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Abst rac t .  Unification in the presence of an equational theory is an im- 
portant problem in theorem-proving and in the integration of functional 
and logic programming languages. This paper presents an improvement of 
the proposed lazy unification methods by incorporating simplification into 
the unification process. Since simplification is a deterministic computation 
process, more efficient unification algorithms can be achieved. Moreover, 
simplification reduces the search space so that in some case infinite search 
spaces axe reduced to finite ones. We show soundness and completeness of 
our method for equational theories represented by ground confluent and 
terminating rewrite systems which is a reasonable class w.r.t, functional 
logic programming. 

1 I n t r o d u c t i o n  

Unification is not only an important  operation in theorem provers but  also the most 
impor tant  operation in logic programming systems. Unification in the presence of 
an equationM theory, also known as E-unification, is necessary if the computat ional  
domain in a theorem prover enjoys certain equational properties [26] or if functions 
should be integrated into a logic language [10]. Therefore the development of E- 
unification algorithms is an active research topic during recent years (see, for 
instance, [29]). 

Since E-unification is a complex problem even for simple equational axioms, 
we are interested in efficient E-unification methods in order to incorporate such 
methods into functional logic programming languages. One general method  to im- 
prove the efficiency of implementations is the use of a lazy strategy. "Lazy" means 
that  evaluations are performed only if it is necessary to compute the required so- 
lutions. In the context of unification this corresponds to the idea that  terms are 
manipulated at outermost positions. Hence lazy unification means that  equational 
axioms are applied to outermost positions of equations. For instance, consider the 
following equations for addition and multiplication on natural  numbers which are 
represented by terms of the form s( . - .  s (0)- . - ) :  

0 + y  ~ y 0 * y  ~ 0 

If we have to unify the terms 0 * (s(0) + s(z)) and 0, we could apply equational 
axioms to inner subterms starting with s(0) + s(z) (innermost or eager strategy) or 
to outermost  subterms (outermost or lazy strategy). This will lead to the following 
two derivations (the subterms manipulated in the next step are underlined): 

0 �9 (~(0) + ~(z)) ~ 0 ~ 0 �9 (~(0 + ~(z)))  ~ 0 ~ 0 �9 (~(~(z))) ~ 0 ~ 0 ~ 0 
0 �9 (~(0) + s(z))  ~ 0 ~ 0 ~ 0 

Obviously, the second lazy unification derivation should be preferred. 
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There are many proposals for such lazy unification strategies. For instanc% 
Martelli et al. [22] have proposed a lazy unification algorithm for confluent and 
terminating equational axioms. Due to the confluence requirement, equations are 
only applied in one direction. However, their method is not pure lazy since equa- 
tions are applied to inner subterms in equations of the form x ~ t where the 
variable x occurs in t. Gallier and Snyder [11] have proved the completeness of a 
lazy unification method for arbi trary equational theories where equations can be 
applied in both  directions. Narrowing is a method to compute E-unifiers in the 
presence of confluent axioms. It is a combination of the reduction principle of func- 
tional languages with syntactic unification in order to instantiate variables. Lazy 
narrowing were proposed by Reddy [27] as the operational principle of functionM 
logic languages. Recently, Antoy, Echahed and Hanus [1] have proposed a nar- 
rowing strategy for programs where the functions are defined by case distinctions 
over the data structures. This strategy reduces only needed redexes, computes no 
redundant  solutions, and is optimal w.r.t, the length of narrowing derivations. 

From a practical point of view the disadvantage of E-unification is its inher- 
ent nondeterminism. In the area of narrowing there are many proposals for the 
inclusion of a deterministic simplification process in order to reduce the nondeter- 
minism [8, 9, 19, 24, 28], but  all these proposals are based on an eager narrowing 
strategy. On the other hand, only little work has been done to improve the effi- 
ciency of outermost or lazy strategies. Echahed [7] has shown the completeness of 
any narrowing strategy with simplification under strong requirements (uniformity 
of specifications). Dershowitz et al. [6] have proposed to combine lazy unification 
with simplification and demonstrated the usefulness of inductive consequences for 
simplification. However, they have not proved completeness of their lazy unifica- 
tion calculus if all terms are simplified to their normal form after each unification 
step. In fact, their completeness proof for lazy narrowing does not hold if eager 
rewriting is included since rewriting in their sense does not reduce the complexity 
measure used in their completeness proof and may lead to infinite instead of suc- 
cessful derivations. Therefore we will formulate a calculus for lazy unification which 
includes simplification and give a rigorous completeness proof. The distinguishing 
features of our framework are: 

- We consider a ground confluent and terminating equational specification in 
�9 order to apply equations only in one direction and to ensure the existence of 

normal forms. This is reasonable if one is interested in declarative programming 
rather than theorem proving. 

- The unification calculus is lazy, i.e., functions are not evaluated if their value is 
not required to decide the unifiability of terms. Consequently, we may compute 
reducible solutions as answers according to the spirit of lazy evaluation. For 
instance, in contrast to other "lazy" unification methods we do not allow any 
evaluation of t in the equation x ~ t if x occurs only once. 

- We include a deterministic simplification process in our unification calculus. 
In order to restrict nondeterministic computations as much as possible, we 
allow to use additional inductive consequences for simplification which has 
been proved to be useful in other calculi [7, 9, 24]. 

