
A Synergistic Analysis for
Sharing and Groundness which Traces Linearity

Andy King

Department of Electronics and Computer Science,**
The University of Southampton, Southampton, S09 5NH, UK.

A b s t r a c t . Accurate variable sharing information is crucial both in the
automatic parallelisation and in the optimisation of sequential logic pro-
grams. Analysis for possible variable sharing is thus an important topic in
logic programming and many analyses have been proposed for inferring
dependencies between the variables of a program, for instance, by com-
bining domains and analyses. This paper develops the combined domain
theme by explaining how term structure, and in particular linearity, can
be represented in a sharing group format. This enables aliasing beha-
viour to be more precisely captured; groundness information to be more
accurately propagated; and in addition, refines the tracking and applica-
tion of linearity. In practical terms, this permits aliasing and groundness
to be inferred to a higher degree of accuracy than in previous proposals
and also can speed up the analysis itself. Correctness is formally proven.

1 I n t r o d u c t i o n

Abstract interpretation for possible sharing is an important topic of logic pro-
gramming. Sharing (or aliasing) analysis conventionally infers which program
variables are definitely grounded and which variables can never be bound to
terms containing a common variable. Applications of sharing analysis are nu-
merous and include: the sound removal of the occur-check [22]; optimisation of
backtracking [3]; the specialisation of unification [24]; and the elimination of
costly checks in independent and-parallelism [20, 14, 21]. Early proposals for
sharing analysis include [25, 10, 19].

This paper is concerned with a semantic basis for sharing analysis, and in
particular, the justification of a high precision abstract unification algorithm.
Following the approach of abstract interpretation [8], the abstract unification
algorithm (theabs t rac t operation) essentially mimics unification (the concrete
operation) by finitely representing substitutions (the concrete data) with sharing
abstractions (the abstract data). The accuracy of the analysis depends, in part,
on the substitution properties that the sharing abstractions capture. Sharing
abstractions usually capture groundness and aliasing information, and indeed,
accurate analyses are often good at groundness propagation [14, 21]. A knowledge
of groundness can improve sharing and vice versa . A synergistic relationship also

** New address: The Computing Laboratory, The University of Kent, Canterbury,
CT2 7LX, UK.

364

exists between sharing and type analysis. Type analysis deduces structural prop-
erties of aggregate data. By keeping track of type information, that is inferring
structural properties of substitutions, it is possible to infer more accurate shar-
ing information. Conversely, more accurate type information can be deduced if
sharing is traced.

Type information is often applied by combining sharing and freeness ana-
lysis [20, 7, 23] or by tracing linearity [22, 5]. Freeness information differentiates
between a free variable, a variable which is definitely not bound to non-variable
term; and a non-free variable, a variable which is possibly bound to a non-variable
term. Freeness information is useful in its own right, in fact it is essential in the
detection of non-strict and-parallelism [13]. A more general notion than freeness
is linearity [22, 5]. Linearity relates to the number of times a variable occurs in
a term. A term is linear if it definitely does not contain multiple occurrences
of a variable; otherwise it is non-linear. Without exploiting linearity (or free-
hess), analyses have to assume that aliasing is transitive [5]. The significance
of linearity is that the unification of linear terms only yields restricted forms of
aliasing. Thus, i f terms can be inferred to be linear, worst case aliasing need not
be assumed in an analysis.

Sharing analyses can be used in isolation, but an increasing trend is to com-
bine domains and analyses to improve accuracy [6]. For example, the pair-sharing
domain of SCndergaard [22, 5], tracks linearity but is not so precise at propagat-
ing groundness information. Conversely, sharing group domains [14, 21] accur-
ately characterise groundness but do not exploit linearity. The rationale behind
[6], therefore, is to run multiple analyses in lock step. At each step, the shar-
ing information from different analyses is compared and used to improve the
precision. For instance, the linearity of the Scndergaard domain [22, 5] can be
used to prune out spurious aliasing in the sharing group analysis [14, 21]; and
the groundness information of the Jacobs and Langen domain can be used to
remove redundant aliasing in the S0ndergaard analysis.

This paper develops the combined domain theme by explaining how the lin-
earity of the the Scndergaard domain [22, 5] can be represented in the sharing
group format of the Jacobs and Langen domain [14, 21]. This enables both
aliasing behaviour to be precisely captured, and groundness information to be
accurately propagated, in a single coherent domain and analysis. This is not an
exercise in aesthetics but has a number of important and practical implications:

1. By embedding linearity into sharing groups, the classic notion of linearity
[22, 5] can be refined. Specifically, if a variable is bound to a non-linear
term, it is still possible to differentiate between which variables of the term
occur multiply in the term and which variables occur singly in the term.
Put another way, the abstraction proposed in this paper records why a vari-
able binding is potentially non-linear, rather than merely indicating that
it is possibly non-linear. Previously, the variable would simply be categor-
ised as non-linear, and worst-case aliasing assumed. The refined notion of
linearity permits more accurate aliasing information to be squeezed out of
the analysis. This can, in turn, potentially identify more opportunities for
parallelism and optimisation.

365

2. Tracking aliasing more accurately can also improve the efficiency of the ana-
lysis [6]. Possible aliases are recorded and manipulated in a data structure
formed from sharing groups. As the set of possible aliases is inferred more ac-
curately, so the set becomes smaller, and thus the number of sharing groups
is reduced. The size of the data structures used in the analysis are therefore
pruned, and consequently, analysis can proceed more quickly.
Moreover, the sharing abstractions defined in this paper are described in
terms of a single domain and manipulated by a single analysis. This is sig-
nificant because, unlike the multiple analyses approach [6], it avoids the
duplication of abstract interpretation machinery and therefore simplifies the
analysis. In practical terms, this is likely to further speedup the analysis [12].
Furthermore, the closure under union operation implicit in the analyses of
[14, 21] has exponential time- and space-complexity in the number of sharing
groups. It is therefore important to limit its use. In this paper, an analog of
closure under union operation is employed, but is only applied very conser-
vatively to a restricted subset of the set of sharing groups. This is also likely
to contribute to faster analysis.

