
Fully Abs trac t Translat ions and Parametr i c
P o l y m o r p h i s m

Peter W. O'Hearn .1 and Jon G. Riecke 2

1 School of Computer & Information Science, Syracuse University
Syracuse NY 13244-4100
ohearn@top.cis.syr.edu

2 AT&T Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974

riecke@research.att.com

Abstract. We examine three languages: call-by-name PCF; an idealized
version of Algol called IA; and a call-by-name version of the functional
core of ML with a parallel conditional, called PPCF-4-XML. Syntactic
translations from PCF and IA into PPCF+XML are given and shown to
be fully abstract, in the sense that they preserve and reflect observational
equivalence. We believe that these results suggest the potential unifying
force of Strachey's concept of parametric polymorphism.

1 Introduction

When Strachey first identified the notion of polymorphism, he immediately dis-
tinguished between two main species of polymorphic function [28]. In one form,
called ad hoc polymorphism, a function may be applied to arguments of different
types, but the algorithm may differ depending on the type. In the other form,
called parametric polymorphism (the kind of polymorphism supported by the
Girard-Reynolds polymorphic A-calculus and the programming language Stan-
dard ML), the behaviour of a polymorphic function is determined uniformly for
each instantiation of type variables. For instance, the map function, whose type
can be written as Va. Vf~. (a ~ j3) ~ list[a] ~ listM, works the same way
across different types. Parametric polym0rphism captures a form of abstraction
(cf. [22, 24]): intuitively, a parametric function works in a way that does not
presume knowledge of specific details of types to which it is instantiated.

Here we illustrate another connection between abstraction and parametric
polymorphism: that parametric polymorphism can be used to represent in a
very precise manner certain programming language features. A simple example
crystallizes the general point. Consider a functional language with paramet-
ric polymorphism (e.g., the Girard-Reynolds calculus with recursion and basic
arithmetic), and the polymorphic function

Qp : ACounter . Anew: (C o u n t e r - ~ nat) ~ nat .
Ainc : Counter --* Counter. ~val : Counter --* nat . P.

* Supported by NSF grant CCR.-92110829.

455

We can apply Qp to arguments that form the representation of an abstract
"counter type," e.g., (Qp[nat] new inc val) where

new = Ap : nat ~ nat .p(0)
inc =)~n : n a t . n + 1
val = :kn : nat .n.

Here we are utilizing the connection between abstract types and parametric poly-
morphism proposed by Reynolds [22]. The application binds the type variable
Counter to the type nat of natural numbers, and the formal parameters to repre-
sentations of the corresponding operations of the counter type; for instance, new
declares a new counter, initialized to 0, for use inside its argument p. Intuitively,
the parametricity of (ACounter.... P) guarantees that the representation of the
counter type can only be accessed through the given operations: one cannot, for
example, apply the inc formal parameter to a number inside the definition of P,
since the type of inc expects an argument of type Counter--a type that could
later be bound to a functional type. But even more complex properties of the
term P hold. For instance, a subterm of the form (new ()~c : Counter. C)) binds
a new counter to c for use within C. Furthermore, only new can create a new
counter, and the counter disappears when the execution of C terminates, be-
cause the type of the subterm is nat . Notice that this is reminiscent of the stack
discipline for local variables, and that it arises in a purely functional language! A
simple program equivalence makes the connection to local variables even more
explicit. Suppose the type of Qp is

V Counter. ((Counter ~ nat) ~ nat) ~ (Counter ~ Counter)
--* (Counter--, nat) --* Counter

Then (Qp[nat] new inc val) = / 2 where /2 is a divergent term of type nat:
even though a new non-divergent counter might be used in P (in the context of a
new declaration), such a counter can never be returned outside the declaration,
so the only counter that the application can return is/2.

This example has to do with the "abstraction barrier" between an abstract
description of a programming language and a more detailed implementation.
Think of P as a program written in a functional language with two base types:
one called na t with the usual operations, and one called Counter whose only
operations are new, inc, and val. Two pieces of code P1 and P2 written in this
language may only be distinguishable using the arithmetic operations and new,
inc, val. A compiler or interpreter hides the implementation of these operations
from the programmer. For instance, an interpreter could implement "deallo-
cation" of counters by decrementing a stack pointer: even though the "old"
counter may still be held in memory, a program may not access it. This is pre-
cisely what parametricity provides: a way to specify that only the operations
of the base type--and no other operations derivable from the details of the
implementation--may be used to operate on Counter.