After recalling basic notions from term rewriting, we present in Section 3 our ba- 
sic lazy unification cMculus. In Section 4 we include a deterministic simplification 
process into the lazy unification calculus. Finally, we show in Section 5 some im- 
portant  optimizations for constructor-based specifications. Due to lack of space we 
omit the details of some proofs, but the interested reader will find them in [17]. 
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2 C o m p u t i n g  i n  e q u a t i o n a l  t h e o r i e s  

In this section we recall the notations for equations and term rewriting systems 
[5] which are necessary in our context. 

Let the signature ~r be a set of function symbols 1 and X be a countably infinite 
set of variables. Then 7 - ( ~ , X )  denotes the set of terms built from ~ and X. 
Par(t) is the set of variables occurring in t. A ground term t is a term without 
variables, i.e., ~ar(t) = O. A substitution ~r is a mapping from X into T ( ~ ,  X) 
such that  its domain Vom(a) = {z E X [ a ( z )  r z )  is finite. We frequently 
identify a substitution ~ with the set {x ~-* ~(x) I z E :Dom(~)). Substitutions are 
extended to morphisms on T ( Z ,  X) by a ( f ( t l , . . .  ,t,~)) = f ( a ( t l ) , . . . ,  a(t~)) for 
every term f ( t ] , . . . ,  tn). A substitution ~ is called ground if a(x) is a ground term 
for all x E 79om(cr). The composition of two substitutions r and cr is defined by 
r o ~(z) = r  for all z e X. A unifier of two terms s and t is a substitution 

with ~(s) = a(t). A unifier ~ is called most general (mgu) if for every other 
unifier a I there is a substitution r with a t = r o a. A position p in a term t is 
represented by a sequence of natural numbers, tip denotes the subterm of t at 
position p, and t[s]p denotes the result of replacing the subterm tip by the term s 
(see [5] for details). The outermost position A is also called root position. 

Let --+ be a binary relation on a set S. Then --** denotes the transitive and 
reflexive closure of the relation --% and ~ *  denotes the transitive, reflexive and 
symmetric closure of --*. --+ is called terminating if there are no infinite chains 
el --* e~ ~ e3 ~ --.. --* is called confluent if for all e, el,e2 E S with e --** el and 
e --+* e2 there exists an element e3 E S with el --+* e3 and e2 ---~* e3. 

An equation s ~ t is a multiset containing two terms s and t. Thus equations 
to be unified are symmetric. In order to compute with equational specifications, 
we will use the specified equations only in one direction. Hence we define a rewrite 
rule l ~ r as a pair of terms l, r satisfying I ~ X and Vat(r) C ]3ar(1) where l and 
r are called left-hand side and right-hand side, respectively. A rewrite rule is cMled 
a variant of another rule if it is obtained by a unique replacement of variables by 
other variables. A term rewriting system Tt is a set of rewrite rules. In the following 
we assume a given term rewriting system T~. 

A rewrite step. is an application of a rewrite rule to a term, i.e., t --+Tz s if 
there exists a position p, a rewrite rule l --+ r and a substitution cr with tip = a(l) 
and s = t[a(r)]p. A term t is called reducible if we can apply a rewrite rule to it, 
and t is called irreducible or in normal form if there is no term s with t --+~ s. 
A term rewriting system is ground confluent if the restriction of --*n to the set of 
all ground terms is confluent. If  ~ is ground confluent and terminating, then each 
ground term t has a unique normal form which is denoted by t~n. 

We are interested in proving the validity of equations. Hence we call an equation 
s ~ t valid (w.r.t. 7~) if s ~-+~ t. By Birkhoff's Completeness Theorem, this is 
equivalent to the validity of s ,~ t in all models of 7~. In this case we Mso write 
s = n  t. If T~ is ground confluent and terminating, we can decide the validity 
of a ground equation s ~ t by computing the normal form of both sides using 
an a rb i t ra ry  sequence of rewrite steps since s ~--~ t i f f  slT~ = t~Tz. In order to 
compute solutions to a non-ground equation s ~ t, we have to find appropriate 
instantiations for the variables in s and t. This can be done by narrowing. A term 

1 In this paper we consider only single-sorted programs. The extension to many-sorted 
signatures is straightforward [25]. Since sorts are not relevant to the subject of this 
paper, we omit them for the sake of simplicity. 
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t is narrowable into a term t' if there exist a non-variable position p (i.e., tip ~ X), 
a variant 1 --+ r of a rewrite rule and a substitution cr such that  c~ is a mgu of tip 
and l and t '  = c~(t[r]p). In this case we write t - , ~  t'. 

Narrowing is able to solve equations w.r.t~ Tr by deriving both sides of an 
equation to syntactically unifiable terms. Due to the huge search space of simple 
narrowing, several authors have proposed restrictions on the admissible narrowing 
derivations (see [18] for a detailed survey). Lazy narrowing [3, 23, 27] is influ- 
enced by the idea of lazy evaluation in functional programming languages. Lazy 
narrowing steps are only applied at outermost positions with the exception that  
arguments are evaluated by narrowing to their head normal form if their values 
are required for an outermost narrowing step. Since lazy strategies are important  
in the context of non-terminating rewrite rules, these strategies have been proved 
to be complete w.r.t, domain-based interpretations of rewrite rules [13, 23]. Lazy 
unification is very similar to lazy narrowing but  manipulates sets of equations 
rather than terms. It has been proved to be complete for canonical term rewriting 
systems w.r.t, s tandard semantics [6, 22]. 

