
L a z y U n i f i c a t i o n w i t h S i m p l i f i c a t i o n

Michael Hanus

Max-Planck-Institut fiir Informatik
Im Stadtwald, D-66123 Saaxbriicken, Germany.

michael@mpi-sb, mpg. de

Abst rac t . Unification in the presence of an equational theory is an im-
portant problem in theorem-proving and in the integration of functional
and logic programming languages. This paper presents an improvement of
the proposed lazy unification methods by incorporating simplification into
the unification process. Since simplification is a deterministic computation
process, more efficient unification algorithms can be achieved. Moreover,
simplification reduces the search space so that in some case infinite search
spaces axe reduced to finite ones. We show soundness and completeness of
our method for equational theories represented by ground confluent and
terminating rewrite systems which is a reasonable class w.r.t, functional
logic programming.

1 I n t r o d u c t i o n

Unification is not only an important operation in theorem provers but also the most
impor tant operation in logic programming systems. Unification in the presence of
an equationM theory, also known as E-unification, is necessary if the computat ional
domain in a theorem prover enjoys certain equational properties [26] or if functions
should be integrated into a logic language [10]. Therefore the development of E-
unification algorithms is an active research topic during recent years (see, for
instance, [29]).

Since E-unification is a complex problem even for simple equational axioms,
we are interested in efficient E-unification methods in order to incorporate such
methods into functional logic programming languages. One general method to im-
prove the efficiency of implementations is the use of a lazy strategy. "Lazy" means
that evaluations are performed only if it is necessary to compute the required so-
lutions. In the context of unification this corresponds to the idea that terms are
manipulated at outermost positions. Hence lazy unification means that equational
axioms are applied to outermost positions of equations. For instance, consider the
following equations for addition and multiplication on natural numbers which are
represented by terms of the form s(. - . s (0)- . -) :

0 + y ~ y 0 * y ~ 0

If we have to unify the terms 0 * (s(0) + s(z)) and 0, we could apply equational
axioms to inner subterms starting with s(0) + s(z) (innermost or eager strategy) or
to outermost subterms (outermost or lazy strategy). This will lead to the following
two derivations (the subterms manipulated in the next step are underlined):

0 �9 (~(0) + ~(z)) ~ 0 ~ 0 �9 (~(0 + ~(z))) ~ 0 ~ 0 �9 (~(~(z))) ~ 0 ~ 0 ~ 0
0 �9 (~(0) + s(z)) ~ 0 ~ 0 ~ 0

Obviously, the second lazy unification derivation should be preferred.

273

There are many proposals for such lazy unification strategies. For instanc%
Martelli et al. [22] have proposed a lazy unification algorithm for confluent and
terminating equational axioms. Due to the confluence requirement, equations are
only applied in one direction. However, their method is not pure lazy since equa-
tions are applied to inner subterms in equations of the form x ~ t where the
variable x occurs in t. Gallier and Snyder [11] have proved the completeness of a
lazy unification method for arbi trary equational theories where equations can be
applied in both directions. Narrowing is a method to compute E-unifiers in the
presence of confluent axioms. It is a combination of the reduction principle of func-
tional languages with syntactic unification in order to instantiate variables. Lazy
narrowing were proposed by Reddy [27] as the operational principle of functionM
logic languages. Recently, Antoy, Echahed and Hanus [1] have proposed a nar-
rowing strategy for programs where the functions are defined by case distinctions
over the data structures. This strategy reduces only needed redexes, computes no
redundant solutions, and is optimal w.r.t, the length of narrowing derivations.

From a practical point of view the disadvantage of E-unification is its inher-
ent nondeterminism. In the area of narrowing there are many proposals for the
inclusion of a deterministic simplification process in order to reduce the nondeter-
minism [8, 9, 19, 24, 28], but all these proposals are based on an eager narrowing
strategy. On the other hand, only little work has been done to improve the effi-
ciency of outermost or lazy strategies. Echahed [7] has shown the completeness of
any narrowing strategy with simplification under strong requirements (uniformity
of specifications). Dershowitz et al. [6] have proposed to combine lazy unification
with simplification and demonstrated the usefulness of inductive consequences for
simplification. However, they have not proved completeness of their lazy unifica-
tion calculus if all terms are simplified to their normal form after each unification
step. In fact, their completeness proof for lazy narrowing does not hold if eager
rewriting is included since rewriting in their sense does not reduce the complexity
measure used in their completeness proof and may lead to infinite instead of suc-
cessful derivations. Therefore we will formulate a calculus for lazy unification which
includes simplification and give a rigorous completeness proof. The distinguishing
features of our framework are:

- We consider a ground confluent and terminating equational specification in
�9 order to apply equations only in one direction and to ensure the existence of

normal forms. This is reasonable if one is interested in declarative programming
rather than theorem proving.

- The unification calculus is lazy, i.e., functions are not evaluated if their value is
not required to decide the unifiability of terms. Consequently, we may compute
reducible solutions as answers according to the spirit of lazy evaluation. For
instance, in contrast to other "lazy" unification methods we do not allow any
evaluation of t in the equation x ~ t if x occurs only once.

- We include a deterministic simplification process in our unification calculus.
In order to restrict nondeterministic computations as much as possible, we
allow to use additional inductive consequences for simplification which has
been proved to be useful in other calculi [7, 9, 24].

After recalling basic notions from term rewriting, we present in Section 3 our ba-
sic lazy unification cMculus. In Section 4 we include a deterministic simplification
process into the lazy unification calculus. Finally, we show in Section 5 some im-
portant optimizations for constructor-based specifications. Due to lack of space we
omit the details of some proofs, but the interested reader will find them in [17].

274

2 C o m p u t i n g i n e q u a t i o n a l t h e o r i e s

In this section we recall the notations for equations and term rewriting systems
[5] which are necessary in our context.

