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A b s t r a c t .  Accurate variable sharing information is crucial both in the 
automatic parallelisation and in the optimisation of sequential logic pro- 
grams. Analysis for possible variable sharing is thus an important topic in 
logic programming and many analyses have been proposed for inferring 
dependencies between the variables of a program, for instance, by com- 
bining domains and analyses. This paper develops the combined domain 
theme by explaining how term structure, and in particular linearity, can 
be represented in a sharing group format. This enables aliasing beha- 
viour to be more precisely captured; groundness information to be more 
accurately propagated; and in addition, refines the tracking and applica- 
tion of linearity. In practical terms, this permits aliasing and groundness 
to be inferred to a higher degree of accuracy than in previous proposals 
and also can speed up the analysis itself. Correctness is formally proven. 

1 I n t r o d u c t i o n  

Abstract interpretation for possible sharing is an important topic of logic pro- 
gramming. Sharing (or aliasing) analysis conventionally infers which program 
variables are definitely grounded and which variables can never be bound to 
terms containing a common variable. Applications of sharing analysis are nu- 
merous and include: the sound removal of the occur-check [22]; optimisation of 
backtracking [3]; the specialisation of unification [24]; and the elimination of 
costly checks in independent and-parallelism [20, 14, 21]. Early proposals for 
sharing analysis include [25, 10, 19]. 

This paper is concerned with a semantic basis for sharing analysis, and in 
particular, the justification of a high precision abstract unification algorithm. 
Following the approach of abstract interpretation [8], the abstract unification 
algorithm ( theabs t rac t  operation) essentially mimics unification (the concrete 
operation) by finitely representing substitutions (the concrete data) with sharing 
abstractions (the abstract data). The accuracy of the analysis depends, in part, 
on the substitution properties that the sharing abstractions capture. Sharing 
abstractions usually capture groundness and aliasing information, and indeed, 
accurate analyses are often good at groundness propagation [14, 21]. A knowledge 
of groundness can improve sharing and vice versa .  A synergistic relationship also 
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exists between sharing and type analysis. Type analysis deduces structural prop- 
erties of aggregate data. By keeping track of type information, that  is inferring 
structural properties of substitutions, it is possible to infer more accurate shar- 
ing information. Conversely, more accurate type information can be deduced if 
sharing is traced. 

Type information is often applied by combining sharing and freeness ana- 
lysis [20, 7, 23] or by tracing linearity [22, 5]. Freeness information differentiates 
between a free variable, a variable which is definitely not bound to non-variable 
term; and a non-free variable, a variable which is possibly bound to a non-variable 
term. Freeness information is useful in its own right, in fact it is essential in the 
detection of non-strict and-parallelism [13]. A more general notion than freeness 
is linearity [22, 5]. Linearity relates to the number of times a variable occurs in 
a term. A term is linear if it definitely does not contain multiple occurrences 
of a variable; otherwise it is non-linear. Without exploiting linearity (or free- 
hess), analyses have to assume that aliasing is transitive [5]. The significance 
of linearity is that  the unification of linear terms only yields restricted forms of 
aliasing. Thus, i f  terms can be inferred to be linear, worst case aliasing need not 
be assumed in an analysis. 

Sharing analyses can be used in isolation, but an increasing trend is to com- 
bine domains and analyses to improve accuracy [6]. For example, the pair-sharing 
domain of SCndergaard [22, 5], tracks linearity but is not so precise at propagat- 
ing groundness information. Conversely, sharing group domains [14, 21] accur- 
ately characterise groundness but do not exploit linearity. The rationale behind 
[6], therefore, is to run multiple analyses in lock step. At each step, the shar- 
ing information from different analyses is compared and used to improve the 
precision. For instance, the linearity of the Scndergaard domain [22, 5] can be 
used to prune out spurious aliasing in the sharing group analysis [14, 21]; and 
the groundness information of the Jacobs and Langen domain can be used to 
remove redundant aliasing in the S0ndergaard analysis. 

This paper develops the combined domain theme by explaining how the lin- 
earity of the the Scndergaard domain [22, 5] can be represented in the sharing 
group format of the Jacobs and Langen domain [14, 21]. This enables both 
aliasing behaviour to be precisely captured, and groundness information to be 
accurately propagated, in a single coherent domain and analysis. This is not an 
exercise in aesthetics but has a number of important and practical implications: 

1. By embedding linearity into sharing groups, the classic notion of linearity 
[22, 5] can be refined. Specifically, if a variable is bound to a non-linear 
term, it is still possible to differentiate between which variables of the term 
occur multiply in the term and which variables occur singly in the term. 
Put  another way, the abstraction proposed in this paper records why a vari- 
able binding is potentially non-linear, rather than merely indicating that  
it is possibly non-linear. Previously, the variable would simply be categor- 
ised as non-linear, and worst-case aliasing assumed. The refined notion of 
linearity permits more accurate aliasing information to be squeezed out of 
the analysis. This can, in turn, potentially identify more opportunities for 
parallelism and optimisation. 
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2. Tracking aliasing more accurately can also improve the efficiency of the ana- 
lysis [6]. Possible aliases are recorded and manipulated in a data  structure 
formed from sharing groups. As the set of possible aliases is inferred more ac- 
curately, so the set becomes smaller, and thus the number of sharing groups 
is reduced. The size of the data  structures used in the analysis are therefore 
pruned, and consequently, analysis can proceed more quickly. 
Moreover, the sharing abstractions defined in this paper are described in 
terms of a single domain and manipulated by a single analysis. This is sig- 
nificant because, unlike the multiple analyses approach [6], it avoids the 
duplication of abstract interpretation machinery and therefore simplifies the 
analysis. In practical terms, this is likely to further speedup the analysis [12]. 
Furthermore, the closure under union operation implicit in the analyses of 
[14, 21] has exponential time- and space-complexity in the number of sharing 
groups. It is therefore important to limit its use. In this paper, an analog of 
closure under union operation is employed, but is only applied very conser- 
vatively to a restricted subset of the set of sharing groups. This is also likely 
to contribute to faster analysis. 