The example illustrates an important point: reasoning about polymorphic
functions in a pure functional language can provide a basis for reasoning about

456

certain features of local state. In this paper we develop this idea and show how to
define a translation from an Algol-like language into a purely functional language
with ML-style polymorphism. The translation is defined by analogy with the
treatment of the "counter" example. Instead of abstracting on a single type
variable Counter, the translation abstracts on a type variable for each primitive
type in an Algol-like language, and passes representations of Algol base types
and relevant operations (such as assignment) as arguments to a polymorphic
function. In essence, the translation treats the base types and constructs of Algol
as forming "higher-order" abstract data types. Our main theorem shows that
that the translation is fully abs t rac t , i.e., it preserves and reflects observational
equivalence (cf. [25]).

The idea of using the "abstractness" of type variables in a polymorphic lan-
guage to protect representations of types is applicable to other languages as well.
For example , consider a polymorphic extension of parallel PCF~ i.e., the typed
A-calculus with recursion, basic arithmetic operations, and a parallel conditional
operation. Then for any term p of type

one may obtain a function of type boo l ---* boo l ~ boo l by instantiating
to the type boo l of booleans and the first four arguments to the true boolean,
negation, conjunction and the sequential conditional:

(p [bool] t rue not and if) : bool ~ boo l --* bool.

For any function of type boo l ---* boo l --~ boo l definable in sequential PCF there
is a p such that this term denotes the same function. However, even though "par-
allel or" exists in the language, this term can never be (equivalent to) "parallel
or". Intuitively, the parametricity of p means that (p [bool] t rue not and if)
cannot use parallel facilities, because they are not definable from the given ar-
guments. It is even possible to prove this using a model based on Reynolds's
relational approach to parametricity [24].

Based on these ideas, we define a translation from sequential PCF into a
polymorphic version of parallel PCF, and again prove that the translation is
fully abstract. Roughly speaking, we again treat the type of natural numbers
from sequential PCF as an abstract data type. While our main interest in this
translation method concerns possible applications to understanding state and
related features, the PCF translation illustrates the main ideas in a simpler
context: parametric polymorphism is used, as with the Algol translation, to
"protect" the sequential source language from the parallelism present in the
target language.

2 S e q u e n t i a l P C F , I d e a l i z e d A l g o l , a n d P P C F + X M L

In this section we define the three languages considered in this paper. In defin-
ing the languages, we often share reduction and typing rules across languages,
expecting that no confusion will arise.

457

2.i Sequential PCF

Our version of P C F has one base type n a t of natural numbers. The types are

t : : = n a t l t ~ t.

We use s, t to range over types. A typing judgement is a formula of the form
F f- M : t where M is a term, t a type, and F is a P C F t y p e e n v i r o n m e n t ,
i.e., a finite function from variables to types. Standard rules for deriving typing
judgements may be found in Table 1.

The operational semantics is given by a reduction relation M ~ N between
terms in Table 2; this is the usual call-by-name, sequential strategy for PCF. In
these rules, M { N / x } denotes the result of substituting N for x in M with the
necessary renaming of bound variables, and n denotes the n-fold application of
succ to 0. The relation --** denotes the reflexive, transitive closure of 4 . We
define observational equivalence so that a judgement of equivalence can only be
made in the presence of a type assignment. This is reasonable in a language
where variables do not come tagged with types.

D e f i n i t i o n 1. 1. C[-] is a P C F / " t - c o n t e x t if ~- C[M] : n a t w h e n / " ~- M : t.
2. Suppose /" ~- M : t and F F- N : t. Then /" F- M =- N if for all P C F

Ft-contexts C[.], C[M] --** n ~:~ C[N] --** n.

Table 1 PCF Typing Rules.

F , x : t b x : t F b- 0 : nat

F , x : t ~ - M : s F~-M: t - -*s F F - N : t
FF- (Ax : t . M) : t - - * s

F F- M : n a t
/~ }- (s u c c M) : n a t

F F- (M N) : s

F~- M : nat
F F- (pred M) : n a t

F t - M : t - - * t
F F (Yt M) : t

F }- Mi : n a t

F F- (ifz M1 M2 M3) : n a t

2.2 Idealized Algol

The types of our second language, which we call IA (for Idealized Algol), are

0 ::= e x p I l o c I c ~ 0 --* 0

where c o m m is the type of commands, e x p the type of expressions, and loc
is the type of locations (or storage variables, or memory cells). For simplicity,
we assume that the only storable values are natural numbers. Expressions are
state-dependent values: they denote a value in a given state but do not change
the state. Commands are state transformations.

458

Table 2 PCF Reduction Rules.

