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Abstrac t  

A logical framework of software evolution is built. The concepts of se- 
quence of specifications and the limit of a sequence are established. Some 
concepts used in the development of specifications, such as new laws, user's 
rejections, and reconstructions of a specification are defined; the related 
theorems are proved. A procedure is given using transition systems. It 
generates sequences of specifications from a given user's model and an ini- 
tial specification. It is proved that all sequences produced by the procedure 
are convergent, and their limit is the truth of the model. Some compu- 
tational aspects of reconstructions are studied; an R-calculus is given to 
deduce a reconstruction when a specification meets a rejection. An editor 
called Specreviser is introduced. It is used to develop specifications. The 
main functions of the editor are given; some techniques used in its imple- 
mentation are also discussed. Finally, the theory is compared with AGM's 
theory of belief revision. 

1 Introduct ion 
If we observe the history of development of a software system, we will find tha t  
the history can be described by a sequence of versions of the software system: 

V1, V2, . . . ,  Vn,  " " ,  

where the version Vn+l  is Obtained from Vn either by adding some new pieces of 
programs,  or by correcting some errors, which is done by replacing some pieces 
of programs of V n with some new pieces of programs. 

Similarly, the history of specifications of a problem can be described by a 
sequence of drafts of specifications: 

S1, $2,..., Sn, . . . ,  

where the draft  S,~+1 is obtained from S,~ in the following way: Either  clients 
provide some laws, or we ask some questions (propose some laws); the clients 
may answer the question by ~Yes ~ or "No ~. The answer "Yes ~ means tha t  our 
proposed laws are accepted and will be added into S•. The answer "No ~ means 
tha t  the laws are rejected by the clients; in this case we say th.~" the law has 
been rejected by facts. 

To build a logical framework, let us consider the specification of a software. 
From the above discussion, we reach the following conclusions: 

1. The history of the development of the specification of a program can be 
described by the sequence of versions of the specification. 
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2. Each specification in the sequence should be consistent; otherwise, it fails 
because anything could be deduced, or equivalently, no program can be 
synthesized from the specification. 

3. When clients reject a specification, the specification has to be revised to 
meet the client's requirement. 

4. There should be a procedure to produce the revisions of the specification 
in an economical way; i.e., the modification of the specification should be 
as less as possible, and the sequence made up by the revisions should reach 
an appropriate specification as fast as possible. 

The purpose of this paper is to provide a logical framework for describing the 
history of development of the specification of a program. In section 2, we will 
introduce the concept of sequence of formal theories to describe the evolution of a 
specification, and will further introduce a concept called the limit of sequence to 
model the result of the evolution of a specification. In section 3, we will introduce 
some concepts to describe the interaction between the specifications and the 
users. In section 4, we will define a procedure to generate developing sequences. 
The procedure is defined using a transition system. We will prove that  for a 
given user's model and a specification, all developing sequences generated from 
the procedure and starting with the given specification are convergent, and their 
limit is the laws (the set of truth} of the model. In section 5, we provide another 
procedure to produce reconstructions when a specification is rejected by the user. 
In section 6, we will give an introduction to an editor called Specreviser which 
is built based on the logical framework. Finally, we will compare our work with 
belief revision theory as given in [AGM 85]. 

2 Sequences  and l imits  
We assume that  the formal language which we use is a first order language L 
defined in [Gall 87]. We use A, r and Yh(r)  to denote a formula, a sequence of 
formulas, and the set of all theorems deduced from r respectively. 

A sequent is of the form r ~- A. We employ the proof rules of sequent calculus 
given in [Paul 87]. Thus, we will treat a sequence of formulas as a set of formulas 
when it is needed. 

A model M is a pair < M, I >, where M is a domain and I is an interpre- 
tation. Sometimes, we use Mp to denote a model of a specific problem p, and 
use TM~ to denote the set of all true sentences of Mp.  It is obvious that  TM~ is 
countable. We use M ~ 1" to denote M ~ A for all A contained in r .  

The concepts of validity, satisfiability, falsifiability, provability and consis- 
tency used in this paper are defined in [Gan 87]. As we know, the proof rules 
are s o u n d  a n d  comple te .  