3. Errors and omissions have been reported [4, 9] in some of the more recent 
proposals for improving sharing analysis with type information [20, 7, 23]. 
Although the problems relate to unusual or rare cases, and typically the 
analyses can be corrected, these highlight that  analyses are often sophistic- 
ated, subtle and difficult to get right. Thus, formal proof of correctness is 
useful, indeed necessary, to instill confidence. For the analysis described in 
this paper, safety has been formally proved. In more pragmatic terms this 
means that  the implementor can trust the results given by the analysis. 

The exposition is structured as follows. Section 2 describes the notation and 
preliminary definitions which will be used throughout. Also, linearity is form- 
ally introduced and its significance for aliasing is explained. In section 3, the 
focus is on abstracting data. A novel abstraction for substitutions is proposed 
which elegantly and expressively captures both linear and sharing properties of 
substitutions. In section 4, the emphasis changes to abstracting operations. Ab- 
stract analogs for renaming, unification, composition and restriction are defined 
in terms of an abstract unify operator [14]. An abstract unification algorithm 
is precisely and succinctly defined which, in turn, describes an abstract ana- 
log of unify. (Once an abstract unify operator is specified and proved safe, 
a complete and correct abstract interpreter is practically defined by virtue of 
existing abstract interpretation frameworks [1, 17, 21].) Finally, sections 5 and 
6 present the related work and the concluding discussion. For reasons of brevity 
and continuity, proofs are not included in the paper, but can be found in [15]. 

2 N o t a t i o n  a n d  p r e l i m i n a r i e s  

To introduce the analysis some notation and preliminary definitions are required. 
The reader is assumed to be familiar with the standard constructs used in logic 
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programming [18] such as a universe of all variables (u,v E) Uvar; the set of 
terms (t E) Term formed from the set of functors (f ,  g, h E) Func (of the first- 
order language underlying the program); and the set of program atoms Atom. 
It is convenient to denote f ( t l , . . . , t n )  by r~ and f ' ( t t l , . . . , t in) by rn ~. Also let 
7"0 = f and r~ = f t .  Let Pvar denote a finite set of program variables - the 
variables that  are in the text of the program; and let vat(o) denote the set of 
variables in a syntactic object o. 

2.1 S u b s t i t u t i o n s  

A substitution r is a total mapping r : Uvar ~ Term such that  its domain 
dora(C) = {u E Vvar Ir  r u} is finite. The application of a substitution 
r to a variable u is denoted by r Thus the codomain is give by cod(C) = 
U~eaom(r162 A substitution r is sometimes represented as a finite set 
of variable and term pairs {u ~ r I u E dora(C)}. The identity mapping on 
Uvar is called the empty substitution and is denoted by e. Substitutions, sets 
of substitutions, and the set. of substitutions are denoted by lower-case Greek 
letters, upper-case Greek letters, and Subst. 

Substitutions are extended in the usual way from variables to functions, from 
functions to terms, and from terms to atoms. The restriction of a substitution r 
to a set of variables U C Uvar and the composition of two substitutions r and 
~, are denoted by r I U and r o ~o respectively, and defined so that  (r o ~p)(u) = 
r The preorder Subst (E), r is more general than ~o, is defined by: r U ~o 
if and only if there exists a substitution r E Subst such that  ~o = r o r The 
preorder induces an equivalence relation ~ on Subst, that is: r ~ ~o if and only 
if r E ~o and ~o _ r The equivalence relation ~ identifies substitutions with 
consistently renamed codomain variables which, in turn, factors Subst to give 
the poset Subs t /~  (E) defined by: [r _C [~o]~ if and only if r E ~o. 

2.2 E q u a t i o n s  a n d  m o s t  g e n e r a l  un i f i e r s  

An equation is an equality constraint of the form a -- b where a and b are terms 
or atoms. Let (e E) Eqn denote the set of finite sets of equations. The equation 
set {e} U E, following [5], is abbreviated by e:E. The set of most general unifiers 
of E, mgu(E),  is defined operationally [14] in terms of a predicate mgu. The 
predicate mgu(E, r which is true if r is a most general unifier of E.  

D e f i n i t i o n  l mgu. The set of most general unifiers mgu(E) E ~o(Subst) is 
defined by: mgu(E) = {r  r where 

mau(0,  ~) 
mgu(v = v': E, ()  if mgu(E, ~) A v =_ v' 

mgu(v = v ' ; E ,  r o 7) if mgu(~(E), r  v ~ ~,' ^ ~ = {v ~ ,,'} 
mgu(v = v': E, ~ o rl) if mgu(71(E), ()A v ~ v' A ~/= {v' ~-* v} 
mgu(v = r, :E,~ o rl) if mgu(r l (E) , i )Av • var(rn) A rl = {v ~-+ rn} 
mgu(rn = v : E , ~  o r / ) i fmgu(r l (E) ,~)Av ~ var(rn) A rl = {v ~ r~} 

mgu(~-, = r ' :  E,  r ir mgu(t~ = t~ : . . .  : t ,  = t~: E ,  r ^ f - S' 
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By induction it follows that  dora(C) O cod(C) = 0 if C E mgu(E) ,  or put another 
way, that  the most general unifiers are idempotent [16]. 