((Ax. M) N) --~ M { N / x }
(Y M) --* (M (Y M))

(pred (succ n)) ~ n

M-.~ M I
(shoe M) ~ (suet M')

M ...-~ M t
(pred M) ~ (pred M')

(ifz 0 M N) ~ M
(ifz (succ n) M N) --* N

M ~ M ~
(M N) ---* (M' N)

M.. . , M I
(ifz M N P) ~ (ifz M u N P)

The typing rules for IA appear in Table 3; ~r is used to denote an IA t y p e
e n v i r o n m e n t , i.e., a finite map from variables to IA types. IA has constructs
for assignment (V := E), dereferencing (con ten t s V) and sequencing (C1; C2).
Variable declarations are of the form (new x = E in C) where C is a command,
E an expression, and x a variable of location type. Variable declarations are
executed by allocating a fresh location and setting the contents to the value of
E in the current state, executing C where x is bound to the new location, and
deallocating the location upon termination. The "newness" of local variables is
the crux of the full abstraction problem for block structure and has been studied
extensively (cf. [9, 13, 14]).

The reductions for IA come in two groups (see Tables 2 and 4). Purely func-
tional reductions, the reductions found in Table 2, do not involve state, while the
non-functional reductions, the reductions found in Table 4, are between config-
urations [M, s] for M a term and s a state, i.e., a finite function from variables
to numerals. For example, state is not needed for fl-reduction, and so this is
given by a functional reduction ()~x. P)Q ~ P { Q / x } . In contrast, an assign-
ment changes the state, and so we have a reduction between configurations
[x := n,s] ---* [skip, six ~ n]], where s[x ~ n] is the state that modifies s by
mapping x to n. An IA program is a closed term of type c o m m . We observe
termination of programs, and write C ~ to mean that [C, e] --** [skip, el, where
e is the empty partial function.

Def in i t i on 2. 1. C[.] is an IA I tS-context if F- C[M] : c o m m when ~r t- M : 8.
2. Suppose that r F M : 8 and ~r F N : 8. Then Ir ~- M -- N if for all IA

7rS-contexts C[.], C[M] ~r C[M] ~.

~.3 P P C F + X M L

The target language for our translations, called PPCF+XML, is PCF extended
with a parallel conditional and with an explicitly-typed version of Milner's poly-
morphic let [11]. The type system is essentially the XML type system of Mitchell
and Harper [12, 5].

459

Tab le 3 IA Typing Rules.

lr , x : O b" x : O lrb- 0 : e x p

7r, x : O I- M : O' ~r ~- M : O --* O' lr ~- N : O

7r I-- ()~x: O.M) : 0 ~ O' 7r ~ (M N) : O'

~r ~- M : exp Ir ~- M : exp

7r ~ (sue t M) : exp ~r ~- (p red M) : exp

7rt-C1 : c o m m ~ r t - C 2 : c o m m ~ r ~ - M : l o c ~ - t - E : e x p
~r F- C1; C2 : c o m m 7r I- M := E : c o m m

% z : l o c F - C : c o m m 7 r t - E : e x p ~ r ~ - M : l o c
~r ~- new z -- E in C : c o m m ~r ~- c o n t e n t s M : exp

~ r F - M : e x p ~r t- N : B lr ~ P : B

~r~- (ifzs M N P) : B
B a base type

~r ~- s k i p : c o m m

~r ~- M : O --* O

lr I- (Yo M) : 0

Tab le 4 Additional Reduction Rules for IA.

M ~ N

[M, s I -~ [N, s]

[(contents x), 81 ~ Is(x), s]

[(x := n), s I --* [skip, s[x ~ nll

[M, 8] -~ [M', 8]
[(contents M), 8] ---* [(contents M') , 8]

[E, 8] -~ [E', 8]
[(new x = E i n C), 8] ~ [(new x = E ' in C), 8]

[c, s[~ ~ rail -~ IV', s'[~ ~ ~]l
[(new x ---- m i n C), s] ~ [(new x -- n in C ') , s']

[(skip; C), 8] -* [C, s]

[(new x = m in skip) , s] --* [skip, s]

[c l , ~l --, [c~, 8']
[(cl; c2) , 81 -~ [(c~; c2) , 8'1

[M, 8] -~ [M', 8]
[(M := E), s] ---* [(M' := E), s]

[E, 8] -~ [E', 8]
[(x :-- E) , s I -* [(x := E'), s I

P P C F + X M L has two kinds of type, called t y p e s and t ype s c h e m e s :

t : := a I n a t I t --* t (types)
T : := t I Va. T (type schemes)

We use s, t to range over types, S, T to range over type schemes, and a, /3 to
range over type variables (which are distinct f rom ord inary p rogram variables).
Note tha t types are allowed to contain type variables, t hough no instances of V.