From a practical point of view the most essential improvement of simple nar- 
rowing is normalizing narrowing [8] where the term is rewritten to its normal form 
before a narrowing step is applied. This optimization is important  since it prefers 
deterministic computations: rewriting a term to normal form can be done in a 
deterministic way since every rewriting sequence gives the same result (if 7~ is 
confluent and terminating).  As shown in [9, 16], normalizing narrowing has the 
impor tant  effect that  equational logic programs are more efficiently executable 
than pure logic programs. Normalization can also be combined with other nar- 
rowing restrictions [9, 19, 28]. Because of these important  advantages, normalizing 
narrowing is the foundation of several programming languages which combines 
functional and logic programming like ALF [15], LPG [2] or SLOG [9]. However, 
normalization has not been included in lazy narrowing strategies. 2 Therefore we 
will present a lazy unification calculus which includes a normalization process 
where the term rewrite rules as well as additional inductive consequences are used 
for normalization. 

3 A c a l c u l u s  f o r  l a z y  u n i f i c a t i o n  
In the rest of this paper we assume that  Tr is a ground confluent and terminating 
term rewriting system. This section presents our basic lazy unification calculus to 
solve a system of equations. The inclusion of a normalization process will be shown 
in Section 4. The "laziness" of our calculus is in the spirit of lazy evaluation in 
functional programming languages, i.e., terms are evaluated only if their values 
are needed. 

Our lazy unification calculus manipulates sets of equations in the style of 
Martelli and Montanari [21] rather than terms as in narrowing calculi. Hence 
we define an equation system E to be a multiset of equations (in the following we 
write such sets without curly brackets if it is clear from the context). A solution 
of an equation system E is a ground substitution c~ such that  q(s) =-T~ c~(t) for 
all equations s ~ t E E. 3 An equation system E is solvable if it has at least one 
solution. A set S of substitutions is a complete set of solutions for E iff 

2 Except for [6, 7], but see the remarks in Section 1. 
3 We are interested in ground solutions since later we will include inductive consequences 

which are valid in the ground models of ~.  As pointed out in [24], this ground approach 
subsumes the conventional narrowing approaches where also non-ground solutions are 
taken into account. 
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Lazy  na r rowing  

f(tl ,  o..,t,~).~t,E ~ t l~ l l , . . . , tn . .~ ln ,  r..~t,E 

if t ~ X or t E 1;ar(f(t~,..., tn)) U l;ar(E) and f( lx, . . . ,  l , )  --* r new variant of a rule 

D e c o m p o s i t i o n  of  equa t ions  

f(ta,. . . , tn)"f(t~, tn); E ~ tl,~t~,.oo,t~tn; E 

Par t i a l  b ind ing  of  var iab les  
lu  

if x E 1 ;ar (y( t l , . . . ,  t,)) u 1;at(E) and r = {x ~ f(x~, . . . ,  x=)} (x~ new variable) 

F igure  1. The lazy unification calculus 

1. for all c~ E S, cr is a solution of E;  
2. for every solution 0 of E,  there exists some cr E S with a(z) =Tz e (z )  for all 

x E ~ar(E). 

In order to compute  solutions of an equation system, we t ransform it by the rules 
in Figure 1 until no more rules can be applied. The lazy narrowing t ransformat ion 
applies a rewrite rule to a function occurring outermost  in an equation. 4 Actually, 
this is not a narrowing step as defined in Section 2 since the argument  te rms m a y  
not be unifiable. Narrowing steps can be simulated by a sequence of t ransforma-  
tions in the lazy unification calculus but  not vice versa since our calculus also 
allows the application of rewrite rules to the arguments  of the left-hand sides. The 
decomposit ion t ransformat ion generates equations between the argument  terms of 
an equation if both  sides have the same outermost  symbol.  The part ial  binding 
of variables can be applied if the variable x occurs at different positions in the 
equation system. In this case we instantiate the variable only with the outermost  
function symbol.  A full instantiat ion by the substi tut ion r = {x ~-* f ( t l , . . . ,  tn)} 
may  increase the computat ional  work if x occurs several t imes and the evaluation 
of f ( t l , . . . , t n )  is costly. In order to avoid this problem of eager variable elim- 
inalion (see [11]), we perform only a part ial  binding which is also called "root 
imitat ion" in [11]. 

At first sight our lazy unification calculus has many  similarities with the lazy 
unification rules presented in [6, 11, 22, 25]. This is not accidental since these 
systems have inspired us. However, there are also essential differences. Since we 
are interested in reducing the computat ional  costs in the E-unification procedure, 
our rules behave "more lazily". In our rules it is allowed to evaluate a te rm only if 
its value is needed (in several positions). Otherwise, the t e rm is left unevaluated. 

Example 1. Consider the rewrite rule 0 * x --+ 0. Then the only t ransformation 
sequence of the equation 0 * t ~ 0 (where t is a costly function) is 

0 . t ~ 0  ~ 0 ~ 0 ,  t ~ z ,  0 ~ 0  ~ t ~ z ,  0 ~ 0  ~ t ~ z  
Thus the te rm t is not evaluated since its concrete value is not needed. Con- 
sequently, we may  compute solutions with reducible terms which is a desirable 
property in the presence of a lazy evaluation mechanism. [] 

4 Similarly to logic programming, we have to apply rewrite rules with fresh variables in 
order to ensure completeness. 
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~:~ r Coalesce  x~Ny, E ~ x~'~y, 

Trivial  x ~ x ,E  ~ E 

F igure  2. The variable elimination rules 

if x, y E ]2ar(E) and r -- {x ~-* y} 

The conventional t ransformat ion rules for unification w.r.t, an empty  equational 
theory [21] bind a variable x to a t e rm t only if x does not occur in t. This occur 
check must  be omit ted  in the presence of evaluable function symbols. Moreover, 
we must  also instantiate occurrences of x in the te rm t which is done in our part ial  
binding rule. The following example shows the necessity of these extensions. 