Following [14], the semantics of a logic program is formulated in terms of 
a single u n i f y  operator.  To construct u n i f y ,  and specifically to rename apart  
program variables, an invertible substitution [16], T, is introduced. It is conveni- 
ent to let Rvar  C Uvar denote a set of renaming variables that  cannot occur in 
programs, that  is P v a r  n Rvar  = 0, and suppose that  T : P v a r  --* Rvar .  

D e f i n i t i o n 2  u n i f y .  The partial mapping u n i f y  : A tom x S u b s t / ~  x A tom x 
Subs t /  ~ --* Subs t /  ~, is defined by: 

un i f y (a ,  [C]~, b, [r = [(~ o C) l" Pvar]~. where ~ E mgu({C(a) = T(r  

To approximate the u n i f y  operation it is convenient to introduce a collect- 
ing semantics, concerned with sets of substitutions, to record the substitutions 
that  occur at various program points. In the collecting semantics interpreta- 
tion, u n i f y  is extended to u n i f y  ~, which manipulates (possibly infinite) sets of 
substitutions. 

D e f i n i t i o n 3  u n i f y  c. The mapping u n i f y  c : A tom • p (Subs t / .~ )  • A tom • 
p (Subs t / .~ )  --* p ( S u b s t / ~ )  is defined by: 

unifyC(a, a~, b, ~ )  = {[0]~. I[C]= E ~ A [r e ~ /X [0]~. = unify(a, [C]=, b, [r 

2.3 L i n e a r i t y  a n d  s u b s t i t u t i o n s  

To be more precise about linearity, it is necessary to introduce the variable 
multiplicity of a term t, denoted x(t).  

D e f i n i t i o n 4  v a r i a b l e  m u l t i p l i c i t y ,  X [5]. The variable multiplicity operator 
X : T e r m  ~ {0, 1, 2} is defined by: 

x(t)  = max({x=(t)  ] u E Uvar})  where xu(t)  = 
0 if u does not occur in t 
1 if u occurs only once in t 
2 if u occurs many times in t 

If x( t )  = O, t is ground; if x( t )  = 1, t is linear; and if x(t)  = 2, t is non-linear. 
The significance of linearity is that  the unification of linear terms only yields 
restricted forms of aliasing. Lemma 5 states some of the restrictions on a most 
general unifier which follow from unification with a linear term. 

Lemma g. x(b) # 2 A vat(a) n vat(b) = 0 A r E mgu( {a = b}) ::~ 

1. Vu E Uvav.  X(C(u) )  = 2 ::~ u E vat(b) 
e. Vu, u' ~ Uva~.u # u' A ~a~(C(u)) n var(C(u')) g 0 ~ n r wr(a)  V u' r 

vat(a). 
S. Vu', u" ~ ~a~(b). u' g u"^ w ~ va~(C(~'))nva~(C(u")) ~ 3u ~ va~(a), x~(a) 

= 2 ^ w ~ v~(C(u)) 
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Application of l emma  5 is illustrated in example 1. 

Example1. Note tha t  r E mgu({f(u, v, v) = f (x , y , z ) } )  where r = {v ~ y, 
x ~ u, z ,---* y}, X(f(x,  y, z)) ~ 2 and that  f(u,  v, v) and f (x ,  y, z) do not share 
variables. Observe that  

1. T h e  variables u and v of f(u, v, v) remain linear after unification, that  is, 
X(C(u)) --= 1 and X(C(v)) = 1, as predicted by case 1 of l emma  5. 

2. The  variables of f(u, v, v), specifically u and v, remain unaliased after uni- 
fication. Indeed, case 2 of l emma  5 asserts tha t  since u, v E var(f(u, v, v)), 

n v a t ( 0 ( , ) )  = 0. 
3. Informally, case 3 of l emma  5 states that  the aliasing which occurs between 

the variables of f (x ,  y, z), is induced by a variable of f(u, v, v) which has a 
multiplicity of 2. For instance, y E var(d(y)) 0 var(d(z)) with Xv(f(u, v, v)) 
= 2 and y E var(O(v)). 

L e m m a  5 differs from the corresponding l emma in [5] ( l emma 2.2) in two ways. 
First, l emma  5 requires that  a and b do not share variables. This is essentially a 
work-around for a subtle mistake in l emma  2.2 [9]. Second, l emma  5 additionally 
states that  a variable which only occurs once in a can only be aliased to one 
variable in b. This observation permits  linearity to be exploited further than in 
the original proposals for tracking sharing with linearity [22, 5] by put t ing a 
tighter constraint of the form of aliasing that  occurs on unification with a linear 
term. The proof  for l emma 5 follows by induction on the steps of the unification 
algorithm. 

3 A b s t r a c t i n g  s u b s t i t u t i o n s  

Sharing analysis is primari ly concerned with characterising the sharing effects 
tha t  can arise among program variables. Correspondingly, abst ract  substi tut ions 
are formulated in terms of sharing groups [14] which represent which program 
variables share variables. Formally, an abstract  subst i tut ion is structured as a 
set of sharing groups where a sharing group is a (possibly empty)  set of p rogram 
variable and linearity pairs. 