De f in i t i on  2.1 Sequence  of  spec i f ica t ions  
A finite or infinite consistent set (sequence) 1" of closed formulas is called a 

specification. The sentences contained in 1" are called laws. 
1"1, 1"2,"" 1",~," "" is called a sequence of 8pecificatioas, or sequence for short, 

if for any n, 1",~ is a specification. 
A sequence is increasing (or decreasing} if 1", _ 1"n+i (or 1",, _D 1",,+i) for all 

n; otherwise it is non-monotonic. 
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In terms of mathematical logic, a specification is in fact a sequence of non- 
logical axioms, or closed formal theories. 

We assume that  two sentences P and Q are the same sentence iff P _= Q 
(that is (P D Q) ^ (Q D P) is a tautology). 

Definition 2.2 Limit of sequence 
Let {rn} be a sequence of specifications. The set of closed formulas: 

Oo o o  

r'- A LJr  

is called the ~pper limit of the sequence {r~}. The set of closed formulas: 

Oo Oo 

r,--L] 

is called the lower h'mit of the sequence {r.}. 
A sequence of specifications is converge~zt iff P, = r*. The limit of a conver- 

gent sequence is denoted by limn rn and is its lower limit (and also the upper 
limit). 

The meaning of the definition above can be seen from the following theorem: 

Lemma 2.1 1. A E r* iff there exist infinitely many kn such that A E rk~. 

2. A E r, iff there exists an N such that A E rm for m > N. 

Proof .  Straightforward from the definition. [] 

T h e o r e m  2.1 If the sequence {rn} is increasing (or decreasing), then it is con- 
OO r c o  . vergent and the limit is Un=l  n (or Nn=l rn)  

E x a m p l e  2.1 I n c r e a s i n g  sequence  
We have seen many increasing sequences in logic. For example, consider the 

Lindenbaum theorem: "Every formal theory r of L can be extended to a maximal 
theory. ~ The proof of the theorem is given as follows: Since an sentences of L 
are countable, they can be listed as: A1,A2, . . .  ,An , ' "  ". We then define ro = r ,  

�9 { r n  U{An} if Fn and An are consistent 
r n + l  = r n + l  = rn  otherwise 

It is obvious that  the sequence {rn} is increasing. Its limit Un~176 rn  is a maximal 
theory. 

E x a m p l e  2.2 S e quence  w i t h o u t  l imi t  

= ~ {A} n - - 2 k - 1  
r~  

I {--A} n = 2k 

Thus, r* = { A , - , A }  and r ,  = ~. The sequence {rn} has no limit. 
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Example  2.3 R a n d o m  sequence 
Let A denote the statement "tossing a coin and getting tails. ~ Fn is defined 

by the result of n ~h tossing. The sequence {I'n} is a random sequence of A and 
-~A. Obviously, it has no limit. 

Intuitively, such sequence means that the laws contained in the specification 
perhaps are not appropriate descriptions of the given problem. For example, 
an appropriate description of the above example should be "to88ing a coin, the 
probability of getting tails i~ 50%. ~ 

The main result about the limits is the following: There exists a procedure 
which, for a given model and a given specification which may be inconsistent 
with the truth of the model, will produce sequences such that every sequence 
will start with the given specification, and will be convergent to the same limit 
which is the set of all laws {the truth) of the model. 

3 N e w  law and user's rejection 
To build the procedure mentioned above, we need the following concepts: 

Definit ion 3.1 New laws. 
A is cailed a new law for r iff there exist two models M and M ~ such that 

M~P, M~A and M'~r, M'~-~A. 
Th eo rem 8.1 A is a new law for r i f f  A is logically independent of F, that is 
neither F ~- A nor r Y- -~A is provable. 