Example  2. Consider the rewrite rule f ( c (a ) )  --~ a. Then we can solve the equation 
x ,~ c ( f ( x ) )  by the following t ransformation sequence: 

lu 
x c ( ] (x ) )  x c(x l ) ,  I(C(Xl)) 

x ,~ C(Xl), C(Xl) ~ e(a), Xl ~ a 

x ,~ C(Xl), Xl ,~ a~ Xl ~ a 
lu 

~ x , ~ c ( a ) ,  x l  ~ a ,  a ~ a  
lu 

x ~ c(a), x l  ~ a 

(partial binding) 

(lazy narrowing) 

(decomposition) 

(partial binding) 

(decomposition) 

In fact, the initial equation is solvable and {x ~-+ c(a)} is a solution of this equation. 
This solution is also an obvious solution of the final equation system if we disregard 
the auxiliary variable Xl. [] 

In the rest of this section we will show soundness and completeness of our lazy 
unification calculus. Soundness s imply means tha t  each solution of the t ransformed 
equation system is also a solution of the initial equation system. Completeness is 
more difficult since we have to take into account all possible t ransformations.  
Therefore we will show that  a solvable equation system can be t ransformed into 
another  very simple equation system which has "an obvious solution". Such a final 
equation system is called in "solved form".  According to [11, 21] we call an equation 
x ~ t E E solved (in E)  if x is a variable which occurs neither in t nor anywhere 
else in E.  In this case variable x is also called solved (in E).  An equation system 
is solved or in solved f o r m  if all its equations are solved. A variable or equation is 
unsolved in E if it occurs in E but  is not solved. 

The lazy unification calculus in the present form cannot t ransform each solv- 
able equation system into a solved form since equations between variables are not 
simplified. For instance, the equation system 

x ~ f ( y ) ,  y ~ zl ,  y ~ z2, Zl ~ Z2 

is irreducible w.r.t. ~ but not in solved form since the variables y, zl ,  z2 have 
multiple occurrences. Fortunately, this is not a problem since a solution can be 
extracted by merging the variables occurring in unsolved equations. Therefore we 
call this system quasi-solved. An equation system is quasi-solved if each equation 
s ~ t is solved or has the property s, t E X. In the following we will show tha t  
a quasi-solved equation system has solutions which can be easily computed by 
applying the rules in Figure 2 to it. The separation between the lazy unification 
rules in Figure 1 and the variable elimination rules in Figure 2 has technical rea- 
sons that  will become apparent  later (e.g., applying variable elimination to the 
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equation y ~ zl may not reduce the complexity measure used in our completeness 
proofs). However, it is obvious to obtain the solutions of a quasi-solved equation 
system E.  For this purpose we transform E by the rules in Figure 2 into a solved 
equation system which has a direct solution. This is always possible because ~=~ 
is terminating, preserves solutions, and transforms each quasi-solved system into 
a solved one (see [17] for details). Moreover, the solutions of an equation system 
in solved form can be obtained as follows: 

P r o p o s i t i o n l .  Let E = (x l  ~. t l , . . . ,  xn ~ t,~} be an equation system in solved 
form. Then the substitution set 

{~/ 0 {X 1 ~ t l , . . .  , Xn ~ t n }  I 7 iS a ground s u b s t i t u t i o n }  

is a complete set of solutions for E.  

Therefore it is sufficient to transform an equation system into a quasi-solved form. 
The soundness of the lazy unification calculus is implied by the following theorem 
which can be proved by a case analysis on the applied transformation rule [17]. 

T h e o r e m 2 .  Let E and E ~ be equation systems with E ~ E q  Then each solution 
of E ~ is also a solution of E.  

For the completeness we show that  for each solution of an equation system there 
is a derivation into a quasi-solved form that  has the same solution. Note that  
the solution of the quasi-solved form cannot be identical to the required solution 
since new additional variables are generated during the derivation (by lazy nar- 
rowing and partial binding transformations). But this is not a problem since we 
are interested in solutions w.r.t, the variables of the initial equation system. 

T h e o r e m  3. Let E be a solvable equation system with solution ~. Then there exists 

a derivation E ~ * E  t with E I in quasi-solved form such that E I has a solution rr I 
with o"(x) =~ ~(x) for all x E ldar(E). 

Proof. We show the existence of a derivation from E into a quasi-solved equation 
system by the following steps: 

1. We define a reduction relation ~ on pairs of the form (c~, E)  (where E is an 
equation system and ~ is a solution of E)  with the property that  (or, E)  

(~r', E ' )  implies E ~ E '  and cr'(x) = ~(x) for all x e Yar(E) .  
2. We define a terminating ordering >- on these pairs. 
3. We show: If E has a solution a but  E is not in quasi-solved form, then there  

exists a pair (a~, S ' )  with (or, E)  ~ (a ~, E ~) and (~r, E)  >- (c~', E').  
2 and 3 implies that  each solvable equation system can be transformed into a quasi- 
solved form. By 1, the solution of this quasi-solved form is the required solution 
of the initial equation system. 