D e f i n i t i o n 6 0 c c s . . .  The set of sharing groups, (o E ) O c c s . . .  is defined by: 

Occs~.r = {o E ~ ( S v a r  x {1,2})IW, e Sva~.  (u, 1) ~ o v  (u,2) ~ o} 

Svar is a finite set of program variables. The intuition is tha t  a sharing group 
records which program variables are bound to terms that  share a variable. Ad- 
ditionally, a sharing group expresses how many  times the shared variable occurs 
in the terms to which the program variables are bound. Specifically, a p rogram 
variable is paired with 1 if it is bound to a te rm in which the shared variable 
only occurs once. The variable is paired with 2 if it can be bound to a te rm in 
which the shared variable occurs possibly many  times. The finiteness of Occs..r 
follows from the finiteness of Svar. (Svar usually corresponds to Pvar, the set of 
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program variables. It is necessary to parameterise Occ, however, so that  abstract 
substitutions are well-defined under renaming by T. Then Svar  = Rvar . )  

The precise notion of abstraction is first defined for a single substitution via 
l in and then, by lifting lin, generalised to sets of substitutions. 

D e f i n i t i o n  7 occ a n d  l in. The abstraction mappings occ : Uvar  • Subs t  
Occs~,~ and l in : S u b s t / . ~  --* p(Occs . .~  ) are defined by: 

oct(u, r = {(v, X~(r I ~ ~ var(r A v E Svar} 

l in([r  = {occ(u, r l u ~ Uvar} 

The mapping l in is well-defined since iin([r = lin([~o]~) if r ~ ~o. The map- 
ping occ is defined in terms of Svar  because, for the purposes of analysis, the 
only significant bindings are those which relate to the program variables (and 
renamed program variables). Note that  0 E lin([r since the codomain of a 
substitution is always finite. 

The abstraction l in is analogous to the abstraction .4 used in [21] and im- 
plicit in [14]. Both abstractions are formulated in terms of sharing groups. The 
crucial difference is that lin, as well as expressing sharing, additionally represents 
linearity information. 

Example 2. Suppose Svar  = {u, v, w, x, y, z} and r = {u ~ Ul, W ~ ' +  'V, X s--+ f ,  
~ g(ul ,  u2, u2), z ~ h(u2, ,,3, u~)) then 

l in([r  = {O, occ(~l,r162162162 = 
{O,{(u, 1),(y,l)},{(y, 2),(z,l>},{(z,2>},{(v, 1),(w,l)}} 

since occ(w, r = occ(x, r = occ(y, r = occ(z, r = 0. The salient properties of 
r namely sharing, groundness and linearity, are all captured by l in([r The 
variables of Svar  which r ground, do not appear in lin([r and the variables of 
S v a r  which are independent (unaliased), never occur in the same sharing group 
of lin([r Thus l in([r indicates that  x is ground and that,  for example, v 
and y are independent. Additionally, lin([r captures the fact that grounding 
either v or w grounds the other. Or, put another way, that  v and w are strongly 
coupled [25]. 

Linearity is also represented and lin([r indicates that  X(r = 0; X(r 
= X(r = X(r = 1; and X(d(Y)) = X(r = 2. It is evident that  X(r 
= 1, for instance, since X~(r = 1 and X~(r r 2 for all u E Uvar.  Spe- 
cifically, (w, 1) E occ(v, r and (w, 2> ~ oce(u, r for all u e Uvar.  The subtlety 
is that  the domain represents variable multiplicity information slightly more ac- 
curately than the SCndergaard domain [22, 5]. Note that although X(r = 
2 and y is aliased to both u and z, lin([r indicates that  the variable that  
occurs through u and y (namely Ul) occurs only once in r whereas the vari- 
able through y and z (that is to say u2) occurs multiply in r This can be 
exploited to gain more precise analysis. 
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The abstract domain, the set of abstract substitutions, is defined below using 
the convention that  abstractions of concrete objects and operations are distin- 
guished with a * from the corresponding concrete object or operation. 

D e f i n i t i o n 8  Subs t ;~ . .  T h e  set of abstract substitutions, Subst* s . . . .  is defined 
by: Subst*s~.r = p(Occs . . .  ). 

Like previous sharing groups domains [14, 21], Subst*s~,, (C) is a finite lattice 
with set union as the lub. Subst*s~.~ is finite since Occs, , ,  is finite. 

The lin abstraction naturally lifts to sets of substitutions, but to define con- 
cretisation, the notion of approximation implicit in linearity (specifically in the 
denotations 1 and 2) must be formalised. In the abstraction, a program variable 
is paired with 1 if it is definitely bound to a term in which the shared variable 
only occurs once; and is paired with 2 if it can possibly be bound to a term in 
which the shared variable occurs multiply. This induces the poser Occs~.~(< ) 
defined by: o < o' if and only if vat(o) = var(o') and for all (u, m} E o there ex- 
ists (u, m'} E o' such that  m < m'. The poset lifts to the preorder Subst; . ,~(<) 
by: r < r if and only if for all o E r there exists o' E r such that  o < ol. 

D e f i n i t i o n 9  aun a n d  7ti. .  The  abstraction and concretisation mappings a~i~ : 
f~(Subst /~)  ~ Subst~.o~ and 71i. : Subst~o~ ~ p ( S u b s t / ~ )  are defined by: 

Ollin(~) = U[r162 7lin(r ---- {[r E Subs t /  ~ I lin([r < r  

The structure of a~in and 7tin mirrors that  of the abstraction and concretisation 
operations found in [14, 21]. 