3. Errors and omissions have been reported [4, 9] in some of the more recent
proposals for improving sharing analysis with type information [20, 7, 23].
Although the problems relate to unusual or rare cases, and typically the
analyses can be corrected, these highlight that analyses are often sophistic-
ated, subtle and difficult to get right. Thus, formal proof of correctness is
useful, indeed necessary, to instill confidence. For the analysis described in
this paper, safety has been formally proved. In more pragmatic terms this
means that the implementor can trust the results given by the analysis.

The exposition is structured as follows. Section 2 describes the notation and
preliminary definitions which will be used throughout. Also, linearity is form-
ally introduced and its significance for aliasing is explained. In section 3, the
focus is on abstracting data. A novel abstraction for substitutions is proposed
which elegantly and expressively captures both linear and sharing properties of
substitutions. In section 4, the emphasis changes to abstracting operations. Ab-
stract analogs for renaming, unification, composition and restriction are defined
in terms of an abstract unify operator [14]. An abstract unification algorithm
is precisely and succinctly defined which, in turn, describes an abstract ana-
log of unify. (Once an abstract unify operator is specified and proved safe,
a complete and correct abstract interpreter is practically defined by virtue of
existing abstract interpretation frameworks [1, 17, 21].) Finally, sections 5 and
6 present the related work and the concluding discussion. For reasons of brevity
and continuity, proofs are not included in the paper, but can be found in [15].

2 N o t a t i o n a n d p r e l i m i n a r i e s

To introduce the analysis some notation and preliminary definitions are required.
The reader is assumed to be familiar with the standard constructs used in logic

366

programming [18] such as a universe of all variables (u,v E) Uvar; the set of
terms (t E) Term formed from the set of functors (f , g, h E) Func (of the first-
order language underlying the program); and the set of program atoms Atom.
It is convenient to denote f (t l , . . . , t n) by r~ and f ' (t t l , . . . , t in) by rn ~. Also let
7"0 = f and r~ = f t . Let Pvar denote a finite set of program variables - the
variables that are in the text of the program; and let vat(o) denote the set of
variables in a syntactic object o.

2.1 S u b s t i t u t i o n s

A substitution r is a total mapping r : Uvar ~ Term such that its domain
dora(C) = {u E Vvar Ir r u} is finite. The application of a substitution
r to a variable u is denoted by r Thus the codomain is give by cod(C) =
U~eaom(r162 A substitution r is sometimes represented as a finite set
of variable and term pairs {u ~ r I u E dora(C)}. The identity mapping on
Uvar is called the empty substitution and is denoted by e. Substitutions, sets
of substitutions, and the set. of substitutions are denoted by lower-case Greek
letters, upper-case Greek letters, and Subst.

Substitutions are extended in the usual way from variables to functions, from
functions to terms, and from terms to atoms. The restriction of a substitution r
to a set of variables U C Uvar and the composition of two substitutions r and
~, are denoted by r I U and r o ~o respectively, and defined so that (r o ~p)(u) =
r The preorder Subst (E), r is more general than ~o, is defined by: r U ~o
if and only if there exists a substitution r E Subst such that ~o = r o r The
preorder induces an equivalence relation ~ on Subst, that is: r ~ ~o if and only
if r E ~o and ~o _ r The equivalence relation ~ identifies substitutions with
consistently renamed codomain variables which, in turn, factors Subst to give
the poset Subs t /~ (E) defined by: [r _C [~o]~ if and only if r E ~o.

2.2 E q u a t i o n s a n d m o s t g e n e r a l un i f i e r s

An equation is an equality constraint of the form a -- b where a and b are terms
or atoms. Let (e E) Eqn denote the set of finite sets of equations. The equation
set {e} U E, following [5], is abbreviated by e:E. The set of most general unifiers
of E, mgu(E), is defined operationally [14] in terms of a predicate mgu. The
predicate mgu(E, r which is true if r is a most general unifier of E.

D e f i n i t i o n l mgu. The set of most general unifiers mgu(E) E ~o(Subst) is
defined by: mgu(E) = {r r where

mau(0, ~)
mgu(v = v': E, () if mgu(E, ~) A v =_ v'

mgu(v = v ' ; E , r o 7) if mgu(~(E), r v ~ ~,' ^ ~ = {v ~ ,,'}
mgu(v = v': E, ~ o rl) if mgu(71(E), ()A v ~ v' A ~/= {v' ~-* v}
mgu(v = r, :E,~ o rl) if mgu(r l (E) , i)Av • var(rn) A rl = {v ~-+ rn}
mgu(rn = v : E , ~ o r /) i fmgu(r l (E) ,~)Av ~ var(rn) A rl = {v ~ r~}

mgu(~-, = r ' : E, r ir mgu(t~ = t~ : . . . : t , = t~: E , r ^ f - S'

367

By induction it follows that dora(C) O cod(C) = 0 if C E mgu(E) , or put another
way, that the most general unifiers are idempotent [16].

Following [14], the semantics of a logic program is formulated in terms of
a single u n i f y operator. To construct u n i f y , and specifically to rename apart
program variables, an invertible substitution [16], T, is introduced. It is conveni-
ent to let Rvar C Uvar denote a set of renaming variables that cannot occur in
programs, that is P v a r n Rvar = 0, and suppose that T : P v a r --* Rvar .