Proof :  The proof is straightforward from soundness and completeness. [] 
We use F ~ A to denote that A is a semantic consequence of I ~. It means 

that for any model M, if M ~ 1 ~ then M ~ A. 
The concept of user's rejection is given below: 

Definit ion 3.2 User 's  re ject ion 
Let F ~ A. A model M is a user's rejection of A iff M ~ -~A. 
Let F~(A)={A~ I A~EP, M ~ A ~ ,  M ~ - - A } .  
M is called an ideal user's rejection of A it~ rM(A) is mazimal in the sense that 

there does not exist another user's rejection of A, M',  such that F~(A) C I'M,(A ). 
An ideal user's rejection of A is denoted by M(A). 

Since there may exist many ideal rejections of A by facts, we define 

s  A) = {r~(A) [ M is an ideal user's rejection of A} 

The user's rejection meets the intuition that whether a specification is ac- 
ceptable, depends only on whether all its deduced results agree with user's re- 
quirements which have nothing to do with the logical inference. In fact, this is 
the reason that sometimes, we call our theory open logic [Li 92]. 

The ideal user's rejection satisfies the Occam's rasor, which says:"Entities are 
not to be multiplied beyond necessity. ~ Here, it means that if some particular 
consequence deduced from a specification is rejected, then only the smallest 
set of laws (contained in the specification) which cause the rejection has to be 
rectified, and the rest of the laws (a maximal subset) is retained and is assumed 
to be temporarily correct. 
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Def in i t ion  3.8 Acceptab le  modi f icat ion  
Let r F A. An acceptable modification A of r by -~A is a maximal subset of 

r with the property that A is consistent with --A. 
Let A(F, A) be the set of all acceptable modifications of --A. 

T h e o r e m  3.2 A(F, A) = s  A). 

Proof :  Let us prove =~. 
Suppose A E ~(F,A).  It is consistent with --A, so there is a model M ~ 

such that M ~ ~ A and M ~ ~ -~A. Thus, M'  is a rejection of A by facts. 
M'  is maximal, since if there exists another M"  such that M"  ~ -~A and 
FM,,(A ) D FM,(A), then FM,,(A) E ~(r,  A); but this is impossible. [] 

Example  3.1 Let P -= {A, A D B, B D C, E D F} 
We have F F- C. The ~(F, C) consists of: 

{A,A D B , E  D F}, {A,B D C ,E  D F} {A D B , B  D C , E  D F}. 

The following definition tells us how to reconstruct a specification, when we 
meet a new law or a user's rejection. 

Def in i t ion  3.4 Recons t ruc t ion  
Let A be a theorem of r .  An E-reconstruction of r for the theorem A is r 

itself. 
Let A be a new law for F. An N-reconstruction of r for the new law A is the 

sequence {I', A}. 
Let r ~ A and A be rejected by the user. An R-reconstruction of r for the 

user's rejection of A is A, where A E ~(F,A). 
r I is a reconstruction of r if[ r I is an E- or an N- or an R-reconstruction. 

It is obvious that R-reconstruction is not unique. If A is an R-reconstruction 
of r for a user's rejection of A, then A is a maximal subset of r and is consistent 
with -~A. 

The N-reconstruction and R-reconstruction are similar to the expansion and 
maxichoice contraction in [AGM 85] respectively. The minor difference is that 
all the concepts in AGM theory are proof-theoretic and are defined for the logical 
closure Yh(P) (called belief sets in [AGM 85]). In contrast, the concepts given 
here are model-theoretic, and defined for a specification (formal theory) r .  The 
key difference is that we are interested in how to build the convergent sequences. 

4 T h e  l imit  of  deve lop ing  processes  
Having given the general concepts, we study the problem of how to describe the 
evolution of specification of a program. 

Def in i t ion  4.1 Deve lop ing  process  
A sequence of specifications r l ,  r 2 , . . . ,  rn , - - ,  is a developing process, if r~+l 

is a reconstruction of r~ for i _> 1. 

It should be mentioned that if ~(rn, A) contains more than one element, then 
there are many R-reconstructions of rn. Thus, the evolution of a specification 
should be represented by a tree, each branch of which is a developing process. 
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T h e o r e m  4.1 1. A developing process {rn} is increasing (or decreasing) iff 
for all n > 1, r n + l  is an N-reconstruction (or R-reconstruction) of rn .  