As illustrated in example 2, the lin abstraction can encode the variable mul- 
tiplicity of a substitution. More significantly, if r E 7tin(e*), the variable multi- 
plicity of r  can be (partially) deduced from t and r  The precise relationship 
between X(r and ~ and r is formalised in definition 10 and lemma 11, with 
an analog of X, denoted X*. 

D e f i n i t i o n  l 0  X*- The abstract variable multiplicity operator X" : T e r m  x 
O c c s ~  --~ {0, 1, 2} is defined by: 

0 i f  v v  e v a r ( o )  . x (t) = 0 
2 i f 3 v E v a r ( o )  . x ~ ( t ) = 2  

x ' ( t , o )  = 2 if 3v, v' E var(t).v,v' Evar(o) A v~:v'  
2 i f 3 v E v a r ( t )  . (v ,2)  E o  
1 otherwise 

L e m m a  11. 

var(t) C_ Svar A occ(u,r ~_ o ::~ Xu(r _~ X'(t ,  o) 

To conservatively calculate the variable multiplicity of a term t in the context of 
a set of substitutions represented by r  the sharing group operator X* is lifted 
to abstract substitutions via In and hi. 
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D e f i n i t i o n l 2  In a n d  nl. The mappings In : T e r m  • Subst;~,r --~ Subs t~o,  
and nl : T e r m  x S u b s t ~ r  --* Subst~.~ are defined by: 

l n ( t , r  { o � 9 1 6 2  l}, n l ( t , r  { o � 9 1 6 2  

The operators in and ni essentially categorise r into two sorts of sharing group: 
sharing groups which describe aliasing for which r is definitely linear; and 
sharing groups which represent aliasing for which r is possibly non-linear. 
An immediate corollary of lemma 11, corollary 13, asserts that  r is linear if 
nl(t, r is empty. 

Coro l lary  13. 

[r �9 7 . . ( r  ^ v~r(t) c_ Sv~r ^ hi(t, r = 0 ~ x(C(t)) # 2 

The significance of corollary 13 is that  it explains how by inspecting t and r  
r can be inferred to be linear, thereby enabling linear instances of unification 
to be recognised. 

4 A b s t r a c t i n g  u n i f i c a t i o n  

The collecting version of the u n i f y  operator, u n i f y  c, provides a basis for ab- 
stracting the basic operations of logic programming by spelling out how to ma- 
nipulate (possibly infinite) sets of substitutions. The usefulness of the collecting 
semantics as a form of program analysis, however, is negated by the fact that  
it can lead to non-terminating computations. Therefore, in order to define a 
practical analyser it is necessary to finitely abstract u n i f y  ~. To synthesise a 
sharing analysis, an analog of u n i f y  c, uni fy* ,  is introduced to manipulate sets 
of substitutions following the abstraction scheme prescribed by (~li~ and 7tin. 

Just as u n i f y  ~ is defined ill terms of mgu, unify* is defined in terms of an 
abstraction of mgu, rage, which traces the steps of the unification algorithm. 
The unification algorithm takes as input, E, a set of unification equations. E is 
recursively transformed to a set of simplified equations which assume the form 
v = v' or v = Tn. These simplified equations are then solved. The equation 
solver rage, adopts a similar strategy, but relegates the solution of the simplified 
equations to solve. The skeleton of the abstract equation solver rage is given 
below in definition 14. 

D e f i n i t i o n l 4  rage. The relation rage : Eqn x S u b s t ~ . .  x Subst~.~ is defined 
by: 

m a e (  O, ~" , ~" ) 
mge(v = v ' :E ,a ' ,O*)  if m g e ( E , a ' , O * ) A  v -- v' 
mge(v = v ' : E , ~ * , O * ) i f m g e ( E ,  solve(v,v' ,cr*),O*)A v ~ v' 
mge(v = rn :E,  ~r*, 0") i fmge(E ,  solve(v, rn,~r*),O*)A v f~ var(rn) 
m ge(~ .  = v : E , ~ ' , o . ) i f m g e ( v  = ~. : E , ~ ' , O ' )  

mge(rn = rr~ :E, cr*, 0") if rage(t1 = t] :...:t,~ = t~ :E, cr*,O*)A f ---- f '  
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To spare the need to define an extra (composition) operator for abstract sub- 
stitutions, mge is defined to abstract a variant of mgu. Specifically, if ~ �9 
mgu({r  = r [r �9 7un(r  and mge({a = b},r then #* ab- 
stracts the composition ~o o r (rather than !o), that  is, [~ o r �9 Tun(#*). 

To define solve, and thereby rage, a number of auxiliary operators are re- 
quired. The first, denoted rl(t, r  represents the sharing groups of r which are 
relevant to the term t, that is, those sharing groups of r which share variables 
with t. 

D e f i n i t i o n 1 5  rl [14]. The mapping rl : T e r m  x Subst~, , ,  ---* Substs~,,  is 
defined by: rl(t, r = {o �9 r I var(o) f) var(t) # 0}. 

Note that  rl(t, r = {o E r I X*(t, o) # 0} and therefore rl(t, r = In(t, r U 
nl(t, r In [14] the equivalent operator is denoted rel. 