Let the signature ~r be a set of function symbols 1 and X be a countably infinite
set of variables. Then 7 - (~ , X) denotes the set of terms built from ~ and X.
Par(t) is the set of variables occurring in t. A ground term t is a term without
variables, i.e., ~ar(t) = O. A substitution ~r is a mapping from X into T (~ , X)
such that its domain Vom(a) = {z E X [a (z) r z) is finite. We frequently
identify a substitution ~ with the set {x ~-* ~(x) I z E :Dom(~)). Substitutions are
extended to morphisms on T (Z , X) by a (f (t l , . . . ,t,~)) = f (a (t l) , . . . , a(t~)) for
every term f (t] , . . . , tn). A substitution ~ is called ground if a(x) is a ground term
for all x E 79om(cr). The composition of two substitutions r and cr is defined by
r o ~(z) = r for all z e X. A unifier of two terms s and t is a substitution

with ~(s) = a(t). A unifier ~ is called most general (mgu) if for every other
unifier a I there is a substitution r with a t = r o a. A position p in a term t is
represented by a sequence of natural numbers, tip denotes the subterm of t at
position p, and t[s]p denotes the result of replacing the subterm tip by the term s
(see [5] for details). The outermost position A is also called root position.

Let --+ be a binary relation on a set S. Then --** denotes the transitive and
reflexive closure of the relation --% and ~ * denotes the transitive, reflexive and
symmetric closure of --*. --+ is called terminating if there are no infinite chains
el --* e~ ~ e3 ~ --.. --* is called confluent if for all e, el,e2 E S with e --** el and
e --+* e2 there exists an element e3 E S with el --+* e3 and e2 ---~* e3.

An equation s ~ t is a multiset containing two terms s and t. Thus equations
to be unified are symmetric. In order to compute with equational specifications,
we will use the specified equations only in one direction. Hence we define a rewrite
rule l ~ r as a pair of terms l, r satisfying I ~ X and Vat(r) C]3ar(1) where l and
r are called left-hand side and right-hand side, respectively. A rewrite rule is cMled
a variant of another rule if it is obtained by a unique replacement of variables by
other variables. A term rewriting system Tt is a set of rewrite rules. In the following
we assume a given term rewriting system T~.

A rewrite step. is an application of a rewrite rule to a term, i.e., t --+Tz s if
there exists a position p, a rewrite rule l --+ r and a substitution cr with tip = a(l)
and s = t[a(r)]p. A term t is called reducible if we can apply a rewrite rule to it,
and t is called irreducible or in normal form if there is no term s with t --+~ s.
A term rewriting system is ground confluent if the restriction of --*n to the set of
all ground terms is confluent. If ~ is ground confluent and terminating, then each
ground term t has a unique normal form which is denoted by t~n.

We are interested in proving the validity of equations. Hence we call an equation
s ~ t valid (w.r.t. 7~) if s ~-+~ t. By Birkhoff's Completeness Theorem, this is
equivalent to the validity of s ,~ t in all models of 7~. In this case we Mso write
s = n t. If T~ is ground confluent and terminating, we can decide the validity
of a ground equation s ~ t by computing the normal form of both sides using
an a rb i t ra ry sequence of rewrite steps since s ~--~ t i f f slT~ = t~Tz. In order to
compute solutions to a non-ground equation s ~ t, we have to find appropriate
instantiations for the variables in s and t. This can be done by narrowing. A term

1 In this paper we consider only single-sorted programs. The extension to many-sorted
signatures is straightforward [25]. Since sorts are not relevant to the subject of this
paper, we omit them for the sake of simplicity.

275

t is narrowable into a term t' if there exist a non-variable position p (i.e., tip ~ X),
a variant 1 --+ r of a rewrite rule and a substitution cr such that c~ is a mgu of tip
and l and t ' = c~(t[r]p). In this case we write t - , ~ t'.

Narrowing is able to solve equations w.r.t~ Tr by deriving both sides of an
equation to syntactically unifiable terms. Due to the huge search space of simple
narrowing, several authors have proposed restrictions on the admissible narrowing
derivations (see [18] for a detailed survey). Lazy narrowing [3, 23, 27] is influ-
enced by the idea of lazy evaluation in functional programming languages. Lazy
narrowing steps are only applied at outermost positions with the exception that
arguments are evaluated by narrowing to their head normal form if their values
are required for an outermost narrowing step. Since lazy strategies are important
in the context of non-terminating rewrite rules, these strategies have been proved
to be complete w.r.t, domain-based interpretations of rewrite rules [13, 23]. Lazy
unification is very similar to lazy narrowing but manipulates sets of equations
rather than terms. It has been proved to be complete for canonical term rewriting
systems w.r.t, s tandard semantics [6, 22].

From a practical point of view the most essential improvement of simple nar-
rowing is normalizing narrowing [8] where the term is rewritten to its normal form
before a narrowing step is applied. This optimization is important since it prefers
deterministic computations: rewriting a term to normal form can be done in a
deterministic way since every rewriting sequence gives the same result (if 7~ is
confluent and terminating). As shown in [9, 16], normalizing narrowing has the
impor tant effect that equational logic programs are more efficiently executable
than pure logic programs. Normalization can also be combined with other nar-
rowing restrictions [9, 19, 28]. Because of these important advantages, normalizing
narrowing is the foundation of several programming languages which combines
functional and logic programming like ALF [15], LPG [2] or SLOG [9]. However,
normalization has not been included in lazy narrowing strategies. 2 Therefore we
will present a lazy unification calculus which includes a normalization process
where the term rewrite rules as well as additional inductive consequences are used
for normalization.

3 A c a l c u l u s f o r l a z y u n i f i c a t i o n
In the rest of this paper we assume that Tr is a ground confluent and terminating
term rewriting system. This section presents our basic lazy unification calculus to
solve a system of equations. The inclusion of a normalization process will be shown
in Section 4. The "laziness" of our calculus is in the spirit of lazy evaluation in
functional programming languages, i.e., terms are evaluated only if their values
are needed.

Our lazy unification calculus manipulates sets of equations in the style of
Martelli and Montanari [21] rather than terms as in narrowing calculi. Hence
we define an equation system E to be a multiset of equations (in the following we
write such sets without curly brackets if it is clear from the context). A solution
of an equation system E is a ground substitution c~ such that q(s) =-T~ c~(t) for
all equations s ~ t E E. 3 An equation system E is solvable if it has at least one
solution. A set S of substitutions is a complete set of solutions for E iff

2 Except for [6, 7], but see the remarks in Section 1.
3 We are interested in ground solutions since later we will include inductive consequences

which are valid in the ground models of ~. As pointed out in [24], this ground approach
subsumes the conventional narrowing approaches where also non-ground solutions are
taken into account.