The g r a m m a r of terms is essentially t ha t for P C F extended with four con-
s tructs: (A a . M) for abs t rac t ion on a type variable, (M t) for appl icat ion of a

460

polymorphic term to a type (not a type scheme), an explicitly-typed version of
Milner's le t construct for binding variables of polymorphic type, and a parallel
conditional of the form (pifz M N P) where N and P must be of type na t . A
typing judgement in P P C F + X M L is of the form A f- M : T, where now A is
a finite function from variables to type schemes, and T is a type scheme. The
typing rules are given in Tables 1 and 5. (Notes: FTV(A) is the set of free type
variables in type schemes assigned by A, and M { t / a } denotes the substitution
of a type for a type variable in M.) The operational semantics (Tables 2 and 6)
extends that of P C F with rules for pifz, ~-reduction for types, and a/~-reduction
rule for reducing let 's .

To define equivalence in the polymorphic language we must keep track of free
type variables in typing judgements. We write X; A F- M : T when A b M : T
is derivable and X is a set of type variables containing those free in T, M, and
A. Thus, ~- M : T means that there are no type variables free in M or T.

D e f i n i t i o n 3. 1. C[.] is a P P C F + X M L X A T - c o n t e x t if f- C[M] : n a t when-
ever X; A ~- M : T.

2. Suppose that X ; A F- M : T and X ; A ~- N : To Then X ; A F- M = N if for
all P P C F + X M L X A T - c o n t e x t s C[.], C[M] 4 " n r C[N] --+* n.

Table 5 Additional Typing Rules for PPCF+XML.

A F- M : T (a r FTV(A))
A F- (As . M) : Va.T

A F- M : Va.T
A F- (M t) : T{ t /a}

A I - M : n a t A b - N : n a t A F - P : n a t A F - M : T A , x : T f - N : t
A b- (pifz M N P) : nat A F- (let x : T = M in N) : t

Table 6 Additional Reduction Rules for PPCF+XML.

((As. M) s) --+ M{s /a}
(let x = N in M) ~ M { N / x }

M -+ M'
(plfz M N P) ---* (plfz M' N P)

p ..._~ pt

(pifT. M N P) ---+ (pifz M N P')

(pif~ 0 M N) -~ M
(pif~. (succ n) M N) --~ N

(pifz M n n) --, n

N ~ N '
(pifz M N P) ~ (pifz M N' P)

M --* M'
(M t) --+ (M' t)

461

3 T r a n s l a t i o n f r o m P C F t o P P C F T X M L

Pick a type variable a. Given a PCF type t we obtain a P P C F + X M L type t*
by replacing each occurrence of n a t by a. Assume that the type context of the
term to be translated is F = xl : t l , . . . , xn : tn. We build the translation in a
few stages:

1. Define the type CI(Ft) = t~ ~ ..o ~ t~ ~ t* (C1 here is for "closure"). If F
is empty then this type is just t*.

2. For a term M, let M~t = (Axl : t l . . . Axn : tn . M). Notice that this depends
on the ordering of the x~ : t~'s in F. Again, if F is empty then M~, is just
M. If F F M : t is a derivable PCF typing judgement then clearly we have
F M ~ , : C l (F t) {na t / a } .

3. The type scheme Con(T't) (Con is for "context") is

W . (a --, a) --, (a ~ a) --, a ~ (a --, a --* a ~ a) --* C l (r t) --,

4. The translation of M, with respect to Ft, is the term [Mlr~ given by

[M]rt = p n a t succ pred 0 ifz M ~

where succ= (Ax : n a t . succ x) and so on. In [M], p is any variable. If
F f- M : t is a derivable typing judgement in PCF, t h e n

p : Con(Ft) F [M] r i : n a t

is derivable in the polymorphic language.

The main result is that the translation [.] preserves and reflects observational
equivalence.

T h e o r e m 4 Full A b s t r a c t i o n . Suppose 1" ~- M : t and 1" t- N : t. Then

F ~- M =_ N ~ .~ p : Con(Ft) f- [M]r, - [N]r~

Proof. (Sketch) The (~) direction is not difficult. The main steps in the (0)
direction are as follows.

1. Show that if ~M]rt and [M]rt are distinguishable, they are distinguishable
in a context of the form (let p : Con(Ft) = P in [.]). This follows from a
version of the Context Lemma [10].

2. Show that , for the purpose of making such distinctions, it is sufficient to
consider P ' s defined from the pure simply-typed A-calculus involving only a
divergent t e rm/2 . The polymorphic type of p is essential for this.

3. Prove that for P as in 2, (let p : Con(Ft) -- P in JIM]f) reduces to C[M],
where C[.] is a sequential P C F context, and similarly for N.

These properties allow us to construct a sequential P CF context that distin-
guishes M and N when [M] and [N] are inequivalent in PPCF-FXML.