The second operator, U, is a technical device which is used to calculate 
oec(u, ~ o r from a set of sharing groups occ(w, r for the variables w with u E 
var(ia(w)). Since occ(u, ~or  = {(v, Xu(ioor l u E var(~por A v E Svar} ,  
observe that  (v, l) �9 oce(u, ~ o r  single variable w satisfies u �9 var(~(w)) and 
additionally X~(r = 1 with X=(~(w)) = 1. Otherwise (v, 2) �9 occ(u, ~ 0 r if 
there exist distinct variables w and w' for which u �9 var(~(w))M var(~(w')) ,  or 
X~(r = 2, or X=(~(w)) = 2. Thus (v, min(Z:~e,a.(~(w))m~,,o, 2)) �9 occ(u, ~o 
r where mv,~o = max(x~ (~(w)), X~0 (r The r61e of the U operator is to com- 
pute occ(u, ~ o r by calculating the pairs (v, min(Zu~va,(~(~0))mv,w, 2)) given 
m~,~ for u �9 var(ta(w)). 

D e f i n i t i o n l 6  U. The operator U �9 : p(Occs~a. ) --* Occs~.. is defined by: 

Uwewow = {(v, min(s 2) ) I v  ~ Uw~wvar(ow)} 

Although the motivation for U is technical, example 3 illustrates that the oper- 
ator itself is straightforward to use and compute. Sometimes, for brevity, U is 
written infix. 

Example 3. Three examples of using the U operator are given below: first, {(u, 
1), (v, 1), (w, 2)} Ll{(v, 1), (w, 2), (z, 2/, (y, 1)} = {(u, min(1, 2)), (v, r a in ( l+  1, 
2)), (w, min(2 + 2, 2)), (x, min(2, 2))! (y, min(1, 2))} = {(u, 1/, (v, 2), (w, 2), 
(x, 2), (y, 1)}; second, 0 U 0 = 0; and third, U~oe~o~ = 0. 

Note that U is commutative and associative but is not idempotent, and specific- 
ally, o U o = vat(o) x {2}. Also observe that var(UwewO~) = U~ewvar(o~o) 
hinting at the fact that U generalises set union which is used to combine sharing 
groups in the original sharing analyses [14, 21]. 

In the conventional approach, worst-case aliasing is always assumed and a 
closure under union operator is used to enumerate all the possible sharing groups 
that can possibly arise in unification [14, 21]. The U operator defines an analog of 
closure under union, closure under U, denoted r and defined in definition 17. 
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D e f i n i t i o n l 7  c lo su re  u n d e r  U, *. The closure under U operator .* : Substsv..  
--~ Substs,a. is defined by: r = r U {o U o ' lo ,  o' E r 

Closure under U is used more conservatively than the closure under union oper- 
ator of [14, 21] and is only invoked in the absence of useful linearity information. 
An interesting consequence of Subst*sva.(< ) being a preorder (rather than a 
poset), is that  equivalent r can have different representations. For instance, if 
r = {{(u, 1), (v,2)}}, r = {{(u,1), (v,2)}, {(u,2), (v, 2)}} but ~** < r _< 
~** where ~* = {{(u,2) , (v ,2)}} and ~** = {{(u,2) , (v,2)}}.  Clearly ~** is 
preferable to r  and more generally, redundancy can be avoided in the calcu- 
lation and representation of r by computing r with {vat(o) x {2} ]o E r }*. 

Finally, to achieve a succinct definition of the abstract equation solver, it is 
useful to lift U to sets of sharing groups in the matter  prescribed in definition 18. 

D e f i n i t i o n l 8  []. The mapping . r l .  : Subst.s~.r • Subs t~ . .  ---+ Subs t~ . .  is 
defined by: r []r = {o U o' ]o E r A o' E r 

The nub of the equation solver mge is solve. In essence, solve(v, t, r solves 
the syntactic equation v = t in the presence of the abstract substitution r 
returning the composition of the unifier with r The different cases of operator 
solve apply different analysis strategies corresponding to when r is linear, 
r is linear, both r and r are possibly non-linear. (If both r and 
r are linear, cases 1 and 2 coincide.) The default strategy corresponds to the 
standard treatment of the abstract solver amgu of [14]. 

D e f i n i t i o n l 9  solve. The abstract equation solver solve : Uvar • Te rm  x 
Subst~o~ --~ S u b s t ~  is defined by: 

solve(v, t, r  = ~" \ (rl(v, r  U rl(t, 6")) U 

if nl(v, r ) = 0 A 
(I . (v,r162 u (l~(v,r162 l~ (v , r162  = 0 

if hi(t, r = ~ A 
(l~(v,r162 u (~l(v,r []l~(t,r l~(t ,r162 0 

rl(v, r [] rl(t, r otherwise 

Note that r [] 0 = 0 and 0 [] r = (~ and in particular, for case 1 of solve, the 
closure In(v, r need not be calculated if nl(t, r  = 0. Similarly, in case 2, if 
nl(v, r = 0, ln(t, r  need not be computed. The correctness of solve is asser- 
ted by lemma 20. The justification of lemma 20 relies on very weak properties 
of substitutions, and specifically, only that a most general unifier, if it exists, is 
idempotent. 

I, e m m a  20. 

{v} u vat(t)  c_ S w r  ^ v r w r ( t )  ~ [~ o r ~ 7. . (solve(v, t ,  r  

The correctness of rage fo]]ows from lemma 20 and is stated as corollary 21. 
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Corollary 21. 

