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Abstract. We concentrate on nonrigid motion analysis in 3D images 
using modal dynamics. Borrowing the solid state physics formulation, 
we develop the equations of motion and the analytical expression of vi- 
bration modes of a multidimensional elastically-deformable model. Thus, 
nonrigid motion of a 3D deformable object can be recovered in closed- 
form in real time. The power of the approach is demonstrated by a set 
of experimental results on 3D medical data. 

1 B a c k g r o u n d  

Following the theory of deformable models, physically-based modelling for non- 
rigid motion analysis has become extremely popular [5]. For purposes of defor- 
mation analysis, we make use of modal analysis [4, 2], a well-known mechanical 
engineering technique which consists in decomposing and approximating the mo- 
tion in the free vibrations basis (modes) of the model. 

2 M o d a l  analys is  for d e f o r m a b l e  m o d e l s  

Consider a discrete mass spring mesh of N nodes. Using the equations of dy- 
namics, such a structure can be elastically deformed in 2D or 3D images to 
match the contour of an object of interest. In 3D, the system is governed by the 
3N-dimensional matrix equation : 

MLI + Cl~/+ K U  = F(t)  (1) 

where U is a vector storing nodal displacements M, C and K are respectively 
the mass, damping and stiffness matrices of the system, and F is the image force 
which has the object at tracted by image edges. Equation (1) is the finite element 
formulation of the deformation process. 

Instead of solving directly the equilibrium equation (1), we transform it by a 
change of basis : U = O U  where �9 is a matrix whose entries are the eigenvectors 
of the generalized eigenproblem K r  = w2Mr : 

3 N  

i = i  
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Equation (2) is referred to as the modal superposition equation. r is the ith 
mode, fil its amplitude, and wl its frequency. The new modal basis simultaneously 
diagonalizes M and K,  and provided that  the matrix (~ = ~ T c ~  is diagonal as 
well, the governing matrix-form equations decouple into 3N scalar equations : 

ui(t) + diui(t) + w2fti(t) = j~(t) i = 1 , . . . ,  3N. (3) 

Solving these equations at time t leads to (fii(t))i= 1 ..... aN, and the displacement 
of the nodes is obtained by the modal superposition equation. 

One of the major interests of modal analysis is that  it provides an approxi- 
mate but quite accurate a closed-form solution by selecting a few number p of 
low-frequency modes (p << 3N). The contribution of each mode to the motion 
is graded, providing a compact description of the motion. 

But even as a precalculation, solving the generalized eigenproblem is very 
costly as soon as we consider 3D boundaries (surfaces). For instance, if we con- 
sider a mesh of 100 x 100 nodes, a generalized eigenproblem where the size of the 
matrices is 30000 x 30000 has to be solved. It is then clear that  the analytical 
expression of the modes would noticeably reduce the computations. This leads 
us to consider the solid state physics theory, where similar types of problems are 
encountered at a microscopic level (ionic vibrations of a crystal lattice). If we 
parameterize our deformable curves by arc length, and similarly our deformable 
surfaces by natural coordinates, we get periodic boundary conditions which de- 
pend on surface topology. This allows the analogy between our deformable model 
and a crystal lattice. 

3 Solid state physics  formulat ion 

The classical theory of vibration of a crystal lattice is based on the harmonic 
approximation, a theory which assumes that the first non-vanishing correction 
to the equilibrium potential energy is quadratic [1] : 

v h ~  ~ 1 = 2 E u , ( R ) D , v ( R -  R ' )uv(R ' )  (4) 

R,R' 
p~v 

where u~(R) is the displacement in the # direction of the ion whose mean posi- 
tion is R, and D is the Hessian matrix of the interaction energy. The motion in 
the # direction (tt = x, y or z) of the point defined by R on the lattice is defined 
by: 

o v h ~ m  
M/~,(R) + Ci%(R) + 0 % ( R )  - F , ( R )  

In a three-order matrix form : 

Mf i (R)  + CS(R)  + ~ D ( R  - R ' ) u ( R ' )  = F(R)  (5) 
R' 

For the whole lattice, N matrix equations of the above type are to be solved. Each 
one of these differential equations is linear, and nodal displacements are coupled 
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in space positions (the nodes) and directions (the axes). Note that the model does 
not recover angular variations, and rotational motion has to be linearized (similar 
limitations can be found in [4]). Thus, in equation (1), the stiffness matrix K is 
constituted by D submatrices. If these submatrices are 3 • 3 diagonal matrices, 
that is, if we assume that  a nodal mot ion  in the # direction exerts a force on the 
node's neighbors in the same it direction, the 3N-order matrix equation above 
has the nice property of decoupling into three N-order matrix equations in each 
space direction, as it clearly appears in equation (5). From now on, we will keep 
this assumption which reduces computational cost as nodal vectors and matrices 
are of order N instead of 3N [2]. 
Free vibrations of a one-dimensional  lattice : Consider a set of ions distributed 
along a chain at points separated by a distance a, so that the lattice vectors are 
R = na for n E {1 , . . . ,  N}. If only neighboring ions interact, we may take the 
harmonic potential energy to have the form : 

N 

V h~'~ = 2 g E [ u ( n a ) -  u( (n  + 1)a)] 2 

where K = v"(a) is the stiffness constant of the system, v(x)  being the interac- 
tion energy of two ions a distance x along the chain. The free vibrations of the 
lattice are governed by : 

M ~ ( n a )  - cOu(na) = g ( u ( ( n  + 1)a) + u((n  - 1)a) - 2u(na))  (6) 

These are precisely the equations that would be obeyed if each ion were connected 
to its neighbors by perfect mass-less springs of stiffness K (and equilibrium 
length a, although the equations are in fact independent of the equilibrium length 
of the spring). 