462

4 Translat ion from IA to P P C F + X M L

The translation from IA to P P C F + X M L goes in two stages. We define a deno-
rational semantics-style encoding of IA into PCF called the concrete translation.
We then give an abstract translation which uses the concrete translation.

4.1 The Concrete Translation

The concrete translation, on the level of types, goes as follows.

gEcomrn] = n a t ~ S --* S L = n a t
C Eexp] = n a t --+ S ~ V V = n a t
gEloc] = n a t --+ S --* L S = L ~ V

cEo --, o'E = cEoE --, cEo'l

The extra n a t parameter in the base types is used to keep track of the number
of locations that have been allocated. The translation on terms is

cEyE = y
CEO] = Ax : n a t . AS : S~
CEsuec M E = Ax : na t . As : S.
CEpred M E = Ax : n a t . As : S.
CEskipE = Ax : n a t . As : S.
C[(M g)E = (CIM E gEN])
CEAz:/9. M E = Az: 6[0]. gEM[
CEY0 ME = Yc[o] gEM]
C[C1;C2] = Ax : na t . As :S.
C [M := E[= Ax : n a t . As : S.
C [c o n t e n t s M[= Ax : n a t . As : S.
C [ifz M N PE = Ax : n a t . As : S.
C E n e w z = E i n C E =

0
succ (gEM] x s)
p r e d (dEM] x s)

s

cEc2E �9 (CEC1] �9 8)
(s I (eEME x s) ~ (CEN] x s))
(s (gEM] x s))
ifz (CEM E x s) (CEN] x s)(e[PE x s)

Ax: nat. (Az: C#oc].As : s . (((c i t e (succ x) (s I (succ x) ~ (CEEE x s))))
I (~uc~ ~) ~ s(~u~c ~))

) (Art : na t . AS : S. (succ X))

There are some obvious provisos here about free variables, e.g., in the equation
for CIsucc M E, x cannot be free in M. The interpretation of ifZcomm requires a
higher-order ifz in PCF, but this can be easily encoded. Also, in these definitions
(s [a ~-~ b) stands for

M : L. ifz (e q b b) (ifz (e q t a) b s(~)) [2

where (eq c d) is itself sugar for an expression that returns 0 if c and d are defined
and equal, 1 if they are defined and unequal, and diverges if either is undefined.
The (eq b b) test serves merely to make (s I a ~ b) strict in b. It is not hard to
see that the judgement 7r F- M : 0 in IA gets translated to CETr] F C[M] : C[0],
where C[Tr]x = eETr(x)E for x e dom(Tr).

Most of the valuations are self-explanatory except for new. Suppose we are
evaluating (new z = E in C) in a state s where there are x active locations.

463

Then we evaluate the body C in a state where there are x + 1 locations, and
where the extra location (which is itself simply succ x) has contents C[E~ x s.
This is the intuition behind (C[C]] (succ x) (s I (succ x) ~ (C[E~ x s))) . The
I (succ x) ~ s(succ x) part restores succ x to its old value on termination of
the block. Finally, the argument that is passed to z simply serves to bind z to
(an expression for) the new location.

The concrete translation yields a semantics that is very poor in many re-
spects. For example, locations are represented as the type nat ; this has the
disadvantage of there being an "undefined" location. Despite this extra baggage
the concrete translation is still adequate.

T h e o r e m 5 A d e q u a c y . C ~ ~ (C[C] 0 ()~x : n a t . x) 0)~.

Proof. (Sketch) If we compose the translation C[.] with the usual continuous
function model of PCF, then we obtain a denotational semantics of IA. The
adequacy of this denotational model for IA, together with the adequacy of the
continuous function model for PCF, yields the result. The adequacy of this
model of IA can be shown using standard methods (as in [7]). The only subtlety
involves dealing with the "extra baggage," such as non-definable commands in
the semantics that are non-strict in their state argument; this requires some
care when proving, using a computability argument as in [19], that operational
termination implies semantic termination.

The three arguments to C[[C]] in this result specify a context of evaluation where
there are 0 initial locations and (~x : na t . x) is the initial state. The final argu-
ment is a location whose contents we look up to get a nat .

4.P The Abs t rac t Trans la t ion

We translate a judgement ~ t- M : 8 in IA to a judgement in PPCF+XML, using
the translation CI. ~ as an intermediary. Assume that ~- = xl : 01, ..., xn : On, and
let comm, exp and loc be distinct type variables. If 8 is an IA type, let 8" is the
P P C F + X M L type obtained by replacing occurrences of c o m m by comm, exp
by exp, and loc by loc. The translation is defined in a few stages:

1. Define the type C1(~-8) -- 8f ~ . . . ~ 8~ ~ 8*.
2. For a term M, let M* 0 = (~Xl : C [8 1] , . . .) ix n : C[Sn] .C[M]). If~r is empty,

then M* e is just C[M]. If r }-- M : 8 is a derivable IA typing judgement,

b- M ' e : C l (~ r S) { C [c o m r a] / c o m m , C I e x p] / e x p , C[loc] / l oc } .