In the sequel we will show 1 and 3 in parallel. First we define the terminating 
ordering >-. For this purpose we use the strici subterm ordering ~-ssz on terms 
defined by t ~-ss~ s iff there is a position p in t with tip = s ?~ t. Since R is a termi- 
nating term rewriting system, the relation --*n on terms is also terminating. Let 
~- be the transitive closure of the relation --*TO U ~-ss~. Then ~ is also terminating 
[20].5 Now we define the following ordering on pairs (rr, E): (c~, E)  >- (~r', E ' )  iff 
{r ~r(t) [ s .~ t E E unsolved} ~'~-mul {or'(#), a ' ( t ' )  [ s' ~. t '  e E '  unsolved} (*) 

s Note that the use of the relation --*n instead of Yr- (as done in [6]) is not sufficient for 
the completeness proof since ---*n has not the subterm property [4] in general. 
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where >~-m~l is the multiset extension 6 of the ordering >>- (all sets in this definition 
are multisets). >>'-m~t is terminating (note that  all multisets considered here are 
finite) since ~- is terminating [4]. 

Now we will show that  we can apply a transformation step to a solvable but  
unsolved equation system such that  its complexity is reduced. Let E be an equation 
system not in quasi-solved form and o" be a solution of E.  Since E is not quasi- 
solved~ there must be an equation which has one of the following forms: 

1. There is an equation E = s ~ t, Eo with s , t  ~ X:  Let s = f ( s l , . . . , s n )  with 
n > 0 (the other case is symmetric).  Consider an innermost derivation of the 
normal forms of ~(s) and ~(t): 
(a) No rewrite step is performed at the root of ~(s) and ~(t): Then t has 

the form t -- f ( t l , . . . , t , )  and ~r(s)~n = cr( t ) ln  = f ( u l , . . . , u , ~ ) .  Since 
~(s) and ~(t) are not reducible at the root, ~r(si)ln = ui = ~(t l)~n for 
i -- 1 , . . . ,  n. Now we apply the decomposition transformation and obtain 
the equation system 

E I -: S l , ~ t l ,  o . . , s n ~ , t n , E o  

Obviously, c~ is a solution of E ~. Moreover, the complexity of the new 
equation system is reduced because the equation s ~ t is unsolved in E 
and each aCs~ ) and aCti ) is smaller than a(s) and a(t) ,  respectively, since 
~- contains the strict subterm ordering ~-sst. Hence (c~, E)  ~- (cr, E ' ) .  

(b) A rewrite step is performed at the root of a(s),  i.e., the innermost rewriting 
sequence o f  a(s) has the form 

* / ( s~  . s~) - ~  0(~) -~;~ ~ ( s ) ~  ~(s )  --+~ , . .  , 
! where f q l , . . - ,  ~ )  -~ ~ is a new variant of a rewrite rule, O(t~) = s~ 

and ~(si) --+~ s~ for i --- 1 , . . . ,  n. An application of the lazy narrowing 
transformation yields the equation system 

E ~ = sl ~ l x , . . . , s n ~ l n , r ~ - , t ,  Eo 

We extend tr to a new substitution c~' with c~'(z) = O(x) for all x E Z)om(O) 
(this is always possible since 0 does only work on the variables of the new 
variant of the rewrite rule), or' is a solution of E'  since 

' = 0(t~) = ~'(l~) ~ ' ( s , )  = ~(s~) - - ~  s~ 

and 
~'(~) = 0(~) - - ~  ~ ( s ) ~  ~ ~(t)  = ~'(t)  

Since the transitive closure of---*T~ is contained in ~-, ~rCsi ) ~- cr'(l~) (if 
a(s~) r a'(l~)) and c~(s) ~ o"(r). Since s ~ t is unsolved in E,  the term 
~(s) is contained in the left multiset of the ordering definition ( , ) ,  and 
it is replaced by the smaller terms c~(Sl), . . . ,  a(s ,0,  ~r'(/1),...  , a'(l,~), a ' ( r )  
(o'(s) ~- a(s~) since ~ contains the strict subterm ordering). Therefore 
the new equation system is smaller w.r.t. ~-, i.e., ( a, E)  ~ (~r', E ') .  

2. There is an equation E = x ,~ t, Eo with t = fCtl, . . . , t ,~) and z unsolved in 
E: Hence x ~ ~2ar(t) U 12ar(Eo). Again, we consider an innermost derivation 
of the normal form of a(t):  
(a) A rewrite step is performed at the root of c~(t). Then we apply a lazy 

narrowing step and proceed as in the previous case. 

The multiset ordering ~t'rnu~ is the transitive closure of the replacement of an element 
by a finite number of elements that are smaller w.r.t. >r [4]. 
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(b) No rewrite step is performed at the root of~r(t), i.e., ~r(t)$n = f ( t ' l , . . o  , t~) 
and o'(ti)~Tz = t~ for i = 1 , . . . ,  n. We apply the partial binding transfor- 
mation and obtain the equation system 

g t = x ~ f ( X l ~ o o .  , x n )  , ag 1 ~ r  z n  ~ r  r  

where r = {x ~-* f ( z l , . . . ,  x , )}  and z~ are new variables. We extend cr to 
a substitution ~' by adding the bindings c~'(zi) = t~ for i = 1 , . . . ,  n. Then 