D e f i n i t i o n 2 u n i f y . The partial mapping u n i f y : A tom x S u b s t / ~ x A tom x
Subs t / ~ --* Subs t / ~, is defined by:

un i f y (a , [C]~, b, [r = [(~ o C) l" Pvar]~. where ~ E mgu({C(a) = T(r

To approximate the u n i f y operation it is convenient to introduce a collect-
ing semantics, concerned with sets of substitutions, to record the substitutions
that occur at various program points. In the collecting semantics interpreta-
tion, u n i f y is extended to u n i f y ~, which manipulates (possibly infinite) sets of
substitutions.

D e f i n i t i o n 3 u n i f y c. The mapping u n i f y c : A tom • p (Subs t / .~) • A tom •
p (Subs t / .~) --* p (S u b s t / ~) is defined by:

unifyC(a, a~, b, ~) = {[0]~. I[C]= E ~ A [r e ~ /X [0]~. = unify(a, [C]=, b, [r

2.3 L i n e a r i t y a n d s u b s t i t u t i o n s

To be more precise about linearity, it is necessary to introduce the variable
multiplicity of a term t, denoted x(t).

D e f i n i t i o n 4 v a r i a b l e m u l t i p l i c i t y , X [5]. The variable multiplicity operator
X : T e r m ~ {0, 1, 2} is defined by:

x(t) = max({x=(t)] u E Uvar}) where xu(t) =
0 if u does not occur in t
1 if u occurs only once in t
2 if u occurs many times in t

If x(t) = O, t is ground; if x(t) = 1, t is linear; and if x(t) = 2, t is non-linear.
The significance of linearity is that the unification of linear terms only yields
restricted forms of aliasing. Lemma 5 states some of the restrictions on a most
general unifier which follow from unification with a linear term.

Lemma g. x(b) # 2 A vat(a) n vat(b) = 0 A r E mgu({a = b}) ::~

1. Vu E Uvav. X(C(u)) = 2 ::~ u E vat(b)
e. Vu, u' ~ Uva~.u # u' A ~a~(C(u)) n var(C(u')) g 0 ~ n r wr(a) V u' r

vat(a).
S. Vu', u" ~ ~a~(b). u' g u"^ w ~ va~(C(~'))nva~(C(u")) ~ 3u ~ va~(a), x~(a)

= 2 ^ w ~ v~(C(u))

368

Application of l emma 5 is illustrated in example 1.

Example1. Note tha t r E mgu({f(u, v, v) = f (x , y , z) }) where r = {v ~ y,
x ~ u, z ,---* y}, X(f(x, y, z)) ~ 2 and that f(u, v, v) and f (x , y, z) do not share
variables. Observe that

1. T h e variables u and v of f(u, v, v) remain linear after unification, that is,
X(C(u)) --= 1 and X(C(v)) = 1, as predicted by case 1 of l emma 5.

2. The variables of f(u, v, v), specifically u and v, remain unaliased after uni-
fication. Indeed, case 2 of l emma 5 asserts tha t since u, v E var(f(u, v, v)),

n v a t (0 (,)) = 0.
3. Informally, case 3 of l emma 5 states that the aliasing which occurs between

the variables of f (x , y, z), is induced by a variable of f(u, v, v) which has a
multiplicity of 2. For instance, y E var(d(y)) 0 var(d(z)) with Xv(f(u, v, v))
= 2 and y E var(O(v)).

L e m m a 5 differs from the corresponding l emma in [5] (l emma 2.2) in two ways.
First, l emma 5 requires that a and b do not share variables. This is essentially a
work-around for a subtle mistake in l emma 2.2 [9]. Second, l emma 5 additionally
states that a variable which only occurs once in a can only be aliased to one
variable in b. This observation permits linearity to be exploited further than in
the original proposals for tracking sharing with linearity [22, 5] by put t ing a
tighter constraint of the form of aliasing that occurs on unification with a linear
term. The proof for l emma 5 follows by induction on the steps of the unification
algorithm.

3 A b s t r a c t i n g s u b s t i t u t i o n s

Sharing analysis is primari ly concerned with characterising the sharing effects
tha t can arise among program variables. Correspondingly, abst ract substi tut ions
are formulated in terms of sharing groups [14] which represent which program
variables share variables. Formally, an abstract subst i tut ion is structured as a
set of sharing groups where a sharing group is a (possibly empty) set of p rogram
variable and linearity pairs.

D e f i n i t i o n 6 0 c c s . . . The set of sharing groups, (o E) O c c s . . . is defined by:

Occs~.r = {o E ~ (S v a r x {1,2})IW, e Sva~. (u, 1) ~ o v (u,2) ~ o}

Svar is a finite set of program variables. The intuition is tha t a sharing group
records which program variables are bound to terms that share a variable. Ad-
ditionally, a sharing group expresses how many times the shared variable occurs
in the terms to which the program variables are bound. Specifically, a p rogram
variable is paired with 1 if it is bound to a te rm in which the shared variable
only occurs once. The variable is paired with 2 if it can be bound to a te rm in
which the shared variable occurs possibly many times. The finiteness of Occs..r
follows from the finiteness of Svar. (Svar usually corresponds to Pvar, the set of

369

program variables. It is necessary to parameterise Occ, however, so that abstract
substitutions are well-defined under renaming by T. Then Svar = Rvar .)

The precise notion of abstraction is first defined for a single substitution via
l in and then, by lifting lin, generalised to sets of substitutions.

D e f i n i t i o n 7 occ a n d l in. The abstraction mappings occ : Uvar • Subs t
Occs~,~ and l in : S u b s t / . ~ --* p(Occs . .~) are defined by:

oct(u, r = {(v, X~(r I ~ ~ var(r A v E Svar}

l in([r = {occ(u, r l u ~ Uvar}

The mapping l in is well-defined since iin([r = lin([~o]~) if r ~ ~o. The map-
ping occ is defined in terms of Svar because, for the purposes of analysis, the
only significant bindings are those which relate to the program variables (and
renamed program variables). Note that 0 E lin([r since the codomain of a
substitution is always finite.