3. Define Con(~'8) to be

V c o m m . Vexp. Vloc. (exp --~ cxp) ~ (exp ~ exp) ---* exp
--* (exp ---* exp ~ exp ~ exp) ---* (exp --~ loc ~ loc ---* loc)
---* (cxp---* c o m m ~ c o m m ~ c o m m)
--* (loc ~ exp ~ c o m m) - , (c o m m ---* c o m m ---* c o m m)

(loc ~ e x p) ~ (exp --* (loc ~ c o m m) ~ c o m m) ---* c o m m
---* Cl(~rS) ---, comm.

464

The types on the first line are for successor, predecessor and zero, those on the
second and third lines are for conditionals, and those on the fourth and fifth
lines are for assignment, sequencing, dereferencing, variable declarations, and
skip.

4. The translation of M, with respect to ~-0, is the term AIM]~o given by

AIMlre = p CIcomm I Clexp I C[loc I succ pred zero ifzex p ifZlo c ifZcomm
assign seq contents new skip M* 0
0 ()~x : nat.x) 0

where succ = C[)~x : exp. succ xl , and so on. In ,AIM], p is some "fresh"
variable. If ~r ~- M : 0 is a derivable typing judgement in IA, then

p: Con(1r~) ~- AIM]~o : na t

is derivable in the polymorphic language.

The term AIMS, minus its last three arguments, is of type CIcomm I. The final
three arguments play the same role as in the statement of the adequacy of the
concrete translation.

T h e o r e m 6 Full Abs t rac t ion . Suppose lr F M : 0 and ~r F- N : 8. Then

~r b M - Y ~ p : Con(~rO) F A I M] - A I N ~

Proof. The proof runs along the same lines as for Theorem 4, with the exception
that step 3 needs to be modified as follows.

3. (let p : Con(r0) = P in [AIM]]) reduces to C[CIM]], where C[.] is in the
image of C H, and similarly for N.

The adequacy of CI.] is then used to build a distinguishing context.

5 Conclusion

We have given fully abstract translations from sequential PCF and an ideal-
ized Algol into a parallel extension of PCF with ML-style polymorphism. Our
translation method appears to be fairly general, and it would be interesting to
attempt to apply it to other languages. One particularly important area concerns
dynamic allocation [18], or a combination of dynamic allocation and reference
types like that found in Standard ML. We expect that a stronger type the-
ory than XML--probably involving the addition of recursive types--would be
needed to treat references that store stateful objects, such as other references.
Our translation techniques also might be applicable to other languages, such
as a language with concurrency (e.g., Reppy's Concurrent ML [21]), a language
with exceptions, or a language with continuations. While this discussion is spec-
ulative, more examples would lend support to the idea of parametricity as a
unifying concept, a proper understanding of which may shed light on diverse
problems in programming theory.

465

Proving that a denotational model of a programming language is fully ab-
stract boils down to showing that the "abstraction barrier" between the abstract
description of a programming language and a denotational semantics "implemen-
tation" is maintained. For instance, the standard continuous function model of
PCF is not fully abstract because the model contains certain "parallel" func-
tions that can be used to distinguish terms that are not distinguishable in the
sequential setting [19, 26]. Similarly, standard models of Algol are not fully ab-
stract [9]: there are functions in these model that violate the "stack discipline"
of local variables and that can be used to distinguish observationally indistin-
guishable terms. In these models, a "denotational program" is allowed access to
operations that are not provided directly by the language. Our translations into
a PPCF§ show that parametricity may be used to prevent such unautho-
rized access, and that a fully abstract model of PPCF+XML would provide a
basis for reasoning about PCF and IA.

Nevertheless, there are two potential limitations to our results. Firstly, our
translations probably do not yield "practical" methods for reasoning about PCF
or IA. Reasoning about a PCF or IA term directly from the translation would in-
volve reasoning about a large polymorphic application. Given a suitable model of
PPCF+XML, it would be preferable to bypass the application of a polymorphic
function and consider directly the meanings determined by such an application.
One might expect that a more direct characterization of such meanings might
be possible with a little work, but this is difficult to predict in the absence of a
fully abstract model of PPCF+XML.