276

Lazy na r rowing

f(tl , o..,t,~).~t,E ~ t l~ l l , . . . , tn . .~ ln , r..~t,E

if t ~ X or t E 1;ar(f(t~,..., tn)) U l;ar(E) and f(lx, . . . , l ,) --* r new variant of a rule

D e c o m p o s i t i o n of equa t ions

f(ta,. . . , tn)"f(t~, tn); E ~ tl,~t~,.oo,t~tn; E

Par t i a l b ind ing of var iab les
lu

if x E 1 ;ar (y(t l , . . . , t,)) u 1;at(E) and r = {x ~ f(x~, . . . , x=)} (x~ new variable)

F igure 1. The lazy unification calculus

1. for all c~ E S, cr is a solution of E;
2. for every solution 0 of E, there exists some cr E S with a(z) =Tz e (z) for all

x E ~ar(E).

In order to compute solutions of an equation system, we t ransform it by the rules
in Figure 1 until no more rules can be applied. The lazy narrowing t ransformat ion
applies a rewrite rule to a function occurring outermost in an equation. 4 Actually,
this is not a narrowing step as defined in Section 2 since the argument te rms m a y
not be unifiable. Narrowing steps can be simulated by a sequence of t ransforma-
tions in the lazy unification calculus but not vice versa since our calculus also
allows the application of rewrite rules to the arguments of the left-hand sides. The
decomposit ion t ransformat ion generates equations between the argument terms of
an equation if both sides have the same outermost symbol. The part ial binding
of variables can be applied if the variable x occurs at different positions in the
equation system. In this case we instantiate the variable only with the outermost
function symbol. A full instantiat ion by the substi tut ion r = {x ~-* f (t l , . . . , tn)}
may increase the computat ional work if x occurs several t imes and the evaluation
of f (t l , . . . , t n) is costly. In order to avoid this problem of eager variable elim-
inalion (see [11]), we perform only a part ial binding which is also called "root
imitat ion" in [11].

At first sight our lazy unification calculus has many similarities with the lazy
unification rules presented in [6, 11, 22, 25]. This is not accidental since these
systems have inspired us. However, there are also essential differences. Since we
are interested in reducing the computat ional costs in the E-unification procedure,
our rules behave "more lazily". In our rules it is allowed to evaluate a te rm only if
its value is needed (in several positions). Otherwise, the t e rm is left unevaluated.

Example 1. Consider the rewrite rule 0 * x --+ 0. Then the only t ransformation
sequence of the equation 0 * t ~ 0 (where t is a costly function) is

0 . t ~ 0 ~ 0 ~ 0 , t ~ z , 0 ~ 0 ~ t ~ z , 0 ~ 0 ~ t ~ z
Thus the te rm t is not evaluated since its concrete value is not needed. Con-
sequently, we may compute solutions with reducible terms which is a desirable
property in the presence of a lazy evaluation mechanism. []

4 Similarly to logic programming, we have to apply rewrite rules with fresh variables in
order to ensure completeness.

277

~:~ r Coalesce x~Ny, E ~ x~'~y,

Trivial x ~ x ,E ~ E

F igure 2. The variable elimination rules

if x, y E]2ar(E) and r -- {x ~-* y}

The conventional t ransformat ion rules for unification w.r.t, an empty equational
theory [21] bind a variable x to a t e rm t only if x does not occur in t. This occur
check must be omit ted in the presence of evaluable function symbols. Moreover,
we must also instantiate occurrences of x in the te rm t which is done in our part ial
binding rule. The following example shows the necessity of these extensions.

Example 2. Consider the rewrite rule f (c (a)) --~ a. Then we can solve the equation
x ,~ c (f (x)) by the following t ransformation sequence:

lu
x c (] (x)) x c(x l) , I(C(Xl))

x ,~ C(Xl), C(Xl) ~ e(a), Xl ~ a

x ,~ C(Xl), Xl ,~ a~ Xl ~ a
lu

~ x , ~ c (a) , x l ~ a , a ~ a
lu

x ~ c(a), x l ~ a

(partial binding)

(lazy narrowing)

(decomposition)

(partial binding)

(decomposition)

In fact, the initial equation is solvable and {x ~-+ c(a)} is a solution of this equation.
This solution is also an obvious solution of the final equation system if we disregard
the auxiliary variable Xl. []

In the rest of this section we will show soundness and completeness of our lazy
unification calculus. Soundness s imply means tha t each solution of the t ransformed
equation system is also a solution of the initial equation system. Completeness is
more difficult since we have to take into account all possible t ransformations.
Therefore we will show that a solvable equation system can be t ransformed into
another very simple equation system which has "an obvious solution". Such a final
equation system is called in "solved form". According to [11, 21] we call an equation
x ~ t E E solved (in E) if x is a variable which occurs neither in t nor anywhere
else in E. In this case variable x is also called solved (in E). An equation system
is solved or in solved f o r m if all its equations are solved. A variable or equation is
unsolved in E if it occurs in E but is not solved.

The lazy unification calculus in the present form cannot t ransform each solv-
able equation system into a solved form since equations between variables are not
simplified. For instance, the equation system

x ~ f (y) , y ~ zl , y ~ z2, Zl ~ Z2

is irreducible w.r.t. ~ but not in solved form since the variables y, zl , z2 have
multiple occurrences. Fortunately, this is not a problem since a solution can be
extracted by merging the variables occurring in unsolved equations. Therefore we
call this system quasi-solved. An equation system is quasi-solved if each equation
s ~ t is solved or has the property s, t E X. In the following we will show tha t
a quasi-solved equation system has solutions which can be easily computed by
applying the rules in Figure 2 to it. The separation between the lazy unification
rules in Figure 1 and the variable elimination rules in Figure 2 has technical rea-
sons that will become apparent later (e.g., applying variable elimination to the

278

equation y ~ zl may not reduce the complexity measure used in our completeness
proofs). However, it is obvious to obtain the solutions of a quasi-solved equation
system E. For this purpose we transform E by the rules in Figure 2 into a solved
equation system which has a direct solution. This is always possible because ~=~
is terminating, preserves solutions, and transforms each quasi-solved system into
a solved one (see [17] for details). Moreover, the solutions of an equation system
in solved form can be obtained as follows:

P r o p o s i t i o n l . Let E = (x l ~. t l , . . . , xn ~ t,~} be an equation system in solved
form. Then the substitution set

{~/ 0 {X 1 ~ t l , . . . , Xn ~ t n } I 7 iS a ground s u b s t i t u t i o n }

is a complete set of solutions for E.