We seek solutions to equation (6) of the form:  u(na, t) = e - i ~ t ( A e l k ' ~ +  
B e - l k ~ ) .  The periodicity of the chain leads to a discretization of the values of 
ka, depending on the chain being closed or open, as shown below : 

kpa p E u(na, t) 

closed 2pv 

p6.TBZ 

open P'~ {0, N 1} 
N--1 

�9 .k~ kpa~ 
E A p e - ~ P t e ~ T c ~  2 j 
p=0 

~ B Z  is the "first Brillouin zone", equal to { _ N  + 1 , . . . ,  N} for N even, and 
{_ N-12 , . . . ,  N- l}  for N odd. Substituting for u in (6) leads to the dispersion 
equation : 

~p___2 M4K sin2(k~a)~_ (7) 
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As the values of k are discrete, the vibration states of the crystal are discretized. 
This is the concept of phonons in solid state physics. The displacement expres- 
sion u(na, t) shows that  the motion is fully determined by specifying N initial 
positions and N initial velocities of the ions. In mathematical  terms, this equa- 
tion can be seen as the Fourier expansion of the displacement in the basis of the 
complex exponential functions of period N. From a physics point of view, the 
solution describes waves propagating along the chain with phase velocity a~/k 
and group velocity &a/Ok. 

4 Connection with the theory of modal analysis 

For 2D curves, the eigenvalues are defined by the dispersion equation, and the 
eigenvectors are the real parts of the complex modes in the general expression 
of displacements : 

eigenvalue eigenvector 

closed ~-4K sin2(~) [... , cos ~2~2, . . .]T 

4 K  �9 2 p-x t p ~ ( 2 n - - 1 ) ;  . I T  open ~ - sm ( ~ )  [ . . . , c o s ( ~ ) , . .  

In order to generalize the analytical expressions of the modes to surfaces (3D), 
some topological properties have to be outlined. We use natural coordinates so 
that  the parameters are submitted to different pairs of boundary conditions : 
closed and closed (torus), open and open (plane), open and closed (cylinder 1). 
This means that  we use quadrilateral elements. 

planar 

torie 
i 

cylindrical l 

eigenvalue eigenvector 

~ ( s i n  2 pv p'~r 2~ + sin2 ~ )  

~__g(sin2 p,~ �9 2 p'~ ~- +sin ~ - )  

~(sin~ ~ ~'~ + sin 2 ~ - )  

p w ( 2 n - - 1 )  ~ .  p t w ( 2 n ' - - l )  . . I T  
[ . . . , C O S  ~ t , u ~  ~ , .  

2pt ~rnJ "l .]T 
[ . . . .  COS ( 2 P ~  + N '  " ' '  

p ~ ' ( 2 n - - 1 )  ~ .  2pllrn p . IT 
. . .  , COS ~ t .u~ N I  , . . 

In case of multiple eigenvalues (cylindrical and toric topology), a set of or- 
thogonal eigenvectors may be found by using the corresponding "sine" functions 
of those described above. Note that n = 1 , . . . ,  N and n ~ = 1 , . . . ,  N t. 

5 Modal approximation 

Figure 1 demonstrates the power of modal approximation in medical imaging. 
We make use of a set of 4D (3 space dimensions plus time) nuclear medicine 
data  of the moving left ventricle. The left ventricle is extracted from the data, 
then tracked from the diastole to the systole (the ventricle is shown as a mesh 
of 4000 nodes moving from the diastole towards the systole, a rendered surface). 

1 The displayed shapes in this paper have cylindrical topology. 
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With a few modes, the result of the superposition has roughly the same shape 
as the original diastole (fig. 1.a and 1.b), thus illustrating low-pass filtering of 
the motion. As we increase the number of modes, we describe the motion more 
accurately (fig. 1.c), but we do not need to keep all modes, since a the final shape 
may be recovered in closed-form by superimposing a few modes (fig. 1.d). In 

air 5 t other terms, the approximation error II ~--~-i=p+l i( )r is a rapidly-decreasing 
function of p [3]. 

Fig. 1. Modal approximation. From left to right and top to bottom : a. Initial and 
final shapes, b. 3 modes, compression is 4000. c. 21 modes, compression is 571. d. 51 
modes, compression is 235, and the final shape is recovered in closed form. 

6 A n i m a t i o n  o f  m e d i c a l  d a t a  

Fig. 2. Animation of the left ventricle between diastole and systole (6400 nodes) 

We make use of modal dynamics for animation of our medical data. Indeed, 
one can deform any complex 3D object through its modes by using the modal 
superposition equation. 

Canine heart data  from the dynamic spatial reconstructor (DSR, a high speed 
X-ray CT scanner) was used as an input to our deformable model, which has 
reconstructed the left ventricle and recovered its motion in closed form during 
a cardiac cycle (figure 2). One can observe that  the papillary muscles show up 
clearly. In figure 3, the human head segmented by our model from 3D MR data 
is animated by adding arbitrary modes. 

Note that these animations are real time irrespective of the size of the struc- 
ture since we make use of an analytical expression of mode shapes. 
7 C o n c l u s i o n  

We have presented modal dynamics from a new point of view : the computation of 
the analytical expression of vibration modes. The solid state physics formulation 
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Fig. 3. Animating the human head by adding directional modes (11130 nodes) 

is indeed a sound framework for deriving the equations of motion of deformable 
models. We have shown the power of modal approximation for a compact de- 
scription, smoothing and real time animation of a complex deformation (e.g. 3D 
left ventricle motion, 3D human head). Current applications of our computations 
include nonrigid motion classification [3]. 
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