Secondly, our results do not definitively establish that a solution to the full
abstraction problem for PPCF+XML entails a solution to the problems for PCF
and IA. One difficulty, of course, is that the word "solution" here is ill-defined.
In the case of PCF~ one would at least want a characterization of Milner's unique
model [10] (which we believe would be possible) together with a characterization
of finite elements and some "semantic" conditions explaining the "sequential"
nature of the function type (which is not immediate from our translation). In
the case of IA, one would perhaps like to see structure, such as that in functor
category models [23, 15, 13], explaining the variance in the concept of state
that is caused by variable declarations. Again, though we believe that there may
be reasonable possibilities in this direction, without a fully abstract model of
PPCF§ it is not possible to predict with assurance that "good" models of
PCF or IA would be obtained.

In this paper we purposely restricted our attention to ML-style polymor-
phism in order to emphasize the point that issues of parametricity and full ab-
straction are interesting even for this limited variety of polymorphism. Indeed,
most studies of parametricity have taken place in the context of the second-order
polymorphic A-calculus (e.g. [2, 4, 8, 24]). ML's polymorphism is of a compar-
atively simple form, where type variables never themselves get instantiated to
polymorphic types. This predicative flavour would allow parametricity to be ex-
amined in isolation from the foundational issues raised by the impredicative
polymorphism of the second-order)~-calculus. Thus, ML's polymorphism might

466

serve as a useful test bed for examining rigorous explanations of parametricity,
as an intermediate step on the way to a more general understanding.

ML-style polymorphic types can be interpreted quite straightforwardly as
indexed products of domains, trimmed by Reynolds's relational-parametricity
conditions [24]; using the Kripke logical relations of [6] may work especially
well. There are also a number of PER models that possess appropriate domain-"
theoretic structure (e.g. [3, 17]). Some of these models perform quite well at
certain "low-order" types, but little is known at higher types, and it is not known
if any of them is fully abstract. The presence of pif in PPCF+XML may help
in providing such a semantic model (cf. [19]), e.g., in considering definability
results for polymorphic types with embedded occurrences of nat. Of course,
full abstraction for the polymorphic language without pif (not so far-fetched
a possibility in light of some recent preliminary announcements [1, 16]) would
also be interesting in connection to the results presented here for the purpose of
studying Algol (our translation result for IA does not require pif).

One aspect of state that we have not emphasized--but which is at least as
fundamental as local variables--is what is often called the "single threaded" na-
ture of state: when a state change occurs, the old state disappears. Even the most
advanced models of Algol--e.g., the ones described in [14, 27J--are known not
to be fully abstract without what Reynolds calls "snap-back" operations. These
operations violate the single-threaded nature of Algol by allowing backtracking
of state changes during evaluation, requiring the maintenance of a stack of (tem-
porary) states instead of only one. It is interesting, then, that our translation
results do not require the presence of snap-back operations. This is very simi-
lar to the connection between single-threading and abstract types suggested by
Wadler [29]. Wadler's observations were made in the context of functional pro-
gramming, where single-threadedness is needed for the safety of in-place array
update, but they also appear to be relevant to the understanding of semantic
aspects of single-threading. Reddy [20] has developed a different approach to
single-threading by applying and extending some ideas from linear logic.

An important precursor to this work is the paper of O'Hearn and Tennent
[14], where a connection between block structure and parametricity was first pro-
posed (a related work is [27]). The information-hiding that is obtained through
encapsulating pieces of local state was explained there using a denotational
model that borrowed ideas from Reynolds~s relational approach to parametric-
ity. They obtain good characterizations of the structure of "low order" Algol
types (related to initial algebra results for polymorphism, e.g. [24, 4]), but full
abstraction issues have not been resolved for their models. In contrast, we ob-
tain a (syntactic) full abstraction result, but not a direct characterization of
"low order" types. Another difference is that our translation only requires ML-
style polymorphism, whereas their semantics contains parametric functions as
arguments to other functions. While neither our translation nor our results are
directly analogous to [14], we consider our results as providing further evidence
in favour of a connection between local state and parametricity.

467

References

1. S. Abramsky, R. Jagadeesan, and P. Malacaria. Games and full abstraction for
PCF: preliminary announcement. Unpublished, 1993.

2. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70(10):35-64, 1990. Corrigendum in 71(3):431,
1990.

3. P. J. Freyd, P. Mulry, G. Rosolini, and D. S. Scott. Extensional PERs. In Proceed-
ings, Fifth Annual IEEE Symposium on Logic in Computer Science, pages 346-354,
Philadelphia, PA, 1990. IEEB Computer Society Press, Los Alamitos, California.

4. P. J. Freyd, E. P. Robinson, and G. Rosolini. Functorial parametricity. In Procee&
ings, 7th Annual IEEE Symposium on Logic in Computer Science, pages 444-452,
Santa Cruz, California, 1992o IEEE Computer Society Press, Los Alamitos, Cali-
fornia.

