sequence of 22 images of the same object, see Fig. 4 for a few examples. By 
extracting and tracing the same point, (the corners of the rectangles) through the 
sequence, a number of line segments are obtained, Fig. 5 (a). By fitting line model 
to line segments, line parameters are computed for all the line segments. And 
finally, a common intersection point of all lines are computed by least squares 
method, Fig. 5 (b). In order to check the stability of the principal point under 
zooming, we chose different combinations of images to determine the intersection 
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Fig. 5. Determining principal point by zooming. (z~) Line segments obtained by tracing 
corresponding points through the sequence of images; (b) intersection of line segments. 

point.  Fig. 6 show the trace of principal point under zooming .  As can be seen 
from the figure, the principal point  of left camera moves  almost, along a line, 
while the right is more randomly.  The figure also show the stabil i ty over different 
object  distances,  which is equivalent to different focus setups,  and t ime as those 
images were taken at a t ime interval of 3 months .  
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Fig. 6. Shifting of principal point under zooming. Top: left camera, bottom: right cam- 
era. From left to right three experiments done at different focus setups and date. 
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5.2 Vanishhig Pohlts and Least Squares Calibration 

I" 
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(b) 
Fig. 7. (a) The calibration cube (0.4 x 0.4 • 0.4m 3) with multi-orthogonal straight lines 
on each face. The three edges define a right-hand 3D co-ordinate system as a world 
reference system. The intersection points on each face are measured and used as 3D 
control points for the calibration. (b) The identified line segments and points. 

A cube calibration object, has been constructed for the calibration (Fig. 7). First 
we compute camera parameters by vanishing points technique as presented in 
Section 3. Then using these as initial values, we perform a least squares calibra- 
tion. All the calibration is made fillly automatically. In the following we present 
results of various experiments using multiple images. All results shown here are 
using fixed principal points calibrated by zooming. 

The first experiment is to calibrate intrinsic parameters under different zoom 
steps. It is done as follows: keeping the focus and iris fixed, changing zoom step 
by 0.1 steps 1 and take a few (five) images. These images have the same intrinsic 
parameters and extrinsic parameters (if the camera is not, moved). Fig. 8 shows 
the results of the calibrated radial distortion with different zooming steps. Notice 
that, at lower zoom step (< 0.4), the object, on the image only covers a small part  
at the center, we cannot determine the distortion outside this region, rather than 
extrapolate them. As can be seen from the figure, the both camera's distortion 
varies under zooming, but for certain applications, they can be ignored within 
the center part of image, say 400 • 400 pixels, as they are less than a half pixel. 
(Tangential distortion can be ignored as they are very small from experiments. 
Due to space, they are not reported here, for detail see [6]). 

Fig. 9 shows the calibrated focal lengths f~ and fy under different zoom steps, 
both increasing exponentially. From Fig. 9 we can build up a look-up-fimction 
and index focal length at any zoom step. Fig. 10 shows the distance between the 
optical center and the calibration cube origin under zooming and Fig. 11 shows 
the trace of optical centers in space under zooming. We can see that  both optical 

1 The zoom step is from 0 to 1.0, but when up to 0.8, only a small part of the cube is 
visible on the image. So all the experiments are done from 0 to 0.8. 
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Fig. 8. Recovered radial distortions for  left (left} and riyht (right) camera. 
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Fig. 9. Calibrated fl, cal lengths under zooming for  left (left) and right (right) camera. 
The horizontal  axes are zoom motor  steps and the vertical axes are focal lengths. 

centers move along a straight line. Note that the shifting range of the optical 
center does not correspond to the range of the focal length. This is due to the 
factor that  the pin-hole model does not hold for lens system, see also Lavest et. 
al [5]. But for a fixed zoom (each step), we can model the lens using the pin-hold 
model. Tab. 1 shows the results of the comput, ed rotation angles a, fl, and 7 as 
well as the aspect ratio of the pixel array for different zoom. They are all in the 
expected range. 

The second experiment is to see how focusing changes focal length. In normal 
case, changing focus means changing the image scale, thus the focal length. With 
a zoom tens, this change can be compensated by zoom, so the image scale is not 
changed when focusing. The KTH head-eye system is designed in such a way. 
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Fig. 10. Distance between optical center and calibration, cube (origin) under zooming. 
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Fig. 11. Trace of optical center in 3D under zooming: (a) left camera, moving range 
(861.1,709.7,959.9) ~ (1065.4,889.1, 1186.3), D~ = 354.1mm, and (b) right camera, 
moving range (982.3,711.2,836.2) ---+ (1176.8,860.7, 1015.5), D, = 310.1ram. 

But this needs to be calibrated. The result ill Tab. 2 shows that the focal length 
changes slightly as focus changes. This results will be used the compensation. 