Therefore it is sufficient to transform an equation system into a quasi-solved form.
The soundness of the lazy unification calculus is implied by the following theorem
which can be proved by a case analysis on the applied transformation rule [17].

T h e o r e m 2 . Let E and E ~ be equation systems with E ~ E q Then each solution
of E ~ is also a solution of E.

For the completeness we show that for each solution of an equation system there
is a derivation into a quasi-solved form that has the same solution. Note that
the solution of the quasi-solved form cannot be identical to the required solution
since new additional variables are generated during the derivation (by lazy nar-
rowing and partial binding transformations). But this is not a problem since we
are interested in solutions w.r.t, the variables of the initial equation system.

T h e o r e m 3. Let E be a solvable equation system with solution ~. Then there exists

a derivation E ~ * E t with E I in quasi-solved form such that E I has a solution rr I
with o"(x) =~ ~(x) for all x E ldar(E).

Proof. We show the existence of a derivation from E into a quasi-solved equation
system by the following steps:

1. We define a reduction relation ~ on pairs of the form (c~, E) (where E is an
equation system and ~ is a solution of E) with the property that (or, E)

(~r', E ') implies E ~ E ' and cr'(x) = ~(x) for all x e Yar(E) .
2. We define a terminating ordering >- on these pairs.
3. We show: If E has a solution a but E is not in quasi-solved form, then there

exists a pair (a~, S ') with (or, E) ~ (a ~, E ~) and (~r, E) >- (c~', E').
2 and 3 implies that each solvable equation system can be transformed into a quasi-
solved form. By 1, the solution of this quasi-solved form is the required solution
of the initial equation system.

In the sequel we will show 1 and 3 in parallel. First we define the terminating
ordering >-. For this purpose we use the strici subterm ordering ~-ssz on terms
defined by t ~-ss~ s iff there is a position p in t with tip = s ?~ t. Since R is a termi-
nating term rewriting system, the relation --*n on terms is also terminating. Let
~- be the transitive closure of the relation --*TO U ~-ss~. Then ~ is also terminating
[20].5 Now we define the following ordering on pairs (rr, E): (c~, E) >- (~r', E ') iff
{r ~r(t) [s .~ t E E unsolved} ~'~-mul {or'(#), a ' (t ') [s' ~. t ' e E ' unsolved} (*)

s Note that the use of the relation --*n instead of Yr- (as done in [6]) is not sufficient for
the completeness proof since ---*n has not the subterm property [4] in general.

279

where >~-m~l is the multiset extension 6 of the ordering >>- (all sets in this definition
are multisets). >>'-m~t is terminating (note that all multisets considered here are
finite) since ~- is terminating [4].

Now we will show that we can apply a transformation step to a solvable but
unsolved equation system such that its complexity is reduced. Let E be an equation
system not in quasi-solved form and o" be a solution of E. Since E is not quasi-
solved~ there must be an equation which has one of the following forms:

1. There is an equation E = s ~ t, Eo with s , t ~ X: Let s = f (s l , . . . , s n) with
n > 0 (the other case is symmetric). Consider an innermost derivation of the
normal forms of ~(s) and ~(t):
(a) No rewrite step is performed at the root of ~(s) and ~(t): Then t has

the form t -- f (t l , . . . , t ,) and ~r(s)~n = cr(t) ln = f (u l , . . . , u , ~) . Since
~(s) and ~(t) are not reducible at the root, ~r(si)ln = ui = ~(t l)~n for
i -- 1 , . . . , n. Now we apply the decomposition transformation and obtain
the equation system

E I -: S l , ~ t l , o . . , s n ~ , t n , E o

Obviously, c~ is a solution of E ~. Moreover, the complexity of the new
equation system is reduced because the equation s ~ t is unsolved in E
and each aCs~) and aCti) is smaller than a(s) and a(t) , respectively, since
~- contains the strict subterm ordering ~-sst. Hence (c~, E) ~- (cr, E ') .

(b) A rewrite step is performed at the root of a(s), i.e., the innermost rewriting
sequence o f a(s) has the form

* / (s~ . s~) - ~ 0(~) -~;~ ~ (s) ~ ~(s) --+~ , . . ,
! where f q l , . . - , ~) -~ ~ is a new variant of a rewrite rule, O(t~) = s~

and ~(si) --+~ s~ for i --- 1 , . . . , n. An application of the lazy narrowing
transformation yields the equation system

E ~ = sl ~ l x , . . . , s n ~ l n , r ~ - , t , Eo

We extend tr to a new substitution c~' with c~'(z) = O(x) for all x E Z)om(O)
(this is always possible since 0 does only work on the variables of the new
variant of the rewrite rule), or' is a solution of E' since

' = 0(t~) = ~'(l~) ~ ' (s ,) = ~(s~) - - ~ s~

and
~'(~) = 0(~) - - ~ ~ (s) ~ ~ ~(t) = ~'(t)

Since the transitive closure of---*T~ is contained in ~-, ~rCsi) ~- cr'(l~) (if
a(s~) r a'(l~)) and c~(s) ~ o"(r). Since s ~ t is unsolved in E, the term
~(s) is contained in the left multiset of the ordering definition (,) , and
it is replaced by the smaller terms c~(Sl), . . . , a(s ,0, ~r'(/1),... , a'(l,~), a ' (r)
(o'(s) ~- a(s~) since ~ contains the strict subterm ordering). Therefore
the new equation system is smaller w.r.t. ~-, i.e., (a, E) ~ (~r', E ') .