The abstraction l in is analogous to the abstraction .4 used in [21] and im-
plicit in [14]. Both abstractions are formulated in terms of sharing groups. The
crucial difference is that lin, as well as expressing sharing, additionally represents
linearity information.

Example 2. Suppose Svar = {u, v, w, x, y, z} and r = {u ~ Ul, W ~ ' + 'V, X s--+ f ,
~ g(ul , u2, u2), z ~ h(u2, ,,3, u~)) then

l in([r = {O, occ(~l,r162162162 =
{O,{(u, 1),(y,l)},{(y, 2),(z,l>},{(z,2>},{(v, 1),(w,l)}}

since occ(w, r = occ(x, r = occ(y, r = occ(z, r = 0. The salient properties of
r namely sharing, groundness and linearity, are all captured by l in([r The
variables of Svar which r ground, do not appear in lin([r and the variables of
S v a r which are independent (unaliased), never occur in the same sharing group
of lin([r Thus l in([r indicates that x is ground and that, for example, v
and y are independent. Additionally, lin([r captures the fact that grounding
either v or w grounds the other. Or, put another way, that v and w are strongly
coupled [25].

Linearity is also represented and lin([r indicates that X(r = 0; X(r
= X(r = X(r = 1; and X(d(Y)) = X(r = 2. It is evident that X(r
= 1, for instance, since X~(r = 1 and X~(r r 2 for all u E Uvar. Spe-
cifically, (w, 1) E occ(v, r and (w, 2> ~ oce(u, r for all u e Uvar. The subtlety
is that the domain represents variable multiplicity information slightly more ac-
curately than the SCndergaard domain [22, 5]. Note that although X(r =
2 and y is aliased to both u and z, lin([r indicates that the variable that
occurs through u and y (namely Ul) occurs only once in r whereas the vari-
able through y and z (that is to say u2) occurs multiply in r This can be
exploited to gain more precise analysis.

370

The abstract domain, the set of abstract substitutions, is defined below using
the convention that abstractions of concrete objects and operations are distin-
guished with a * from the corresponding concrete object or operation.

D e f i n i t i o n 8 Subs t ;~ . . T h e set of abstract substitutions, Subst* s is defined
by: Subst*s~.r = p(Occs . . .).

Like previous sharing groups domains [14, 21], Subst*s~,, (C) is a finite lattice
with set union as the lub. Subst*s~.~ is finite since Occs, , , is finite.

The lin abstraction naturally lifts to sets of substitutions, but to define con-
cretisation, the notion of approximation implicit in linearity (specifically in the
denotations 1 and 2) must be formalised. In the abstraction, a program variable
is paired with 1 if it is definitely bound to a term in which the shared variable
only occurs once; and is paired with 2 if it can possibly be bound to a term in
which the shared variable occurs multiply. This induces the poser Occs~.~(<)
defined by: o < o' if and only if vat(o) = var(o') and for all (u, m} E o there ex-
ists (u, m'} E o' such that m < m'. The poset lifts to the preorder Subst; . ,~(<)
by: r < r if and only if for all o E r there exists o' E r such that o < ol.

D e f i n i t i o n 9 aun a n d 7ti. . The abstraction and concretisation mappings a~i~ :
f~(Subst /~) ~ Subst~.o~ and 71i. : Subst~o~ ~ p (S u b s t / ~) are defined by:

Ollin(~) = U[r162 7lin(r ---- {[r E Subs t / ~ I lin([r < r

The structure of a~in and 7tin mirrors that of the abstraction and concretisation
operations found in [14, 21].

As illustrated in example 2, the lin abstraction can encode the variable mul-
tiplicity of a substitution. More significantly, if r E 7tin(e*), the variable multi-
plicity of r can be (partially) deduced from t and r The precise relationship
between X(r and ~ and r is formalised in definition 10 and lemma 11, with
an analog of X, denoted X*.

D e f i n i t i o n l 0 X*- The abstract variable multiplicity operator X" : T e r m x
O c c s ~ --~ {0, 1, 2} is defined by:

0 i f v v e v a r (o) . x (t) = 0
2 i f 3 v E v a r (o) . x ~ (t) = 2

x ' (t , o) = 2 if 3v, v' E var(t).v,v' Evar(o) A v~:v'
2 i f 3 v E v a r (t) . (v ,2) E o
1 otherwise

L e m m a 11.

var(t) C_ Svar A occ(u,r ~_ o ::~ Xu(r _~ X'(t , o)

To conservatively calculate the variable multiplicity of a term t in the context of
a set of substitutions represented by r the sharing group operator X* is lifted
to abstract substitutions via In and hi.

371

D e f i n i t i o n l 2 In a n d nl. The mappings In : T e r m • Subst;~,r --~ Subs t~o,
and nl : T e r m x S u b s t ~ r --* Subst~.~ are defined by:

l n (t , r { o � 9 1 6 2 l}, n l (t , r { o � 9 1 6 2

The operators in and ni essentially categorise r into two sorts of sharing group:
sharing groups which describe aliasing for which r is definitely linear; and
sharing groups which represent aliasing for which r is possibly non-linear.
An immediate corollary of lemma 11, corollary 13, asserts that r is linear if
nl(t, r is empty.

Coro l lary 13.

[r �9 7 . . (r ^ v~r(t) c_ Sv~r ^ hi(t, r = 0 ~ x(C(t)) # 2

The significance of corollary 13 is that it explains how by inspecting t and r
r can be inferred to be linear, thereby enabling linear instances of unification
to be recognised.