[r �9 ~ . . ( r  ^ ~ e mgu(r ^ 

mge(E,r  A var(E) C Svar ~ [~aor e 7tin(P*) 

It is convenient to regard rage as a mapping, that  is, mge(E,r  = #* if 
mge(E, r p*). Strictly, it is necessary to show that rage(E, r p*) is determ- 
inistic for mge(E, r to be well-defined. Like in [5], the conjecture is that  mge 
yields a unique abstract substitution regardless of the order in which E is solved. 
This conjecture, however, is only really of theoretical interest because all that  
really matters is that any abstract substitution derived by mge is safe. This is 
essentially what corollary 21 asserts. 

To define unify*,  the finite analog of un i f y  r it is necessary to introduce an 
abstract restriction operator, denoted �9 [* .. 

D e f i n i t i o n 2 2  a b s t r a c t  r e s t r i c t i o n ,  t*. The abstract restriction operator 
[* �9 : Subst;~.r • ta(Uvar) --* Subst;~r is defined by: r [* U = {o [* 

V l o e r  } whereo  I" V = {(u,m) e o l u e V  }. 

The definition of unify* is finally given below, followed by the local safety the- 
orem, theorem 24. 

D e f i n i t i o n 2 3  uni fy*.  The mapping unify* : Atom • Subst*v~.r x Atom • 
Subst*r. .... --* Subst*p~.r is defined by: 

uni fy*(a ,r162 = mge({a = T(b)},r U T(r  I* Pvar 

T h e o r e m  24 local sa fe ty  o f  uni fy* .  

c_ 7.~(r A ~, c ~ .~ (r  A 

var(a) U var(b) C_ Pvar ~ unifyC(a,qh, b, ~) C_ 71in(unify* (a, r b, r 

Examples 4 and 5 demonstrate the precision in propagating groundness inform- 
ation that  the domain inherits from sharing groups, and accuracy that is addi- 
tionally obtained by tracking linearity. Furthermore, example 6 illustrates that 
the domain is more powerful than the sum of its parts, that is, it can trace lin- 
earity and sharing better than is achievable by running the S0ndergaard [22, 5] 
and sharing group analyses [14, 21] together in lock step [6]. The examples also 
comment on the efficiency of the analysis. 

Example ~ propagating groundness. The supremacy of the sharing group domains 
over the Scndergaard domain for propagating groundness information can be il- 
lustrated by separately solving two equations, first, x = f ( y , z )  and second, 
x = f(g,  g). Suppose Svar = {x, y, z}. To demonstrate the groundness propaga- 
tion of sharing groups, let r -- {O, {(x, 2)}, ((y, 2)}, {(z, 2)}} so that worst-case 
linearity is assumed. Solving x = f(y ,  z) for r yields 

~. = solve(x, f(y, z), r  = 
{~, {(~, 2>, (y, 2)}, {(x, 2), (~, 2)}, {(x, 2>, (y, 2>, (~, 2)}} 
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Since x occurs in each (non-empty) sharing group of W, grounding x must also 
ground both y and z, and indeed r = solve(x, f(g, g), r = {0}. Furthermore, 
r indicates that  y and z are independent. In contrast, the abstract unification 
algorithm proposed for the Sendergaard domain [5], cannot infer that  x and y 
are grounded or independent. 

Example 5 tracking lineariiy. Suppose E = {x = u, y = f(u,  v), z -- v} and con- 
sider the abstraction of rags(E) and specifically the calculation rage(E, lin([e]=)). 
Assuming Svar = {u, v, x, y, z}, dubbing e" = lin([e]=) = {0, {(u, 1)}, {(v, 1}}, 
{(x, 1)}, {(y, 1)}, {(z, 1)}}, and solving the equations left-to-right 

r ={O,{(u,l),(x,l)l,{(v,l)},{(y,l)l,{(z,l)}} 
~ '=solve(y , f (u ,v ) , r  1},(z,1},(y, 1)},{(v, 1},(y, 1)},{(z, 1)}} 
r  ={O,{(u, 1),(x, 1),(y, 1)},{(v,1),(y, 1},(z, 1}}} 

Therefore r : mge(E,e*) and indeed r = {x ~-* u,y ~ f (u ,v ) , z  ~-* v} E 
rags(E) with [r E 7 u n ( r  exploiting linearity (or freeness), the 
sharing group analyses of [14, 21] have to include an additional sharing group 
{u, v, x, y, z} for possible aliasing between u and v (and x and z). Tracking 
linearity strengthens the analysis, allowing it to deduce that u and v (and x 
and z) are definitely not aliased. Note also that the size of the data structure 
(the abstract substitution r  is pruned from 4 to 3 sharing groups and that, in 
contrast to the analyses of [14, 21], the calculation of a closure is avoided. 

Example 6 refined sharing and lineariiy. The domain refines the way linearity 
information is recorded and in particular the analysis can differentiate between 
which variables can occur multiply in a term (or binding) and which vari- 
ables always occur singly in a term (or binding). For instance, consider the 
set of substitutions (/i = {[r162 where r = {x ~ f (u ,v)}  and r = 
{x ~--~ f (w,w)} .  ~ represents two possible bindings for x. In the first, r 
is linear, whereas in the second, r is non-linear. This is reflected in 4" = 
aZin(q~) = lin([r tO lin([r and specifically, if Svar = {u, v, w, x, y, z} 

r = {O,{(u,1),(x, 1)},{(v, 1},(x,1}},{(w,1),(x,2)},{(y,  1)},{(z, 1}}} 

The abstraction r indicates that u and v never occur more than once through 
5(x) and r and that w can occur multiply through r or 5'(x). Informally, 
the abstraction records why x is possibly non-linear. This, in turn, can lead to 
improved precision and efficiency, as is illustrated by the calculation of mge({x = 
f(y, z), w = g}, r Again, solving the equations left-to-right 