2. A developing process is non-monotonic iff N- and R-reconstructions occur 
alternatively. 

Proof:  Straightforward from the definition. [] 
Let us now give the procedure mentioned above. We assume that  

1. To is a given countable consistent set of sentences which we accept, and is 
denoted by {Am}. 

2. r is a given specification. It may be inconsistent with To, and is to be used 
as the initial specification of the developing process. 

The basic idea of building the procedure is: Take rx = r .  r , ,+ l  is constructed 
recursively as follows: If r n  F A~, then take r,~+l = Fn; if A~ is a new law for 
rn ,  then r,~+l is the N-reconstruction of rn  for A~, i.e., {A~, rn};  if F,, ~- --A~, 
that  is, --Ai has met a user's rejection (Ai is to be accepted), then r n + l  is an 
R-reconstruction of rn .  

When an R-reconstruction is taken in response to a user's rejection in the 
r~ *h stage of the developing process, there are two things which we should notice: 

1. Only those R-reconstructions containing all new laws accepted before the 
n th stage are interesting. We introduce a sequence A to store the accepted 
new laws for the steps concerning N-reconstructions. 

2. Some information may be lost. For example, consider F = {A A B}, both 
r I- A and r I- B are provable. Assume that  A has met a user's rejection, 
then the maximal subset of r which is consistent with -,A is the empty set. 
Thus, after the R-reconstruction (of r for A), B is missing! In order to 
repair the loss, we introduce a sequence O to collect those Am for the steps 
concerning E-reconstructions. After each R-reconstruction, the procedure 
checks all A,~ contained in O, and picks up the lost ones back as new laws. 
Since, at any developing stage 3', O is always finite, the checking will be 
terminated. 

In order to make the notation easy to understand, we describe the procedure 
using a transition system [Plo 82] and [Li 82]. We introduce the quadruple: 

< T , F , O , A  > 

to denote the configuration, head(T) and tail(T) are defined as usual. We 
introduce the operator * to denote the concatenation of a finite sequence with 
another (finite or infinite) sequence: 

(A1, . . . ,  An) * (B1, B 2 , . . . ,  B , , , . . . )  -= (A1, . . . ,  A,~, B1, B 2 , . . . ,  B,~,.. .) 

Def in i t ion  4.2 Procedure  
Let the initial state of the configuration be 

< TO, r , r 1 6 2  > .  

Let F1 = r .  r , ,+ l  is defined by the following three rules recursively: 
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r ~ head(T} 
< T,  r,  o ,  z~ > ,< tail(T),  r ,  o * {head(T)},  A > {I) 

r y head(T) r y-~head(T} 
< T, r ,  o, z~ >--- ,<  tail(T), head(T),  r, o, a, {head(T)} > (2) 

r F -~head(T} A E i A E ~(r,-~head{T)) 
< T, A, O, A > ,< {head{T)}, 0 �9 tail(T), A, O, A > 

(~) 

The sequence {r.} is called a developing process of To and r ~ it is generated 
by the above procedure. 

T h e o r e m  4.2 Let M,, be a given model, and let r be a specification. Every 
developing process of TM~ and F denoted by {rn} is convergent, and 

lim Th(r.)= TM~. 
n--~ OO 

Proof i  Let us prove the case that r does not contain logically independent laws 
of T. Techniques similar to those given in the following proof can be used to 
prove the theorem without this restriction. 

Let {rn} be a developing process of M~ and r.  We prove limn Th(r,~) = T M r  

in the following two steps: 

1. TM,~ _ (Th(r)).}. For any A i e  TM~,, by the construction of {r ,} ,  there 
must exist an n such that either Ai e Th{r.) or A~ r Th(r.} and Ai e 
r~+i. 