2. There is an equation E = x ,~ t, Eo with t = fCtl, . . . , t ,~) and z unsolved in
E: Hence x ~ ~2ar(t) U 12ar(Eo). Again, we consider an innermost derivation
of the normal form of a(t):
(a) A rewrite step is performed at the root of c~(t). Then we apply a lazy

narrowing step and proceed as in the previous case.

The multiset ordering ~t'rnu~ is the transitive closure of the replacement of an element
by a finite number of elements that are smaller w.r.t. >r [4].

280

(b) No rewrite step is performed at the root of~r(t), i.e., ~r(t)$n = f (t ' l , . . o , t~)
and o'(ti)~Tz = t~ for i = 1 , . . . , n. We apply the partial binding transfor-
mation and obtain the equation system

g t = x ~ f (X l ~ o o . , x n) , ag 1 ~ r z n ~ r r

where r = {x ~-* f (z l , . . . , x ,)} and z~ are new variables. We extend cr to
a substitution ~' by adding the bindings c~'(zi) = t~ for i = 1 , . . . , n. Then

�9 * * c r ' (f (x l , . . , xn)) = f (t ~ l , . . . , tin) -= cr(t)~Tr *-+R +-+7r
Moreover, ~'(r = c~l(x)~n which implies cr'(s) ~ c~t(r for all
terms s. Hence cr'(r ~-~ cr~(ti) ~ t~ = ~r'(xi). Altogether, (r' is a
solution of E ~.
It remains to show that this transformation reduces the complexity of the
equation system. Since ~'(r = ~(x)~7~, we have ~(x) --+~ ~'(r
Hence ~r(Z0) is equal to ~r'(r (if a(x) = a '(r or c~'(r is
smMler w.r.t. ~- ,~l- Therefore it remains to check that ~r(t) is greater
than each q ' (Xl) , . . . , cr'(xn), ~1(r c~'(r w.r.t. ~r- (note that
the equation x ~ t is unsolved in E, but the equation x ~ f (x l , . . . , xn) is
solved in E ') . First of all, a(t) ~- c~(t~) since ~ includes the strict subterm
ordering. Moreover, a(ti) - - ~ q ' (x i) , i.e., a ' (x i) is equal or smaller than
~r(ti) w.r.t. ~- for i = 1 , . . .gn . This implies or(t) ~ a '(xi). Similarly,
c~'(r is equal or smaller than a(t l) w.r.t. ~- since ~r'(r = ~r(x)~T~.
Thus or(t) ~ a'(r Altogether, (c~, E) ~- (c~', E') . []

We want to point out that there exist also other orderings on substi tution/equation
system pairs to prove the completeness of our calculus. However, the ordering
chosen in the above proof is tailored to a simple proof for the completeness of lazy
unification with simplification as we will see in the next section.

The results of this section imply that a complete set of solutions for a given
equation system E can be computed by enumerating all derivations in the lazy
unification calculus from E into a quasi-solved equation system. Due to the nonde-
terminism in the lazy unification calculus, there are many unsuccessful and often
infinite derivations. Therefore we will show in the next section how to reduce this
nondeterminism by integrating a deterministic simplification process into the lazy
unification calculus. More determinism can be achieved by dividing the set of func-
tion symbols into constructors and defined functions. This will be the subject of
Section 5.

4 I n t e g r a t i n g s i m p l i f i c a t i o n i n t o l a z y u n i f i c a t i o n

The lazy unification calculus admits a high degree of nondeterminism even if there
is only one reasonable derivation. This is due to the fact that functional expressions
are processed "too lazy".

Example 3. Consider the rewrite rules

f (a) -+ c g(a) ~ a
d

and the equation f (g (b)) ~ d. Then there are four different derivations in our lazy
unification calculus, but only one derivation is successful. If we would first compute
the normal form of f (g (b)) , which is d, then there is only one possible derivation:

d .~ d ~ ~. Hence we will show that the lazy unification calculus remains to be
sound and complete if the (deterministic!) normalization of terms is included. []

281

I t is wel l -known [9, 16] t h a t the inc lus ion of induc t ive consequences for n o r m a l -
i za t ion m a y have an essent ia l effect on the search space r educ t ion in no rma l i z ing
na r rowing s t ra teg ies . Therefore we will also al low the use of a d d i t i o n a l i nduc t ive
consequences for n o r m a l i z a t i o n . A rewr i te rule l --* r is cal led inductive conse-
quence (of TO) i f ~r(1) =re g (r) for all g r o u n d subs t i t u t i ons cr. For ins tance , the rule
x + 0 ~ x is an induc t ive consequence of the t e r m rewr i t ing sy s t em

0 + y -~ y s (x) + y -~ s (x + y)

I f we wan t to solve the equa t ion s (x) + 0 ~ s (x) , our bas ic l azy uni f ica t ion calculus
would e n u m e r a t e the so lu t ions x ~-* O, ~ ~-* s(O), x ~-* s(s(O)) and so on, i.e., th is
equa t ion has an inf ini te search space. Using the induc t ive consequence x + 0 -+ x
for n o r m a l i z a t i o n , the equa t ion s (x) + 0 .~ s (x) is reduced to s (x) ~ s (x) and then
t r a n s f o r m e d into the quas i -so lved fo rm x ~ x represen t ing the so lu t ion set where
x is r ep laced by any g round t e rm. 7

In the fol lowing we assume t h a t S is a set of i nduc t ive consequences of T~ (the
set of simplification rules) so t h a t the rewr i te r e l a t ion --+s is t e r m i n a t i n g . We will
use rules f rom 7"/for l azy na r rowing and rules f rom S for s impl i f ica t ion . Note t h a t
each rule f rom T~ is also an induc t ive consequence and can be inc luded in 8 . Bu t
we do no t requi re t h a t al l rules f rom T~ m u s t be used for n o r m a l i z a t i o n . Th i s is
r easonab le i f the re are dup l i ca t i ng rules where one va r i ab le of the l e f t -hand side
occurs severa l t imes on the r i g h t - h a n d side, like f (x) --~ g(x, x). I f we no rma l i ze
the equa t ion f (s) ~ t wi th this rule, then the t e r m s is dup l i c a t e d which m a y
increase the c o m p u t a t i o n a l costs if the eva lua t ion of s is necessary and costly. In
such a case i t would be b e t t e r to use th is rule only in lazy na r rowing steps.