4 A b s t r a c t i n g u n i f i c a t i o n

The collecting version of the u n i f y operator, u n i f y c, provides a basis for ab-
stracting the basic operations of logic programming by spelling out how to ma-
nipulate (possibly infinite) sets of substitutions. The usefulness of the collecting
semantics as a form of program analysis, however, is negated by the fact that
it can lead to non-terminating computations. Therefore, in order to define a
practical analyser it is necessary to finitely abstract u n i f y ~. To synthesise a
sharing analysis, an analog of u n i f y c, uni fy* , is introduced to manipulate sets
of substitutions following the abstraction scheme prescribed by (~li~ and 7tin.

Just as u n i f y ~ is defined ill terms of mgu, unify* is defined in terms of an
abstraction of mgu, rage, which traces the steps of the unification algorithm.
The unification algorithm takes as input, E, a set of unification equations. E is
recursively transformed to a set of simplified equations which assume the form
v = v' or v = Tn. These simplified equations are then solved. The equation
solver rage, adopts a similar strategy, but relegates the solution of the simplified
equations to solve. The skeleton of the abstract equation solver rage is given
below in definition 14.

D e f i n i t i o n l 4 rage. The relation rage : Eqn x S u b s t ~ . . x Subst~.~ is defined
by:

m a e (O, ~" , ~")
mge(v = v ' :E ,a ' ,O*) if m g e (E , a ' , O *) A v -- v'
mge(v = v ' : E , ~ * , O *) i f m g e (E , solve(v,v' ,cr*),O*)A v ~ v'
mge(v = rn :E, ~r*, 0") i fmge(E , solve(v, rn,~r*),O*)A v f~ var(rn)
m ge(~ . = v : E , ~ ' , o .) i f m g e (v = ~. : E , ~ ' , O ')

mge(rn = rr~ :E, cr*, 0") if rage(t1 = t] :...:t,~ = t~ :E, cr*,O*)A f ---- f '

372

To spare the need to define an extra (composition) operator for abstract sub-
stitutions, mge is defined to abstract a variant of mgu. Specifically, if ~ �9
mgu({r = r [r �9 7un(r and mge({a = b},r then #* ab-
stracts the composition ~o o r (rather than !o), that is, [~ o r �9 Tun(#*).

To define solve, and thereby rage, a number of auxiliary operators are re-
quired. The first, denoted rl(t, r represents the sharing groups of r which are
relevant to the term t, that is, those sharing groups of r which share variables
with t.

D e f i n i t i o n 1 5 rl [14]. The mapping rl : T e r m x Subst~, , , ---* Substs~,, is
defined by: rl(t, r = {o �9 r I var(o) f) var(t) # 0}.

Note that rl(t, r = {o E r I X*(t, o) # 0} and therefore rl(t, r = In(t, r U
nl(t, r In [14] the equivalent operator is denoted rel.

The second operator, U, is a technical device which is used to calculate
oec(u, ~ o r from a set of sharing groups occ(w, r for the variables w with u E
var(ia(w)). Since occ(u, ~or = {(v, Xu(ioor l u E var(~por A v E Svar} ,
observe that (v, l) �9 oce(u, ~ o r single variable w satisfies u �9 var(~(w)) and
additionally X~(r = 1 with X=(~(w)) = 1. Otherwise (v, 2) �9 occ(u, ~ 0 r if
there exist distinct variables w and w' for which u �9 var(~(w))M var(~(w')) , or
X~(r = 2, or X=(~(w)) = 2. Thus (v, min(Z:~e,a.(~(w))m~,,o, 2)) �9 occ(u, ~o
r where mv,~o = max(x~ (~(w)), X~0 (r The r61e of the U operator is to com-
pute occ(u, ~ o r by calculating the pairs (v, min(Zu~va,(~(~0))mv,w, 2)) given
m~,~ for u �9 var(ta(w)).

D e f i n i t i o n l 6 U. The operator U �9 : p(Occs~a.) --* Occs~.. is defined by:

Uwewow = {(v, min(s 2)) I v ~ Uw~wvar(ow)}

Although the motivation for U is technical, example 3 illustrates that the oper-
ator itself is straightforward to use and compute. Sometimes, for brevity, U is
written infix.

Example 3. Three examples of using the U operator are given below: first, {(u,
1), (v, 1), (w, 2)} Ll{(v, 1), (w, 2), (z, 2/, (y, 1)} = {(u, min(1, 2)), (v, r a in (l+ 1,
2)), (w, min(2 + 2, 2)), (x, min(2, 2))! (y, min(1, 2))} = {(u, 1/, (v, 2), (w, 2),
(x, 2), (y, 1)}; second, 0 U 0 = 0; and third, U~oe~o~ = 0.

Note that U is commutative and associative but is not idempotent, and specific-
ally, o U o = vat(o) x {2}. Also observe that var(UwewO~) = U~ewvar(o~o)
hinting at the fact that U generalises set union which is used to combine sharing
groups in the original sharing analyses [14, 21].

In the conventional approach, worst-case aliasing is always assumed and a
closure under union operator is used to enumerate all the possible sharing groups
that can possibly arise in unification [14, 21]. The U operator defines an analog of
closure under union, closure under U, denoted r and defined in definition 17.