�9 * * c r ' ( f ( x l , .  . , xn ) )  = f ( t ~ l , . . . ,  tin) -= cr(t)~Tr *-+R +-+7r 
Moreover, ~'(r = c~l(x)~n which implies cr'(s) ~ c~t(r for all 
terms s. Hence cr'(r ~-~ cr~(ti) ~ t~ = ~r'(xi). Altogether, (r' is a 
solution of E ~. 
It remains to show that  this transformation reduces the complexity of the 
equation system. Since ~'(r = ~(x)~7~, we have ~(x) --+~ ~'(r 
Hence ~r(Z0) is equal to ~r'(r (if a(x) = a '(r  or c~'(r is 
smMler w.r.t. ~- ,~l-  Therefore it remains to check that  ~r(t) is greater 
than each q ' (Xl ) , . . . ,  cr'(xn), ~1(r  c~'(r w.r.t. ~r- (note that 
the equation x ~ t is unsolved in E, but the equation x ~ f ( x l , . . . ,  xn) is 
solved in E ' ) .  First of all, a(t) ~- c~(t~) since ~ includes the strict subterm 
ordering. Moreover, a(ti) - - ~  q ' ( x i ) ,  i.e., a ' ( x i )  is equal or smaller than 
~r(ti) w.r.t. ~- for i = 1 , . . .gn .  This implies or(t) ~ a '(xi).  Similarly, 
c~'(r is equal or smaller than a( t l )  w.r.t. ~- since ~r'(r = ~r(x)~T~. 
Thus or(t) ~ a'(r Altogether, (c~, E) ~- (c~', E') .  [] 

We want to point out that  there exist also other orderings on substi tution/equation 
system pairs to prove the completeness of our calculus. However, the ordering 
chosen in the above proof is tailored to a simple proof for the completeness of lazy 
unification with simplification as we will see in the next section. 

The results of this section imply that  a complete set of solutions for a given 
equation system E can be computed by enumerating all derivations in the lazy 
unification calculus from E into a quasi-solved equation system. Due to the nonde- 
terminism in the lazy unification calculus, there are many unsuccessful and often 
infinite derivations. Therefore we will show in the next section how to reduce this 
nondeterminism by integrating a deterministic simplification process into the lazy 
unification calculus. More determinism can be achieved by dividing the set of func- 
tion symbols into constructors and defined functions. This will be the subject of 
Section 5. 

4 I n t e g r a t i n g  s i m p l i f i c a t i o n  i n t o  l a z y  u n i f i c a t i o n  

The lazy unification calculus admits a high degree of nondeterminism even if there 
is only one reasonable derivation. This is due to the fact that  functional expressions 
are processed "too lazy". 

Example  3. Consider the rewrite rules 

f ( a )  -+ c g(a)  ~ a 
d 

and the equation f ( g ( b ) )  ~ d. Then there are four different derivations in our lazy 
unification calculus, but only one derivation is successful. If we would first compute 
the normal form of f ( g ( b ) ) ,  which is d, then there is only one possible derivation: 

d .~ d ~ ~. Hence we will show that  the lazy unification calculus remains to be 
sound and complete if the (deterministic!) normalization of terms is included. [] 
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I t  is wel l -known [9, 16] t h a t  the  inc lus ion  of  induc t ive  consequences  for n o r m a l -  
i za t ion  m a y  have an essent ia l  effect on the  search space r educ t ion  in no rma l i z ing  
na r rowing  s t ra teg ies .  Therefore  we will  also al low the  use of  a d d i t i o n a l  i nduc t ive  
consequences for n o r m a l i z a t i o n .  A rewr i te  rule l --* r is cal led inductive conse- 
quence (of  TO) i f  ~r(1) =re g ( r )  for all  g r o u n d  subs t i t u t i ons  cr. For  ins tance ,  the  rule 
x + 0 ~ x is an  induc t ive  consequence of  the  t e r m  rewr i t ing  sy s t em 

0 + y  -~  y s ( x ) + y  -~  s ( x + y )  

I f  we wan t  to  solve the  equa t ion  s (x )  + 0 ~ s (x) ,  our  bas ic  l azy  uni f ica t ion  calculus  
would  e n u m e r a t e  the  so lu t ions  x ~-* O, ~ ~-* s(O), x ~-* s(s(O)) and  so on, i.e., th is  
equa t ion  has  an  inf ini te  search space.  Using  the  induc t ive  consequence x + 0 -+ x 
for n o r m a l i z a t i o n ,  the  equa t ion  s (x )  + 0 .~ s (x )  is reduced  to s (x )  ~ s (x)  and  then  
t r a n s f o r m e d  into  the  quas i -so lved  fo rm x ~ x represen t ing  the  so lu t ion  set where  
x is r ep laced  by  any  g round  t e rm.  7 

In  the  fol lowing we assume t h a t  S is a set of i nduc t ive  consequences of  T~ ( the 
set of  simplification rules) so t h a t  the  rewr i te  r e l a t ion  --+s is t e r m i n a t i n g .  We will  
use rules f rom 7"/for l azy  na r rowing  and  rules f rom S for s impl i f ica t ion .  Note  t h a t  
each rule f rom T~ is also an  induc t ive  consequence and  can be  inc luded  in 8 .  Bu t  
we do no t  requi re  t h a t  al l  rules f rom T~ m u s t  be  used for n o r m a l i z a t i o n .  Th i s  is 
r easonab le  i f  the re  are dup l i ca t i ng  rules where  one va r i ab le  of  the  l e f t -hand  side 
occurs  severa l  t imes  on the  r i g h t - h a n d  side, like f ( x )  --~ g(x,  x).  I f  we no rma l i ze  
the  equa t ion  f ( s )  ~ t wi th  this  rule,  then  the  t e r m  s is dup l i c a t e d  which m a y  
increase  the  c o m p u t a t i o n a l  costs if  the  eva lua t ion  of  s is necessary  and  costly. In  
such a case i t  would  be  b e t t e r  to use th is  rule  only  in lazy  na r rowing  steps.  