In o rder to inc lude s impl i f i ca t ion into the l azy uni f ica t ion calculus, we define
a r e l a t ion ~ s on sys tems of equa t ions , s ~ t ~ s s I ~ t I iff s ~ and t ~ are n o r m a l
fo rms of s and t w.r . t . --~s, respect ively . E ~ s E ~ i f f E = e l , . . . , e ~ and E' =
e ~ , . . . , %~ where e~ :=~s e i~ for i = 1, . . ., n. Note t h a t ~ s descr ibes a de t e rmin i s t i c

c o m p u t a t i o n process . 8 E ~ E ~ is a de r iva t ion s tep in the lazy unification calculus

with simplification if E ~ s E ~ E ' for some E .
|us

T h e soundness of the calculus ~ can be shown by a s imple i nduc t i on on
the c o m p u t a t i o n s teps us ing T h e o r e m 2 and the fol lowing l e m m a which shows the
soundness of one rewr i te s tep wi th a s impl i f i ca t ion rule:

L e m m a 4 . Let s ~ t be an equation and s ---*s # be a rewrite step. Then each
solution of # ..~ t is also a solution of s ~ t.

For the comple teness p r o o f we have to show tha t so lu t ions are not lost by the
a p p l i c a t i o n of induc t ive consequences:

L e m m a h . Let E be an equation sys tem and ~r be a solution o r E . I r E ~ s E ~,
then o" is a solution o r E I.

In larger single-sorted term rewriting systems it would be difficult to find inductive
consequences. E.g., x + 0 -+ x is not an inductive consequence if there is & constant a
since a 4- 0 = n a is not valid. However, in practice specifications are many-sorted and
then inductive consequences muse be valid only for all well-sorted ground substitutions.
Therefore we want to point out that all results in this paper can also be extended to
many-sorted term rewriting systems in a straightforward way.

8 If there exist more than one normal form w.r.t. ---*s, it is sufficient to select don't care
one of these normal forms.

282

This lemma would imply the completeness of the calculus ~ if a derivation
step with ~ s does not increase the ordering used in the proof of Theorem 3.
Unfortunately, this is not the case in general since the termination of --+7r and --+s
may be based on different orderings (e.g., 7r = {a --+ b} and 8 = {b --+ a)) . In
order to avoid such problems, we require that the relation "--~TCuS is terminating
which is not a real restriction in practice.

T h e o r e m 6. Let S be a set of inductive consequences of the ground confluent and
terminating term rewriting system Tt such that ---+Tzus is terminating. Let E be a

solvable equation system with solution or. Then there exists a derivation E ~ * E I
such that E' is in quasi-solved form and has a solution cd with ~ ' (z) =7z ~r(z) for
all x E];ar(E).

Proof. In the proof of Theorem 3 we have shown how to apply a transformation
step to an equation system not in quasi-solved form such that the solution is

lus
preserved. We can use the same proof for the transformation ~ since Lemma 5
shows that normalization steps preserve solutions. The only difference concerns
the ordering where we use "--~TCuS instead of --~r i.e., ~- is now defined to be
the transitive closure of the relation --+Teus U >-ss,. Clearly, this does not change
anything in the proof of Theorem 3. Moreover, the relation ~ s does not increase
the complexity w.r.t, this ordering but reduces it if inductive consequences are
applied since ---~s is contained in ~-. [3

These results show that we can integrate the deterministic simplification process
into the lazy unification calculus without loosing soundness and completeness.
Note that the rules from S can only be applied if their left-hand sides can be
matched with a subterm of the current equation system. If these subterms are not
sufficiently instantiated, the rewrite rules are not applicable and hence we loose
potential determinism in the unification process.

Example 4. Consider the rules

zero(s(x)) -+ zero(x) zero(0) -~ 0

(assume that these rules are contained in Tr as well as in S) and the equation
system zero(x) ~ 0, x ,~ 0. Then there exists the following derivation in our
calculus (this derivation is also possible in the unification calculi in [11, 22]):

z e r o (z) ~ O, z ~ 0

z ~ s (x l) , ~ r o (z l) ~ O, ~ ~ 0 (lazy narrowing)

z ~ s (z O , z l ~ s(x~), z~ro(z~) ~ O, ~ ~ 0 (lazy narrowing)

This infinite derivation could be avoided if we apply the partial binding rule in the
first step:

zero(x) ~ O, x ~ 0 ~ zero(O) ~ O, x ~ 0 (partial binding)
~ s 0 ,~ O, x ~ 0 (rewriting with second rule)

x ~ 0 (decomposition)

In the next section we will present an optimization which prefers the latter deriva-
tion and avoids the first infinite derivation. [:3

283

Decompos i t ion of cons t ruc to r equations
C(tl, . . . , t ,~)~c(t~ , t~),E ~ t l . . ~ t ~ , . . . , t , ~ t ~ , E i f c � 9

Full b inding of variables to g round cons t ruc to r t e rms
l uc

x ~ t , E ==~ x ~ t , r i f x � 9 1 4 9 0) and r

Par t ia l b ind ing of variables to cons t ruc to r t e rms
x ~ c(tl, ,t,~),E z~r . . . �9 r r

ifx �9 ~;ar(c(t~,... ,t,~))Ul)ar(E), x r cvar(c(t~,... ,t,~)) and r = {x ~ c (x l , . . . , x,~))
(xi new variable)

F igure 3. Deterministic transformations for constructor-based rewrite systems

5 C o n s t r u c t o r - b a s e d s y s t e m s

In practical applications of equational logic programming a distinction is made
between operation symbols to construct data terms, called constructors, and oper-
ation symbols to operate on data terms, called defined functions (see, for instance,
the functional logic languages ALF [15], BABEL [23], K-LEAF [13], SLOG [9],
or the RAP system [12]). Such a distinction allows to optimize our unification
calculus. Therefore we assume in this section that the signature ~" is divided into
two sets ~" -- C t2 7), called constructors and defined functions, with C A 7) = 0. A
constructor term t is built from constructors and variables, i.e., t E 5r(C, X). The
distinction between constructors and defined functions comes with the restriction
that for all rewrite rules l --* r the outermost symbol of l is always a defined
function.