373

D e f i n i t i o n l 7 c lo su re u n d e r U, *. The closure under U operator .* : Substsv..
--~ Substs,a. is defined by: r = r U {o U o ' lo , o' E r

Closure under U is used more conservatively than the closure under union oper-
ator of [14, 21] and is only invoked in the absence of useful linearity information.
An interesting consequence of Subst*sva.(<) being a preorder (rather than a
poset), is that equivalent r can have different representations. For instance, if
r = {{(u, 1), (v,2)}}, r = {{(u,1), (v,2)}, {(u,2), (v, 2)}} but ~** < r _<
~** where ~* = {{(u,2) , (v ,2)}} and ~** = {{(u,2) , (v,2)}}. Clearly ~** is
preferable to r and more generally, redundancy can be avoided in the calcu-
lation and representation of r by computing r with {vat(o) x {2}]o E r }*.

Finally, to achieve a succinct definition of the abstract equation solver, it is
useful to lift U to sets of sharing groups in the matter prescribed in definition 18.

D e f i n i t i o n l 8 []. The mapping . r l . : Subst.s~.r • Subs t~ . . ---+ Subs t~ . . is
defined by: r []r = {o U o']o E r A o' E r

The nub of the equation solver mge is solve. In essence, solve(v, t, r solves
the syntactic equation v = t in the presence of the abstract substitution r
returning the composition of the unifier with r The different cases of operator
solve apply different analysis strategies corresponding to when r is linear,
r is linear, both r and r are possibly non-linear. (If both r and
r are linear, cases 1 and 2 coincide.) The default strategy corresponds to the
standard treatment of the abstract solver amgu of [14].

D e f i n i t i o n l 9 solve. The abstract equation solver solve : Uvar • Te rm x
Subst~o~ --~ S u b s t ~ is defined by:

solve(v, t, r = ~" \ (rl(v, r U rl(t, 6")) U

if nl(v, r) = 0 A
(I . (v,r162 u (l~(v,r162 l~ (v , r162 = 0

if hi(t, r = ~ A
(l~(v,r162 u (~l(v,r []l~(t,r l~(t ,r162 0

rl(v, r [] rl(t, r otherwise

Note that r [] 0 = 0 and 0 [] r = (~ and in particular, for case 1 of solve, the
closure In(v, r need not be calculated if nl(t, r = 0. Similarly, in case 2, if
nl(v, r = 0, ln(t, r need not be computed. The correctness of solve is asser-
ted by lemma 20. The justification of lemma 20 relies on very weak properties
of substitutions, and specifically, only that a most general unifier, if it exists, is
idempotent.

I, e m m a 20.

{v} u vat(t) c_ S w r ^ v r w r (t) ~ [~ o r ~ 7. . (solve(v, t , r

The correctness of rage fo]]ows from lemma 20 and is stated as corollary 21.

374

Corollary 21.

[r �9 ~ . . (r ^ ~ e mgu(r ^

mge(E,r A var(E) C Svar ~ [~aor e 7tin(P*)

It is convenient to regard rage as a mapping, that is, mge(E,r = #* if
mge(E, r p*). Strictly, it is necessary to show that rage(E, r p*) is determ-
inistic for mge(E, r to be well-defined. Like in [5], the conjecture is that mge
yields a unique abstract substitution regardless of the order in which E is solved.
This conjecture, however, is only really of theoretical interest because all that
really matters is that any abstract substitution derived by mge is safe. This is
essentially what corollary 21 asserts.

To define unify*, the finite analog of un i f y r it is necessary to introduce an
abstract restriction operator, denoted �9 [* ..

D e f i n i t i o n 2 2 a b s t r a c t r e s t r i c t i o n , t*. The abstract restriction operator
[* �9 : Subst;~.r • ta(Uvar) --* Subst;~r is defined by: r [* U = {o [*

V l o e r } whereo I" V = {(u,m) e o l u e V }.

The definition of unify* is finally given below, followed by the local safety the-
orem, theorem 24.

D e f i n i t i o n 2 3 uni fy*. The mapping unify* : Atom • Subst*v~.r x Atom •
Subst*r. --* Subst*p~.r is defined by:

uni fy*(a ,r162 = mge({a = T(b)},r U T(r I* Pvar

T h e o r e m 24 local sa fe ty o f uni fy* .

c_ 7.~(r A ~, c ~ .~ (r A

var(a) U var(b) C_ Pvar ~ unifyC(a,qh, b, ~) C_ 71in(unify* (a, r b, r

Examples 4 and 5 demonstrate the precision in propagating groundness inform-
ation that the domain inherits from sharing groups, and accuracy that is addi-
tionally obtained by tracking linearity. Furthermore, example 6 illustrates that
the domain is more powerful than the sum of its parts, that is, it can trace lin-
earity and sharing better than is achievable by running the S0ndergaard [22, 5]
and sharing group analyses [14, 21] together in lock step [6]. The examples also
comment on the efficiency of the analysis.

Example ~ propagating groundness. The supremacy of the sharing group domains
over the Scndergaard domain for propagating groundness information can be il-
lustrated by separately solving two equations, first, x = f (y , z) and second,
x = f(g, g). Suppose Svar = {x, y, z}. To demonstrate the groundness propaga-
tion of sharing groups, let r -- {O, {(x, 2)}, ((y, 2)}, {(z, 2)}} so that worst-case
linearity is assumed. Solving x = f(y , z) for r yields

~. = solve(x, f(y, z), r =
{~, {(~, 2>, (y, 2)}, {(x, 2), (~, 2)}, {(x, 2>, (y, 2>, (~, 2)}}

375

Since x occurs in each (non-empty) sharing group of W, grounding x must also
ground both y and z, and indeed r = solve(x, f(g, g), r = {0}. Furthermore,
r indicates that y and z are independent. In contrast, the abstract unification
algorithm proposed for the Sendergaard domain [5], cannot infer that x and y
are grounded or independent.