5. R. Harper and J. C. Mitchell. On the type structure of standard ML. A CM Trans.
Programming Languages and Systems, 15:211-252, 1993.

6. A. Jung and J. Tiuryn. A new characterization of lambda definability. In Typed
Lambda Calculi and Applications, volume 664 of Lect. Notes in Computer Sei.,
pages 245-257. Springer-Verlag, 1993.

7. A. F. Lent. The category of functors from state shapes to bottomless CPOs is ad-
equate for block structure. Master's thesis, Massachusetts Institute of Technology,
1992.

8. Q. Ma and a. C. Reynolds. Types, abstraction, and parametric polymorphism,
part 2. In S. Brookes et al., editors, Mathematical Foundations of Programming
Semantics, volume 598 of Lecture Notes in Computer Science, pages 1-40. Springer-
Verlag, Berlin, 1992. Proceedings of the 1991 Conference.

9. A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables:
preliminary report. In Conf. Record 15th ACId Syrup. on Principles of Program-
ming Languages, pages 191-203. ACM, New York, 1988.

10. R. Milner. Fully abstract models of typed A-calculi. Theoretical Computer Science,
4:1-22, 1977.

11. R. Milner. A theory of type polymorphism in programming. J. of Computer and
System Sciences, 17:348-75, 1978.

12. J. C. Mitchell and R. Harper. The essence of ML. In Conf. Record 15th ACM
Syrup. on Principles of Programming Languages, pages 28-46. ACM, New York,
1988.

13. P. W. O'Hearn and R. D. Tennent. Semantics of local variables. In M. P. Fourman,
P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer
Science~ volume 177 of London Mathematical Society Lecture Note Series, pages
217-238. Cambridge University Press, Cambridge, England, .1992.

14. P. W. O'Hearn and R. D. Tennent. Parametricity and local variables. Technical
Report SU-CIS-93-30, Syracuse University, 1993. Preliminary version appeared in
Conf. Record ~Oth ACM Syrup. on Principles of Programming Languages, pages
171-184, Charleston~ South Carolina~ 1993. ACM, New York.

15. F. J. Oles. A Category-Theoretic Approach to the Semantics of Programming Lan-
guages. Ph.D. thesis, Syracuse University, Syracuse, N.Y., 1982.

16. L. Ong and M. Hyland. Dialogue games and innocent strategies: An approach to
intensional full abstraction to PCF (preliminary announcement). Unpublished,
1993.

468

17. W. K. Phoa. Effective domains and intrinsic structure. In Proceedings, Fifth An-
nual IEEE Symposium on Logic in Computer Science, pages 366-379, Philadelphia,
PA, 1990. IEEE Computer Society Press, Los Alamitos, California.

18. A. Pitts and I. Stark. On the observable properties of higher-order functions that
dynamically create local names (preliminary report). In ACM SIGLPLAN Work-
shop on State in Programming Languages, pages 31-45, 1993. Available as Yale
Technical Report YALEU/DCS/RR-968.

19. G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223-255, 1977.

20. U.S. Reddy. Global states considered unnecessary. In ACM SIGLPLAN Workshop
on State in Programming Languages, 1993. Available as Yale Technical Report
YALEU/DCS/RR-968.

21. J. H. Reppy. CML: A higher-order concurrent language. In Proceedings of the
SIGPLAN'91 Conference on Programming Language Design and Implementation,
pages 293-305, June 1991.

22. J o Co Reynolds. Towards a theory of type structure. In Proc. Colloque sur la
Programmation, volume 19 of Lecture Notes in Computer Science, pages 408-425,
Berlin, 1974. Springer-Verlag.

23. J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet,
editors, Algorithmic Languages, pages 345-372. North-Holland, Amsterdam, 1981.

24. J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, pages 513-523. North Holland, Amster-
dam, 1983.

25. J. G. Riecke. Fully abstract translations between functional languages. Mathe-
matical Structures in Computer Science, 1993. To appear.

26. V. Sazonov. Expressibility of functions in D. Scott's LCF language. Algebra i
Logika, 15:308-330, 1976. Russian.

27. K. Sieber. New steps towards full abstraction for local variables. In ACM
SIGLPLAN Workshop on State in Programming Languages, pages 88-100, 1993.
Available as Yale Technical Report YALEU/DCS/RR-968.

28. C0 Strachey. Fundamental Concepts in Programming Languages. Unpublished lec-
ture notes, International Summer School in Computer Programming, Copenhagen,
August 1967.

29. P. Wadler. Comprehending monads. In Proceedings of the ACM Conference on
LISP and Functional Programming, pages 61-78, Nice, 1990.