The important property of such constructor-based term rewriting systems is
the irreducibility of constructor terms. Due to this fact we can specialize the rules
of our basic lazy unification calculus. Therefore we define the deterministic trans-
formations in Figure 3. Deterministic transformations are intended to be applied

as long as possible before any transformation ~ is used. Hence they can be in-
tegrated into the deterministic normalization process ~ s . It is obvious that this
modification preserves soundness and completeness. The decomposition transfor-
mation for constructor equations must be applied in any case in order to obtain a
quasi-solved equation system since a lazy narrowing step 7~ cannot be applied to
constructor equations. The full binding of variables to ground constructor terms is
an optimization which combines subsequent applications of partial binding trans-
formations. This transformation decreases the complexity used in the proof of
Theorem 6 since a constructor term is always in normal form. The partial bind-
ing transformation for constructor terms performs an eager (partial) binding of
variables to constructor terms since a lazy narrowing step cannot be applied to
the constructor term. Moreover, this binding transformation is combined with an
occur check since it cannot be applied if x E cvar(c(t l , . . . , t,~)) where cvar denotes
the set of all variables occurring outside terms headed by defined function symbols.
This restriction avoids infinite derivations of the following kind:

x ..~ c(xl), Xl ~ c(xl) (partial binding)

x ~ C(Zl), Xl ~ c(z2), z2 ~ c(x2) (partial binding)

A further optimization can be added if all functions are reducible on ground
constructor terms, i.e., for all f E 7) and t l , . . . , tn E T(C, O) there exists a term t

284

Clash c(tl, . ,t,~) ~ d(t~, ' t,~ , t m) , E ~ FAIL i fc , d E f a n d c # d

Occur check x .~ c (t l , . . . , t ~) , E ~=c ==~ FAIL if x e cvar (e (Q, . . . , t n))

Figure 4. Failure rules for constructor-based rewrite systems

with f (t l , . . . , t=) --*n t. In this case all ground terms have a ground constructor

normal form and therefore the partial binding transformation of ~ can be com-
pletely omit ted which increases the determinism in the lazy unification calculus.

If we invert the deterministic transformation rules, we obtain a set of failure
rules shown in Figure 4. Failure rules are intended to be tried during the deter-
ministic transformations. If a failure rule is applicable, the derivation can be safely
terminated since the equation system cannot be transformed into a quasi-solved
system.

6 E x a m p l e s

In this section we demonstrate the improved computational power of our lazy uni-
fication calculus with simplification by means of two examples. The first example
shows that simplification reduces the search space in the presence of rewrite rules
with overlapping left-hand sides.

Example 5. Consider the following ground confluent and terminating rewrite sys-
tem defining the Boolean operator V and the predicate even on natural numbers:

t rue V b --* t rue even(O) --* t rue
b v true true even(s(0)) fa lse

f a l s e V f a l s e --* f a l s e e v e n (s (s (x))) --+ even (x)

If we want to solve the equation e v e n (z) V t r u e ~ true, the lazy unification calculus
without simplification could apply a lazy narrowing step with the first V-rule. This
yields the equation system

even (z) ~ true, t rue ~ b, t rue ~ t rue
Now there are infinitely many solutions to the new equation even(z) ~ t rue by
instantiating the variable z with the values s2*i(0), i > 0, i.e., the lazy unification
calculus without simplification (cf. Section 3) has an infinite search space. The
same is true for other lazy unification calculi [11, 22] or lazy narrowing calculi
[23, 27]. Moreover, in a sequential implementation of lazy narrowing by backtrack-
ing [14] only an infinite set of specialized solutions would be computed without
ever trying the second V-rule. But if we use our lazy unification calculus with
simplification where all rewrite rules are used for simplification (i.e., 7~ = S), then
the initial equation even(z) V t rue ~ t rue is first simplified to t rue ~ t rue by
rewriting with the second V-rule. Hence our calculus has a finite search space. D

If the left-hand sides of the rewrite rules do not overlap, i.e., if the functions are
defined by a case distinction on one argument, then there exists a lazy narrowing
strategy (needed narrowing [1]) which is optimal w.r.t, the length of derivations.
However, unsuccessful infinite derivations can be avoided also in this case by our
lazy unification calculus with simplification if inductive consequences are added to
the set of simplification rules.

Example 6. Consider the following rewrite rules for the addition and multiplication
on natural numbers where C -- {0, s} are constructors and :D = {+, *) are defined
functions:

285

0 + y --* y (1) 0 * y -* 0 (3)
s (x) + y ---* s (x + y) (2) s (x) * y ---+ y + x , y (4)

I f we use this confluent and terminat ing set of rewrite rules for lazy narrowing (~)
as well as for normalizat ion (S) and add the inductive consequence x * 0 --+ 0 to
S, then our lazy unification calculus with simplification has a finite search space
for the equation x * y ~ s(0). This is due to the fact that the following derivation
can be terminated using the inductive consequence and the clash rule:

= �9 y ~ s (0)

x S (Xl) ,

x s (x l) ,
luc

luc
x

~ s x ~ s (x l) ,

~ F A I L

Y ~ Yl, Yl -~ Xl * Yl ..~ s(O)

y ~ y l , y l ~ O , x l * y l ~ y 2 , y2 ~ s(O)

y ~ O, yl ~ O, Xl . 0 ~ y2, y2 ~ s(O)

y ~ 0, Yl ~ 0, Xl *0 ~ 8(0), Y2 '~ 8(0)
y ~ 0, Yl .~ 0, 0 ~ s(0), Y2 "~ s(0)

(lazy narrowing, rule 4)

(lazy narrowing, rule I)

(bind variable Yl)

(bind variable Y2)
(reduce xl * O)

(clash between 0 and s)

The equation xa * 0 .~ s(0) could not be t ransformed into the equation 0 -.~ s(0)
without the inductive consequence. Consequently, an infinite derivation would oc-
cur in our basic unification calculus of Section 3.