Example 5 tracking lineariiy. Suppose E = {x = u, y = f(u, v), z -- v} and con-
sider the abstraction of rags(E) and specifically the calculation rage(E, lin([e]=)).
Assuming Svar = {u, v, x, y, z}, dubbing e" = lin([e]=) = {0, {(u, 1)}, {(v, 1}},
{(x, 1)}, {(y, 1)}, {(z, 1)}}, and solving the equations left-to-right

r ={O,{(u,l),(x,l)l,{(v,l)},{(y,l)l,{(z,l)}}
~ '=solve(y , f (u ,v) , r 1},(z,1},(y, 1)},{(v, 1},(y, 1)},{(z, 1)}}
r ={O,{(u, 1),(x, 1),(y, 1)},{(v,1),(y, 1},(z, 1}}}

Therefore r : mge(E,e*) and indeed r = {x ~-* u,y ~ f (u ,v) , z ~-* v} E
rags(E) with [r E 7 u n (r exploiting linearity (or freeness), the
sharing group analyses of [14, 21] have to include an additional sharing group
{u, v, x, y, z} for possible aliasing between u and v (and x and z). Tracking
linearity strengthens the analysis, allowing it to deduce that u and v (and x
and z) are definitely not aliased. Note also that the size of the data structure
(the abstract substitution r is pruned from 4 to 3 sharing groups and that, in
contrast to the analyses of [14, 21], the calculation of a closure is avoided.

Example 6 refined sharing and lineariiy. The domain refines the way linearity
information is recorded and in particular the analysis can differentiate between
which variables can occur multiply in a term (or binding) and which vari-
ables always occur singly in a term (or binding). For instance, consider the
set of substitutions (/i = {[r162 where r = {x ~ f (u ,v)} and r =
{x ~--~ f (w,w)} . ~ represents two possible bindings for x. In the first, r
is linear, whereas in the second, r is non-linear. This is reflected in 4" =
aZin(q~) = lin([r tO lin([r and specifically, if Svar = {u, v, w, x, y, z}

r = {O,{(u,1),(x, 1)},{(v, 1},(x,1}},{(w,1),(x,2)},{(y, 1)},{(z, 1}}}

The abstraction r indicates that u and v never occur more than once through
5(x) and r and that w can occur multiply through r or 5'(x). Informally,
the abstraction records why x is possibly non-linear. This, in turn, can lead to
improved precision and efficiency, as is illustrated by the calculation of mge({x =
f(y, z), w = g}, r Again, solving the equations left-to-right

~* --- solve(x, f(y, z), r ---- {0, {/u, 1), (x, 1), (y, 1)}, {(u, 1), (x, 1), (z, 1)},
{(v, 1), (x, 1), (Y, 1)}, {(v, 1), (x, 1), (z, 1)},
{<w, 1), (x, 2), {y, 2)}, {(w, 1}, {x, 2), (z, 2)),
{{w, 1), (x, 2}, (y, 2), (z,2)}}

r =solve(w,g,~*) = {O,{(u,1),{x,1),(y, 1)},{(u,l) ,{x, 1),{z, 1)),
{(v, 1), (x, 1), (y, 1)}, {(v, 1), (x, 1}, (z, 1)}}

376

In terms of precision, linearity is still exploited for u and v, even though worst-
case aliasing has to be assumed for w. Consequently, on grounding w, u and v
(and y and z) become independent. The Scndergaard domain, however, cannot
resolve linearity to the same degree of accuracy and therefore the analysis of [5]
cannot infer u and v (and y and z) become unaliased. Also, the combined domains
approach [6] does not help, since the precision comes from restructuring the
domain. In terms of efficiency, observe that although the closure of l n (f (y , z), r
is computed, the number of sharing groups in to* is kept low by only combining
I n (f (y , z), r with hi(x , r (rather than with rl(x , r

The extra expressiveness of the domain is not confined to abstracting multiple
substitutions. If/~ = {x ~-* f (u , v, w, w)} and #* = lin([#]~.), for instance,

#" = {{~, {(u, 1), (x, 1)}, {(v, 1), (x, 1)}, {(w, 1), (x, 2)}, {(y, 1)}, {(z, 1)}}

so that p* i s structurally identical to r Although omitted for brevity, the
calculation m g e ({ x -- f (Y l , Yl, Y3, Y4), w = g}, p*) deduces that Yi and yj (for
i r j) become independent after w is grounded. This, again, cannot be inferred
in terms of the Sondergaard domain.

5 R e l a t e d w o r k

Recently, four interesting proposals for computing accurate sharing information
have been put forward in the literature. In the first proposal [6], domains and
analyses are combined to improve accuracy. This paper develops this theme and
explores the virtues of fusing linearity with sharing groups. In short, this paper
explains how accuracy and efficiency can be further improved by restructuring
a combined domain as a single domain.

In the second proposal [4], the correctness of freeness analyses is considered.
An abstract unification algorithm is proposed as a basis for constructing accur-
ate freeness analyses with a domain formulated in terms of abstract equations.
Safety follows because the abstract algorithm mimics the solved form algorithm
in an intuitive way. Correctness is established likewise here. The essential distinc-
tion between the two works is that this paper tracks groundness and linearity.
Consequently, the approach presented here can derive more accurate sharing in-
formation. Also, as pointed out in [2], "it is doubtful whether it (the abstract
unification algorithm of [4]) can be the basis for a very efficient analysis". The
analysis presented here, on the other hand, is designed to be efficient.

Very recently, in the third proposal [2], an analysis for sharing, groundness,
linearity and freeness is formalised as a transition system which reduces a set of
abstract equations to an abstract solved form. Sharing is represented in a sharing
group fashion with variables enriched with linearity and freeness information by
an annotation mapping. The domain, however, essentially adopts the Jacobs and
Langen [14] structure. Consequently the analysis cannot always derive sharing as
accurately as the analysis reported here. Moreover, the use of a tightly-coupled
domain seems to simplify some of the analysis machinery. For instance, the notion
of abstraction introduced in this paper is more succinct than the equivalent

377

definition in [2]. This simplicity seems to stem from the fact the domain is an
elegant and natural generalisation of sharing groups [14]. Also, the analysis of
[2] has not, as yet, been proved correct.