The third experiment is to show how iris changes focal length. Tab. 3 shows 
the experimental results of the calibrated focal length under different iris open- 
ness. The table shows that  iris does not change the focal length significantly, 
Iris opening changes the brightness of the image. It tends to amplify images of 
bright objects with dark background when increasing (open) iris and vice verse. 
But the amplification is a local scaling referred to the center point of the image 
of an object, so it does not shift nor scale the image globally. 
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T a b l e  1. Results of calibrated rotation angles under different zooming 

z o o m  

step (~ 
0.O -37.976 
0.1 -37.928 
{}.2 -37.974 
(}.3 -38.009 
0.4 -37.956 
0.5 -37.939 
(}.6 -37.919 
0.7 -37.939 
0.8 -37.952 

l e f t  GameFa  

# 7 k 
35.069 25.481 0.88066 
35.085 25.477 0.88109 
35.124 25.507 0.88197 
35.111 25.524 0.88234! 
35.051 25.487 0.88222 
35.096 25.461 0.88212 
35.168 25.455 0.88175 
35.116 25.486 0.88213 
35.144 25.458 0.88226 

right camera 
a ~ 7 k 

-41.122 40.302 27.248 0.88133 
-41.123 40.295 27.246 0.88173 
-41.102 4{I.324 27.236 0.88203 
-41.082 40.344 27.248 0.88247 
-41.161 40.275 27.290 0.88311 
-41.022 40.202 27.179 0.88250 
-41.089 40.283 27.2{10 0.88226 
-40.983 4{I.231 27.135 0.88117 
-41.165 4{I.232 27.286 0.88177 

T a b l e  2. Results of local length calibration under different focus steps 

left camera right camera 
focus fx fy focus f~ fy 
0.3(} 1752.550 1986.723 0.30 1653.458 1875.359 
(}.38 1736.127 1968.29{} 0.40 1641.583 1861.609 
{}.4{} 174{}.218 1973.757 {}.42 1635.674 1853.734 
{}.40 1724.895 1955.388 I}.45 1626.711 1843.179 
0.501698.170 1925.5{}6 {}.55 1620.808 1837.419 
0.50 1699.129 1926.(161 {}.55 1622.913 184(}.618 
0.5011703.694 1931.364 (}.6{I 16(}7.567 1823.694 

6 D i s c u s s i o n  a n d  C o n c l u s i o n s  

We have presented  different m e t h o d s  and techniques  for c a m e r a  ca l i b r a t i on  and 
some  e x p e r i m e n t a l  resul ts  for ca l ib ra t ing  the  K T H - h e a d  sys tem.  We also devel- 
oped  p rocedures  for a u t o m a t i c a l l y  ca l ib ra t ing  the  sys tem.  The  resul ts  show t h a t  
the  in t r ins ic  p a r a m e t e r s  of  the  head-eye  sys tem can be p r e - ca l i b r a t ed  and  bu i l t  
in to  look-up- t ab les .  The  accuracy  and s t ab i l i t y  of  the  ca l ib ra t ion  depends  on the  
ca l i b r a t i on  techniques  and  the  sys t em itself. For  cer ta in  a pp l i c a t i ons  m which 
accuracy  is not  a crucial  poin t ,  the  in t r ins ic  p a r a m e t e r s  can be indexed  f rom 
L U T s  w i thou t  on- the - job  ca l ib ra t ion .  Th i s  is i m p o r t a n t  for r ea l - t ime  sys tem,  
e.g.,  an act ive vision sys tem.  
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T a b l e  3. Results of calibrated local length under different iris 

iris 
Close 

open 

A 
2076.624 
2078.534 
2077.24O 
2076.165 
2079.249 
2O75.862 
2082.139 
2080.316 
2078.521 
2078.557 

left camera 
ff fx f~ 

6.307 2353.643 
6.554 2355.619 
6.835 2354.535 
6.615 2352.980 
6.928 2356.932 
7.1422353.552 
7.009 2359.002 
7.591 2356.396 
8.228 2354.087 
9.137 2355.187 

right camera 
af~ f~ aft. fu a1~ 

7.272 2008.574 6.039 2278.094 6.977 
7.543 2009.312 6.124 2279.302 7.074 
7.874 2005.799 6.187 2274.635 7.161 
7.628 2005.865 6.218 2274.602 7.196 
7.983 2007.321 6.379 2276.079 7.382 
8.230 2007.529 6.397 2276.386 7.385 
8.090 2009.249 6.677 2279.019 7.702! 
8.765 2008.732 7.739 2277.815 8.925 
9.500 2007.367 7.751 2277.165 8.962 
10.491 2009.648 8.003 2278.350 9.276 
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