(a) For the first case, by definition 4.2, there must be an l such that 
Ai E Th(rm} for m >_ l, since TMo is consistent. For each m > l, 
there is a finite subset of rm denoted by Am = {Bin1,'", B,~# } and 
A,,~ I- A~. 

c~ r For each k, 1 < k ~  j,  either Bmk E Nn=t n or (N,~=lrn) }- Bm~, 
otherwise by definition 4.2, B,,~ E r ,  and there must exist an m' 
m such that rm, contains -~B,,~, thus Bm~ ~ Th(rm,) which is a 
contradiction. Thus A, e N:=, Th{r.,) holds. Therefore 

oo oo  

A, e U A Th(rm)= (rh(r)).. 
n=l m=n 

(b) For the second case, by the definition 4.4, Ai E rm for any rn > n. 
Thus, oo fi 

A~E U r,~=r.. 
~ = 1  r n = n  

2. Th(r)* C TM~. Assume that there is a closed formula A such that A E 
Th(r)* amd A ~ TM~. There are only two possibilities: 
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(a) neither TM~ F- A nor TM,~ F ~A is provable, but this contradicts that  
r does not contain any logically independent formula w.r.t. TMp. 

(b) -~A G TM,,. This is also impossible, if so, there must be i such that  
-~A = A~, then there must be n such that  -~A E r,~. Thus -~A E rm 
for all m > n. this is -~A E r*, a contradiction. 

Thus, we have 
Th(r)* _ TMp C. T h ( r ) ,  

and so Th( r ) .  = Th(r}*. Hence, the theorem has been proved. [] 
The TM,~ can be viewed as the set of laws characteriT.ing a specific problem 

M~ in the real world; then the above theorem says that  we can start  from any 
given specification (which may be inconsistent with M~)  and produce versions 
of specifications using the above procedure; all these sequences generated are 
convergent to the set of laws characterizing the problem. 

The procedure also shows that  when we deal with a user's rejection of A 
at any stage n, we can a r b i t r a r i l y  choose one maximal set of rn  which is 
consistent with -~A. If it contains A which is the set of new laws Ak E TM,~ 
accepted in the 1 ' t  to rt  ~h stage, then the developing process will always converge 
to TM,~. Therefore, we do not need the unique maximal consistent subset (which 
is required in [G~r 88]). 

5 A calculus of R-reconstruction 

From the definition given in section 3, we know that the key point of building the 
reconstructions for a specification r is to find the maximal subsets of r which 
are consistent with some given formula A. The following two theorems show 
that this is not an easy task. 

Theorem 5.1 1. If a specification r contains finite propositions only, then 
building a reconstruction of r is an NP-hard problem. 

2. If a specification r is a set of first order formulas, then building a recon- 
struction of r is an undecidable problem. 

Proof: The first is directly from Cook's theorem [GJ 79]; the second is from 
Gbdel's second incompleteness theorem [Shoen 67]. [] 

More detailed results about complexity for propositional logic can be found 
from [EG 92]. 

According to the theorem in the last section, when P ~- A and A has met a 
�9 user's rejection, any R-reconstruction of r for A (containing A) can be chosen, 
and the limit of developing process does not changed. In this section we define a 
calculus to produce one R-reconstruction. It is called R-calculus, and is defined 
using transformation rules. The purpose of the rules is to delete the sentences 
in r which contradict -~A. We assume that r contains finite sentences, and use 
the form: 

to denote a configuration which is read as A overrides r. In particular, if 
A = A, then it means that either I" [- -~A and -~A has met a user's rejection (i.e, 
A has to be accepted), or A and r are consistent. We use 



402 

A I r - - ~ A ' l r '  

to mean that  the configuration A [ r is transformed to A t [ r I. ==~* is used to 
denote the transition closure as usual. In particular, the form 

Ala, r ~ A I r  

means that  A I r ,  A is transformed to A I r ,  and A is called a deleted formula 
in the transformation. In this case, A contradicts A. The rules of R-calculus 
are given below: 

D e f i n i t i o n  5.1 R-ca lcu lus  

S t r u c t u r a l  ru les  

Contraction 

A i A ,  A , r  ~ A [ A , F  

Exchange 

A I A,B,r =~ A l B,.4,r 

Logical rules 

R-A left rule: 

A,A, A I r ==~ A, A I r 

A,B, A I r---> B,A,  A l r 

A ^ B ,  A lr----~ A,B, A Ir  

R-A right rule: 

AIA, r ~ A l r  
AIA^B,r ~Alr 

R-V left rule: 