Fourthly, a referee pointed out a freeness analysis which also tracks linearity
to avoid the calculation of closures in sharing groups [11]. Interestingly, [11] seems
to adopt a conventional notion of linearity, rather than embedding linearity into
sharing groups in the useful way that is described in this paper.

To be fair, however, the analyses of [11, 4, 2] do infer freeness. This can be
useful [13]. Although freeness information is not derived in this paper, it seems
that freeness can be embedded into sharing groups in a similar way to linearity.
What is more, if freeness is recorded this way, it can be used to improve sharing
beyond what is achievable by just tracing linearity! This is unusual, contrasts to
[2], and is further evidence for the usefulness of restructuring sharing groups.

6 Conclusions

A powerful, formally justified and potentially efficient analysis has been presen-
ted for inferring definite groundness and possible sharing between the variables
of a logic program. The analysis builds on the combined domain approach [6] by
elegantly representing linearity information in a sharing group format. By revis-
ing sharing groups to capture linearity, a single coherent domain and analysis
has been formulated which more precisely captures aliasing behaviour; propag-
ates groundness information with greater accuracy; and in addition, a yields
a more refined notion of linearity. In more pragmatic terms, the analysis per-
mits aliasing and groundness to be inferred to a higher degree of accuracy than
in previous proposals. The analysis is significant because sharing information
underpins many optimisations in logic programming.

Acknowledgements

Thanks are due to Manuel Hermenegildo and Dennis Dams for useful discussions
on linearity. This work was supported by ESPRIT project (6707) "ParForce".

References

1. M. Bruynooghe. A practical framework for the abstract interpretation of logic
programs. J. Logic Programming, 10:91-124, 1991.

2. M. Bruynooghe and M. Codish. Freeness, sharing, linearity and correctness - all
at once. In WSA'93, pages 153-164, September 1993.

3. J.-H. Chang and A. M. Despain. Semi-intelligent backtracking of prolog based
static data dependency analysis. In JICSLP'85. IEEE Computer Society, 1985.

4. M. Codish, D. Dams, G. FilL, and M. Bruynooghe. Freeness analysis for logic pro-
grams - and correctness? In ICLP'93, pages 116-131. MIT Press, June 1993.

378

5. M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an abstract uni-
fication algorithm for groundness and aliasing analysis. In ICLP'91, pages 79-93,
Paris, France, 1991. MIT Press.

6. M. Codish, A. Mulkers, M. Bruynooghe, M.J. Garcfa de la Banda, and
M. Hermenegildo. Improving abstract interpretation by combining domains. In
PEPM'93. ACM Press, 1993.

7. A. Cortesi and G. Fil~. Abstract interpretation of logic programs: an abstract
domain for groundness, sharing, freeness and compoundness analysis. In PEPM'91,
pages 52-61. ACM Press, 1991.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL'77, pages 238-252. ACM Press, 1977.

9. D. Dams. Personal communication on linearity lemma 2.2. July, 1993.
10. S. K. Debray. Static inference of modes and data dependencies in logic programs.

ACM TOPLAS, 11(3):418-450, July 1989.
11. W. Hans and S. Winkler. Aliasing and groundness analysis of logic programs

through abstract interpretation and its safety. Technical Report Nr. 92-27, RWTH
Aachen, Lehrstuhl ffir Informatik II Ahornstraf~e 55, W-5100 Aachen, 1992.

12. M. Hermenegildo. Personal communication on freeness analysis. May, 1993.
13. M. Hermenegildo and F. Rossi. Non-strict independent and-parallelism. In

ICLP'90, pages 237-252, Jerusalem, 1990. MIT Press.
14. D. Jacobs and A. Langen. Static Analysis of Logic Programs. J. Logic Program-

ming, pages 154-314, 1992.
15. A. King. A new twist to linearity. Technical Report CSTR 93-13, Department of

Electronics and Computer Science, Southampton University, Southampton, 1993.
16. J. Lassez, M. J. Maher, and K. Marriott. Foundations of Deductive Databases and

Logic Programming, chapter Unification Revisited. Morgan Kaufmann, 1987.
17. B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A generic abstract inter-

pretation algorithm and its complexity. In ICLP'91, pages 64-78. MIT Press,
1991.

18. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
19. K. Marriott and H. SCndergaard. Analysis of constraint logic programs. In

NACLP'90, pages 531-547. MIT Press, 1990.
20. K. Muthukumar and M. Hermenegildo. Combined determination of sharing and

freeness of program variables through abstract interpretation. In ICLP'91, pages
49-63, Paris, France, 1991. MIT Press.

21. K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable de-
pendency through abstract interpretation. J. of Logic Programming, pages 315-
437, 1992.

22. H. SOndergaard. An application of the abstract interpretation of logic programs:
occur-check reduction. In ESOP'86, pages 327-338. Springer-Verlag, 1986.

23. R. Sundararajan and J. Conery. An abstract interpretation scheme for groundness,
freeness, and sharing analysis of logic programs. In 12 th FST and TCS Conference,
New Delhi, India, December 1992. Springer-Verlag.

24. A. Taylor. High Performance Prolo9 Implementation. PhD thesis, Basser Depart-
ment of Computer Science, Sydney, Australia, July 1991.

25. H. Xia. Analyzing Data Dependencies, Detecting And-Parallelism and Optimizing
Backtracking in Prolog Programs. PhD thesis, University of Berlin, April 1989.