~* --- solve(x, f(y,  z), r ---- {0, {/u, 1), (x, 1), (y, 1)}, {(u, 1), (x, 1), (z, 1)}, 
{(v, 1), (x, 1), (Y, 1)}, {(v, 1), (x, 1), (z, 1)}, 
{<w, 1), (x, 2), {y, 2)}, {(w, 1}, {x, 2), (z, 2)), 
{{w, 1), (x, 2}, (y, 2), (z,2)}} 

r =solve(w,g,~*) = {O,{(u,1),{x,1),(y, 1)},{(u,l) ,{x,  1),{z, 1)), 
{(v, 1), (x, 1), (y, 1)}, {(v, 1), (x, 1}, (z, 1)}} 
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In terms of precision, linearity is still exploited for u and v, even though worst- 
case aliasing has to be assumed for w. Consequently, on grounding w, u and v 
(and y and z) become independent. The Scndergaard domain, however, cannot 
resolve linearity to the same degree of accuracy and therefore the analysis of [5] 
cannot infer u and v (and y and z) become unaliased. Also, the combined domains 
approach [6] does not help, since the precision comes from restructuring the 
domain. In terms of efficiency, observe that although the closure of l n ( f ( y ,  z), r 
is computed, the number of sharing groups in to* is kept low by only combining 
I n ( f ( y ,  z),  r with hi(x ,  r  (rather than with rl(x ,  r 

The extra expressiveness of the domain is not confined to abstracting multiple 
substitutions. If/~ = {x ~-* f ( u ,  v, w, w)} and #* = lin([#]~.), for instance, 

#" = {{~, {(u, 1), (x, 1)}, {(v, 1), (x, 1)}, {(w, 1), (x, 2)}, {(y, 1)}, {(z, 1)}} 

so that p* i s  structurally identical to r Although omitted for brevity, the 
calculation m g e ( { x  -- f (Y l ,  Yl, Y3, Y4), w = g}, p*) deduces that  Yi and yj (for 
i r j )  become independent after w is grounded. This, again, cannot be inferred 
in terms of the Sondergaard domain. 

5 R e l a t e d  w o r k  

Recently, four interesting proposals for computing accurate sharing information 
have been put forward in the literature. In the first proposal [6], domains and 
analyses are combined to improve accuracy. This paper develops this theme and 
explores the virtues of fusing linearity with sharing groups. In short, this paper 
explains how accuracy and efficiency can be further improved by restructuring 
a combined domain as a single domain. 

In the second proposal [4], the correctness of freeness analyses is considered. 
An abstract unification algorithm is proposed as a basis for constructing accur- 
ate freeness analyses with a domain formulated in terms of abstract equations. 
Safety follows because the abstract algorithm mimics the solved form algorithm 
in an intuitive way. Correctness is established likewise here. The essential distinc- 
tion between the two works is that this paper tracks groundness and linearity. 
Consequently, the approach presented here can derive more accurate sharing in- 
formation. Also, as pointed out in [2], "it is doubtful whether it (the abstract 
unification algorithm of [4]) can be the basis for a very efficient analysis". The 
analysis presented here, on the other hand, is designed to be efficient. 

Very recently, in the third proposal [2], an analysis for sharing, groundness, 
linearity and freeness is formalised as a transition system which reduces a set of 
abstract equations to an abstract solved form. Sharing is represented in a sharing 
group fashion with variables enriched with linearity and freeness information by 
an annotation mapping. The domain, however, essentially adopts the Jacobs and 
Langen [14] structure. Consequently the analysis cannot always derive sharing as 
accurately as the analysis reported here. Moreover, the use of a tightly-coupled 
domain seems to simplify some of the analysis machinery. For instance, the notion 
of abstraction introduced in this paper is more succinct than the equivalent 



377 

definition in [2]. This simplicity seems to stem from the fact the domain is an 
elegant and natural generalisation of sharing groups [14]. Also, the analysis of 
[2] has not, as yet, been proved correct. 

Fourthly, a referee pointed out a freeness analysis which also tracks linearity 
to avoid the calculation of closures in sharing groups [11]. Interestingly, [11] seems 
to adopt a conventional notion of linearity, rather than embedding linearity into 
sharing groups in the useful way that  is described in this paper. 

To be fair, however, the analyses of [11, 4, 2] do infer freeness. This can be 
useful [13]. Although freeness information is not derived in this paper, it seems 
that  freeness can be embedded into sharing groups in a similar way to linearity. 
What  is more, if freeness is recorded this way, it can be used to improve sharing 
beyond what is achievable by just tracing linearity! This is unusual, contrasts to 
[2], and is further evidence for the usefulness of restructuring sharing groups. 

6 Conclusions 

A powerful, formally justified and potentially efficient analysis has been presen- 
ted for inferring definite groundness and possible sharing between the variables 
of a logic program. The analysis builds on the combined domain approach [6] by 
elegantly representing linearity information in a sharing group format. By revis- 
ing sharing groups to capture linearity, a single coherent domain and analysis 
has been formulated which more precisely captures aliasing behaviour; propag- 
ates groundness information with greater accuracy; and in addition, a yields 
a more refined notion of linearity. In more pragmatic terms, the analysis per- 
mits aliasing and groundness to be inferred to a higher degree of accuracy than 
in previous proposals. The analysis is significant because sharing information 
underpins many optimisations in logic programming. 
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