In  o rder  to inc lude  s impl i f i ca t ion  into  the  l azy  uni f ica t ion  calculus,  we define 
a r e l a t ion  ~ s  on sys tems  of  equa t ions ,  s ~ t ~ s  s I ~ t I iff s ~ and  t ~ are n o r m a l  
fo rms  of  s and  t w.r . t .  --~s, respect ively .  E ~ s  E ~ i f f E  = e l , . . . , e ~  and  E'  = 
e ~ , . . . ,  %~ where  e~ :=~s e i~ for i = 1, . .  ., n. Note  t h a t  ~ s  descr ibes  a de t e rmin i s t i c  

c o m p u t a t i o n  process .  8 E ~ E  ~ is a de r iva t ion  s tep  in the  lazy unification calculus 

with simplification if  E ~ s  E ~ E '  for some E .  
|us  

T h e  soundness  of  the  calculus  ~ can be  shown by a s imple  i nduc t i on  on 
the  c o m p u t a t i o n  s teps  us ing T h e o r e m  2 and  the  fol lowing l e m m a  which shows the 
soundness  of  one rewr i te  s tep  wi th  a s impl i f i ca t ion  rule:  

L e m m a 4 .  Let s ~ t be an equation and s ---*s # be a rewrite step. Then each 
solution of  # ..~ t is also a solution of  s ~ t. 

For the  comple teness  p r o o f  we have to show tha t  so lu t ions  are not  lost  by  the  
a p p l i c a t i o n  of  induc t ive  consequences:  

L e m m a h .  Let E be an equation sys tem and ~r be a solution o r E .  I r E  ~ s  E ~, 
then o" is a solution o r E  I. 

In larger single-sorted term rewriting systems it would be difficult to find inductive 
consequences. E.g., x + 0 -+ x is not an inductive consequence if there is & constant a 
since a 4- 0 = n  a is not valid. However, in practice specifications are many-sorted and 
then inductive consequences muse be valid only for all well-sorted ground substitutions. 
Therefore we want to point out that  all results in this paper can also be extended to 
many-sorted term rewriting systems in a straightforward way. 

8 If there exist more than one normal form w.r.t. ---*s, it  is sufficient to select don't care 
one of these normal forms. 
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This lemma would imply the completeness of the calculus ~ if a derivation 
step with ~ s  does not increase the ordering used in the proof of Theorem 3. 
Unfortunately, this is not the case in general since the termination of --+7r and --+s 
may be based on different orderings (e.g., 7r = {a --+ b} and 8 = {b --+ a)) .  In 
order to avoid such problems, we require that  the relation "--~TCuS is terminating 
which is not a real restriction in practice. 

T h e o r e m  6. Let S be a set of inductive consequences of the ground confluent and 
terminating term rewriting system Tt such that ---+Tzus is terminating. Let E be a 

solvable equation system with solution or. Then there exists a derivation E ~ *  E I 
such that E'  is in quasi-solved form and has a solution cd with ~ ' (z)  =7z ~r(z) for 
all x E ];ar(E). 

Proof. In the proof of Theorem 3 we have shown how to apply a transformation 
step to an equation system not in quasi-solved form such that  the solution is 

lus  
preserved. We can use the same proof for the transformation ~ since Lemma 5 
shows that  normalization steps preserve solutions. The only difference concerns 
the ordering where we use "--~TCuS instead of --~r i.e., ~- is now defined to be 
the transitive closure of the relation --+Teus U >-ss,. Clearly, this does not change 
anything in the proof of Theorem 3. Moreover, the relation ~ s  does not increase 
the complexity w.r.t, this ordering but  reduces it if inductive consequences are 
applied since ---~s is contained in ~-. [3 

These results show that  we can integrate the deterministic simplification process 
into the lazy unification calculus without loosing soundness and completeness. 
Note that  the rules from S can only be applied if their left-hand sides can be 
matched with a subterm of the current equation system. If these subterms are not 
sufficiently instantiated, the rewrite rules are not applicable and hence we loose 
potential  determinism in the unification process. 

Example 4. Consider the rules 

zero(s(x))  -+ zero(x)  zero(0) -~ 0 

(assume that  these rules are contained in Tr as well as in S) and the equation 
system zero(x) ~ 0, x ,~ 0. Then there exists the following derivation in our 
calculus (this derivation is also possible in the unification calculi in [11, 22]): 

z e r o ( z )  ~ O, z ~ 0 

z ~ s (x l ) ,  ~ r o ( z l )  ~ O, ~ ~ 0 (lazy narrowing) 

z ~ s ( z O ,  z l  ~ s(x~), z~ro(z~) ~ O, ~ ~ 0 (lazy narrowing) 

This infinite derivation could be avoided if we apply the partial binding rule in the 
first step: 

zero(x) ~ O, x ~ 0 ~ zero(O) ~ O, x ~ 0 (partial binding) 
~ s  0 ,~ O, x ~ 0 (rewriting with second rule) 

x ~ 0 (decomposition) 

In the next section we will present an optimization which prefers the latter deriva- 
tion and avoids the first infinite derivation. [:3 
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Decompos i t ion  of  cons t ruc to r  equations 
C(tl, . . . , t ,~)~c(t~ . . . .  , t~),E ~ t l . . ~ t ~ , . . . , t , ~ t ~ , E  i f c � 9  

Full b inding  of  variables to g round  cons t ruc to r  t e rms  
l uc  

x ~ t , E  ==~ x ~ t , r  i f x � 9 1 4 9  0) and r  

Par t ia l  b ind ing  of  variables to cons t ruc to r  t e rms  
x ~ c(tl, ,t,~),E z~r . . .  �9 r  r 

ifx �9 ~;ar(c(t~,... ,t,~))Ul)ar(E), x r cvar(c(t~,... ,t,~)) and r = {x ~ c (x l , . . . ,  x,~)) 
(xi new variable) 