AvB, A 

R-v right rule: 

A 

AIB, r ~ A I r  
A I A ^ B , r ~ A I r  

r ~ a ,  AIr  AvB, AIr==~B,A Ir 

a , r ~ A l r  AIB, r - -~AIr  
Atavs ,  r ~ A l r  

R-D left rule: 

A~B,A r ~-~a,a ] r 

R-D right rule: 

A l~A,r~a r A I B,r--. r 
AIA~B,r==~AIr 

A z  B, A [ r = ~  B, A l r  



R--~ left rule: 

R--~ right rule: 

R-V left rule: 

R-V right rule: 

R-3 left rule: 

R-3 right rule: 
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-~A, A I A, r ==~ -~A, A I r 

A, A I~A,r  ==* A, A I r 

V,.A, A l r ~ AIy/xI, V~.A, AIr 

a I Alt lx],  r ~ A I r 

a I V..A,r ~ A i r  

3x.A, A I r  ~ A[tlx], 3x.A, A I r  

A I A[ylxl,r  ~ A i r  
A 13x.A, F ===~ A iF 

In the quantifier rules, x is any variable and y is any variable free for x in A and 
not free in A unless y = x (y r FV(A) - {x}). The te rm t is any t e rm free for 
x in A. In both  R-V left and R-3 right rules, the variables y does not occur free 
in the lower sequent. 

R--- substi tut ion rules: 

A, A I r ~ A ' , A  r AIA',r  >AIA, r 

In the -- subst i tut ion rules, A and A' are defined below: 

A I "~(BAC) ]-~(BVC) 
A' -~B V -~C -~B A -~C 

R-F consistency rule: 

A 

B B A ~C 3x.~B Vx.~B 

r ~- -~A 

A,r==~A jr" 
A I r is called a terminated configuration if no one of the above rules can be 

applied to. 

Informally, the right rules are used to delete those formulas which occur in 
the right hand side of a configuration and contains a formula occurring in the left 
side of the configuration as a component; the left rules are used to decompose the 
formulas occurring in the left hand side of a configuration. For the R-calculus, 
we can prove the following theorem: 



404 

T h e o r e m  5.2 If A [ r ==~* A' [ r '  and A' I r '  is a terminated configuration, 
then r '  is an R-reconstruction of r for A. 

Proof: The theorem can be proved using the techniques given in chapter 5 
of [Gal 87], since the theorem is, in fact, talking about a kind of completeness. 
We omit the proof since it is too long. 

Let us study some examples to see how to use the rules. 

E x a m p l e  5.1 Consider the example given in section 3. Let 

r - {A,A D B , B  D C , E  D F} and r ' -  {A,A D B , E  D F}. 

r [- c is provable. Assume t h a t  C has met a user's rejection. According to 
the definition, r '  is an R-reconstruction of r .  Using the R-calculus we have: 

-,CIB ~ C, r '  ~ 1  -,cIr '  

where ==~1 is by R-D right rule; ==~2 is by the Axiom; and ==.3 is by R- r  
consistency since r' ~- -,-,B. 

Example 5.2 Let r -Vx.A(x), r'. It is proved that 

r ~- -~3..~A(x). 
Assume that  -,2x.'.A(x) has been rejected, i.e., We have to accept Sx.-.A(x). 

Using R-calculus we have: 

9x.-~A(x) lVx.A(x), r' = ,1  -.A(tl,), 3,.-.A(,)IVx.A(x), r' 

and 

-~A(tlx),3x.~A(x) IA(t/.), r' ~ 3  ~A(tl~), 3~.-A(~)lr' 
--,A(tlx), ]x.-~A(x) IVx.A(x), r '  ==~2 --,A(tlx), ]x.-~A(,)It '  

Where ==#1 is by R-3 left rule, ==~2 by R-V right rule, ai~:: 1 ==~3 by the 
Axiom. 

As we mentioned, using the above R-calculus, only one R-reconstruction can 
be deduced. For example, we can deduce the R-reconstructions {A, A D B, E D 
F}, but not the other two: {A,B D C,E D F} and {A D B ,B  D C,E D F} 
given in Example 3.1. 