Note that other lazy unification calculi [11, 22] or lazy narrowing calculi [23, 27]
have an infinite search space for this equation. I t is also interesting to hote that a
normalizing innermost narrowing s t rategy as in [9] has also an infinite search space
even if the same inductive consequences are available. This shows the advantage
of combining a lazy strategy with a simplification process. []

7 C o n c l u s i o n s

In this paper we have presented a calculus for unification in the presence of an
equational theory. In order to obtain a small search space, the calculus is designed
in the spirit of lazy evaluation, i.e., functions are not evaluated if their result is
not required to solve the unification problem. The most impor tan t proper ty of
our calculus is the inclusion of a deterministic simplification process. This has the
positive effect tha t our calculus is more efficient (in terms of the search space size)
than other lazy unification calculi or eager narrowing calculi (like basic narrowing,
innermost narrowing) with simplification. We think that our calculus is the basis
of efficient implementat ions of future functional logic languages.

Acknowledgemen t s . The author is grateful to Harald Ganzinger for his pointer to a
suitable termination ordering and to two anonymous referees for their helpful remarks.
The research described in this paper was supported in part by the German Ministry
for Research and Technology (BMFT) under grant ITS 9103 and by the ESPRIT Basic
Research Working Group 6028 (Construction of Computational Logics).

R e f e r e n c e s

1. s. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st
A CM Symp. on Principles of Programming Languages, pp. 268-279, Portland, 1994.

2. D. Bert and R. Echahed. Design and Implementation of a Generic, Logic and Func-
tionM Programming Language. In Proc. ESOP'86, pp. 119-132. Springer LNCS 213,
1986.

3. J. Darfington and Y. Guo. Narrowing and unification in functional programming -
an evaluation mechanism for absolute set abstraction. In Proc. of the Conference on
Rewriting Techniques and Applications, pp. 92-108. Springer LNCS 355, 1989.

286

4. N. Dershowitz. Termination of Rewriting. J~ Symbolic Computation, Vol. 3, pp.
69-116, 1987.

5. N. Dershowitz and J.-P. Jouannand. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science~ Vol. B, pp. 243-320. Elsevier, 1990.

6. N. Dershowitz, S. Mitra, and G. Sivakumar. Equation Solving in Conditional AC-
Theories. In Proc. ALP'90, pp. 283-297. Springer LNCS 463, 1990.

7. R. Echahed. Uniform Narrowing Strategies. In Proc. of the 3rd International Con-
ference on Algebraic and Logic Programming, pp. 259-275. Springer LNCS 632, 1992.

8. M.J. Fay. Firs t-Order Unification in an Equational Theory. In Proc. 4th Workshop
on Automated Deduction, pp. 161-167, Austin (Texas), 1979. Academic Press.

9. L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal
Superposition and Rewriting. In Proc. IEEE Internat. Symposium on Logic Pro-
gramming, pp. 172-184, Boston, 1985.

10. J.H. Gallier and S. Raatz. Extending SLD-Resolution to Equational Horn Clauses
Using E-Unification. Journal of Logic Programming (6), pp. 3-43, 1989.

11. J.H. Gallier and W. Snyder. Complete Sets of Transformations for General E-
Unification. Theoretical Computer Science, Vol. 67, pp. 203-260, 1989.

12. A. Geser and H. Hussmann. Experiences with the RAP system - a specification
interpreter combining term rewriting and resolution. In Proc. ESOP 86, pp. 339-
350. Springer LNCS 213, 1986.

13. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences, Vol. 42, No. 2, pp.
139-185, 1991.

14. W. Hans, R. Loogen, and S. Winkler. On the Interaction of Lazy Evaluation and
Backtracking. In Proc. PLILP'92, pp. 355-369. Springer LNCS 631, 1992.

15. M. Hanus. Compiling Logic Programs with Equality. In Proc. PLILP'90, pp. 387-
401. Springer LNCS 456, 1990.

16. M. Hanus. Improving Control of Logic Programs by Using Functional Logic Lan-
guages. In Proc. PLILP'92, pp. 1-23. Springer LNCS 631, 1992.

17. M. Hanus. Lazy Unification with Inductive Simplification. Technical Report MPI-I-
93-215, Max-Planck-Inst i tut fiir Informatik, Saarbriicken, 1993.

18. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. To appear in Journal of Logic Programming, 1994.

19. S. HSlldobler. Foundations of Equational Logic Programming. Springer LNCS 353,
1989.

20. J.-P. Jouannaud and H. Kitchner. Completion of a set of rules modulo a set of
equations. SIAM Journal on Computing, Vol. 15, No. 4, pp. 1155-1194, 1986.

21. A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM Transac-
tions on Programming Languages and Systems, Vol. 4, No. 2, pp. 258-282, 1982.

22. A. Martelli, G.F. Rossi, and C. Moiso. Lazy Unification Algorithms for Canonical
Rewrite Systems. In Hassan Ait-Kaci and Manrice Nivat, editors, Resolution o]
Equations in Algebraic Structures, Volume 2, Rewriting Techniques, chapter 8, pp.
245-274. Academic Press, New York, 1989.

23. J.J. Moreno-Navarro and M. Rodrlguez-Artalejo. Logic Programming with Func-
tions and Predicates: The Language BABEL. Journal of Logic Programming, Vol. 12,
pp. 191-223, 1992.

24. W. NutL P. R~ty, and G. Smolka. Basic Narrowing Revisited. Journal of Symbolic
Computation, Vol. 7, pp. 295-317, 1989.

25. P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs
on Theoretical Computer Science. Springer, 1988.

26. G.D. Plotkin. Building-in Equational Theories. In B. Meltzer and D. Michie, editors,
Machine Intelligence 7, pp. 73-90, 1972.

27. U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages. In
Proc. IEEE Internat. Symposium on Logic Programming, pp. 138-151, Boston, 1985.

28. P. R~ty. Improving basic narrowing techniques. In Proe. of the Conference on
Rewriting Techniques and Applications, pp. 228-241. Springer LNCS 256, 1987.

29. J.H. Siekmann. An Introduction to Unification Theory. In Formal Techniques in
Artificial Intelligence, pp. 369-425. Elsevier Science Publishers, 1990.