To obtain all R-reconstructions, we believe that  a new rule has to be intro- 
duced. To do so, we need to define an order: 

Def in i t ion  5.2 For every right rule of R-calculus, the formula 'in the lower 
transition) to which the rule is applied is called the principle formula, the for- 
mulas introduced in the upper transitions are called the side formulas. An order 
-< is defined recursively as below: 

1. If P is a side formula and Q is the principle formula in an instance of some 
right rule of R-calculus, then P -< Q. 

2. If P -< Q and Q -< R, t h e n P - < R .  
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The new rule is defined as: 
R-selection rule 

a l P, Q,r ==~ a l Q, r Q -< P 

A I P, Q,r==~ A I P, r 

Having defined the R-selection rule, we have naturally reached the following 
conjecture: 

For a give A ] r where r b ~A and A has to be accepted, using R- 
calculus and R-selection rule we can deduce all R-reconstructions. 

In fact, the order -~ satisfies the entrenchment relation given by G~rdenfors 
and Makinson. The R-calculus, the order -< and the R-selection rule together 
make the R-reconstructions deducible. 

6 The Specreviser 
There is a new editor called Specreviser which is built based on the above theory 
[Li 93]. A prototype of the editor has been implemented on a Sun workstation. 
To explain its functions, let us study the following example: 

E x a m p l e  6.1 A l a r m  c o n t r o l  
Assume that  we have acquired the laws of an Alarm control from the clients. 

It includes four laws: 

1. An Alarm will be raised within 20 seconds, when the device senses an 
abnormal condition. 

2. The alarm will continue as long as it is abnormal. 

3. The alarm lasts for at least 3 seconds. 

4. The alarm will stop in 5 seconds after the device is recovered. 

Our task is to write a specification for these laws. We assume that  the first 
and the fourth items are crucial. We call them m a r k e d  laws. This means 
that  they cannot be changed even if they contradict with some other laws. For 
simplicity, we use: 

ab(x) to denote that  at time x the device is abnormal, and 
raisealarm(x) to denote that at time x alarm is raised, and 
workalarm(x) to denote that at time x the alarm is active, 
(x < t _< x + y) to denote (x < t) A (t _< x + y), and t E [z, y) denotes 

x < _ t < y .  

The user's first step in developing a specification might includ~ the following 
(not necessarily correct) representations of these laws: 

1. The first requirement: 

(1"). w . 3 y . y  < ~ ^ v t . ( y  < t < ~ A -,ab(t)) A ab(~) 
( ~ . ( ( ~  < ~ < �9 + 20) A , ' a i s e a l a , ' ~ ( ~ ) ) .  
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This formula says that: 1). At time x the device becomes abnormal. 2). 
There exists time y < x, such that  in the period [y, x) the device was 
normal. 3). Alarm will be raised in the period [x, x + 20]. 4). It is a 
m a r k e d  requirement denoted by a *! 

2. The second requirement: 

(2"). 

This formula means that abnormal status of the device is a necessary 
condition of working status of the alarm. 

3. The third requirement: 

(3"). W.raisealarm(x) Vt.(  < t < x + 3  orkala ..)) 
It means that: 1).If at time x the alarm is raised. 2).then in the time 
interval [x, s + 3] the alarm works. 3).This requirement is m a r k e d  by a * 

Having written the third law, we may think that  our specification by now is 
working well. In fact, a careful reader has already found that  the specification 
fai ls  because law (3*) contradicts with law (2)! 

The trouble can be seen more clearly through the following counter example: 
Assume that  at time tl the device became abnormal; at time t2 = t l  -t-5 the 
alarm is raised; and then at time t3 = tl -t- 6 the device is recovered. Then, 
according to the third law, in the time interval It1 -t- 6, t l  + 8], the alarm is 
working, meanwhile the device is normal. 

Since the third law is m a r k e d ,  we have to change the formula representing 
of the second law. It could be: 

(29 3,.vy.(t < y < ,  A  b(y) A 

It says that: 1) If at x the device is abnormal and at time t > x the alarm is 
raised; 2) then there exists z > t such that  in the time interval [t, z] the alarm 
does not stop as long as the device is abnormal; Law 2 ~ is consistent with laws 
1 and 3. 

This example shows that  when we build a specification, usually it is very 
difficult for a user to check whether his specification is consistent, especially 
when the specification is large - -  for example, it contains more than 300 laws. 
In fact, there is a need to build some software tools to i n t e r a e t i v e l y  check the 
consistency of the specification in every stage of its development. 

Our $pecreviser is a software system to meet the need. It works like an editor. 
The new versions of the specification are produced by $pecreviser. 

Like syntax-directed editors and synthesizers (including type and proof ed- 
itors), the Specreviser works interactively with the user. It not only points out 
the syntactic or static errors of the law entered, but also checks the consistency 
of the newly added laws with respect to the specification which ha~ already been 
stored. 

The $pecreviser detects the fallibility of the specification stored when a user's 
rejection arises. It will point out all the minimal subsets of laws which cause the 
rejection. 

The $pecreviser will further provide all possible reconstructions to cope with 
the user's rejection, and ask the user to select their preferred revision. 
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We have proved that  a user can choose one any of the possible solutions, 
and the revised specification will eventually reach all the laws characterizing the 
problem. The difference between an expert and inexperienced user is that  the 
latter may take more steps to reach the goal. 

The Specreviser allows the user to mark some laws to mean that  they are 
crucial and cannot be rejected. If a newly added law contradicts some marked 
laws, then it cannot be added into the specification; if it is also marked, then 
the Specreviser will point out the contradiction and ask the user to re-mark the 
laws. 

The Specreviser will direct the user in creating an appropriate specification 
while maintaining the consistency of the specification at each stage of the devel- 
oping process. 

In practice, a user usually may not know the mathematical  model of a prob- 
lem at the beginning of a developing process. However, to build a reconstruction 
does not require the user to know the whole model of the problem. The famous 
Chinese Philosopher Confucius claimed a criterion which says that  Utruth come~ 
from practice2 Here it means that  a theory must be modified if its logical con- 
sequences fail to agree with our observations and experiments; and a statement 
must be replaced by another if neither itself nor its negation agrees with practice. 
If one follows this criterion, then he builds his model during development and 
eventually reaches an appropriate specification by making the reconstructions. 

7 Related work 

As we have mentioned that  the concepts which are similar to the reconstructions 
were first given in the AGM theory ([AGM 85]), where they call them expansion, 
contraction and revision. The differences between their approach and ours are 
the following: 

I. AGM focused on setting up a formal theory of revisions of belief sets, i.e., 
the postulates of revisions. In contrast, our goal is to build a theory of 
sequences of formal theories to model the evolution of knowledge. The 
belief set is a special specification satisfying r = Th(r). 

2. AGM introduced the proof-theoretic concepts of expansiol~, contraction, 
and revision and studied their properties. In contrast, we use the model- 
theoretic concepts such as new law and rejection by facts to describe the 
interactions between logical inference (logical information) and human ex- 
perience (empirical information). We also set up the relations between the 
model-theoretic concepts and the proof-theoretic concepts. 

3. We introduced the concept of limit of sequences to model the result of 
the evolution of specifications. We gave a procedure to build developing 
processes from a given model and a specification. We further proved that  
the developing processes generated from the procedure are . tarred at the 
specification and are convergent to the t ruth of the model. 

4. The theorem shows that at any stage n of a developing process, we can 
choose any R-reconstruction (containing A) and the process will always 
have the same limit. Therefore, the unique revision (R-reconstruction) 
required by AGM is not necessary. A precise description of the uniqueness 
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of revisions may be expressed as: For a given model and a specification, 
the limit of all developing processes generated by the procedure is unique. 

5. We have introduced the R-calculus to deduce the R-reconstructions when 
a specification meets a rejection. 

Finally, it should be pointed out that the concepts and results given in this 
paper can be applied to any formal languages with a complete proof system; 
and provide a framework for knowledge base maintenance, machine learning, 
software engineering, and diagnostic techniques. 
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