F igure  3. Deterministic transformations for constructor-based rewrite systems 

5 C o n s t r u c t o r - b a s e d  s y s t e m s  

In practical applications of equational logic programming a distinction is made 
between operation symbols to construct data terms, called constructors, and oper- 
ation symbols to operate on data terms, called defined functions (see, for instance, 
the functional logic languages ALF [15], BABEL [23], K-LEAF [13], SLOG [9], 
or the RAP system [12]). Such a distinction allows to optimize our unification 
calculus. Therefore we assume in this section that  the signature ~" is divided into 
two sets ~" -- C t2 7), called constructors and defined functions, with C A 7) = 0. A 
constructor term t is built from constructors and variables, i.e., t E 5r(C, X). The 
distinction between constructors and defined functions comes with the restriction 
that  for all rewrite rules l --* r the outermost symbol of l is always a defined 
function. 

The important  property of such constructor-based term rewriting systems is 
the irreducibility of constructor terms. Due to this fact we can specialize the rules 
of our basic lazy unification calculus. Therefore we define the deterministic trans- 
formations in Figure 3. Deterministic transformations are intended to be applied 

as long as possible before any transformation ~ is used. Hence they can be in- 
tegrated into the deterministic normalization process ~ s .  It is obvious that  this 
modification preserves soundness and completeness. The decomposition transfor- 
mation for constructor equations must be applied in any case in order to obtain a 
quasi-solved equation system since a lazy narrowing step 7~ cannot be applied to 
constructor equations. The full binding of variables to ground constructor terms is 
an optimization which combines subsequent applications of partial binding trans- 
formations. This transformation decreases the complexity used in the proof of 
Theorem 6 since a constructor term is always in normal form. The partial bind- 
ing transformation for constructor terms performs an eager (partial) binding of 
variables to constructor terms since a lazy narrowing step cannot be applied to 
the constructor term. Moreover, this binding transformation is combined with an 
occur check since it cannot be applied if x E cvar(c( t l , . . . ,  t,~)) where cvar denotes 
the set of all variables occurring outside terms headed by defined function symbols. 
This restriction avoids infinite derivations of the following kind: 

x ..~ c(xl), Xl ~ c(xl) (partial binding) 

x ~ C(Zl), Xl ~ c(z2), z2 ~ c(x2) (partial binding) 

A further optimization can be added if all functions are reducible on ground 
constructor terms, i.e., for all f E 7) and t l , . . . ,  tn E T(C, O) there exists a term t 
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Clash c(tl, .  ,t,~) ~ d(t~, ' t,~ . . . . .  , t m ) , E  ~ FAIL i fc ,  d E f a n d c # d  

Occur  check x .~ c ( t l , . . . , t ~ ) , E  ~=c ==~ FAIL if x e cvar (e (Q, . . . , t n ) )  

Figure  4. Failure rules for constructor-based rewrite systems 

with f ( t l , . . . ,  t=) --*n t. In this case all ground terms have a ground constructor 

normal form and therefore the partial binding transformation of ~ can be com- 
pletely omit ted which increases the determinism in the lazy unification calculus. 

If we invert the deterministic transformation rules, we obtain a set of failure 
rules shown in Figure 4. Failure rules are intended to be tried during the deter- 
ministic transformations. If a failure rule is applicable, the derivation can be safely 
terminated since the equation system cannot be transformed into a quasi-solved 
system. 

6 E x a m p l e s  

In this section we demonstrate the improved computational  power of our lazy uni- 
fication calculus with simplification by means of two examples. The first example 
shows that  simplification reduces the search space in the presence of rewrite rules 
with overlapping left-hand sides. 

Example  5. Consider the following ground confluent and terminating rewrite sys- 
tem defining the Boolean operator V and the predicate even on natural  numbers: 

t rue  V b --* t rue  even(O) --* t rue  
b v true true even(s(0)) fa lse  

f a l s e  V f a l s e  --* f a l s e  e v e n ( s ( s ( x ) ) )  --+ even (x )  

If we want to solve the equation e v e n ( z ) V t r u e  ~ true,  the lazy unification calculus 
without simplification could apply a lazy narrowing step with the first V-rule. This 
yields the equation system 

even ( z )  ~ true,  t rue  ~ b, t rue  ~ t rue  
Now there are infinitely many solutions to the new equation even(z )  ~ t rue  by 
instantiating the variable z with the values s2*i(0), i > 0, i.e., the lazy unification 
calculus without simplification (cf. Section 3) has an infinite search space. The 
same is true for other lazy unification calculi [11, 22] or lazy narrowing calculi 
[23, 27]. Moreover, in a sequential implementation of lazy narrowing by backtrack- 
ing [14] only an infinite set of specialized solutions would be computed without 
ever trying the second V-rule. But if we use our lazy unification calculus with 
simplification where all rewrite rules are used for simplification (i.e., 7~ = S), then 
the initial equation even(z )  V t rue  ~ t rue  is first simplified to t rue  ~ t rue  by 
rewriting with the second V-rule. Hence our calculus has a finite search space. D 

If the left-hand sides of the rewrite rules do not overlap, i.e., if the functions are 
defined by a case distinction on one argument, then there exists a lazy narrowing 
strategy (needed narrowing [1]) which is optimal w.r.t, the length of derivations. 
However, unsuccessful infinite derivations can be avoided also in this case by our 
lazy unification calculus with simplification if inductive consequences are added to 
the set of simplification rules. 

Example  6. Consider the following rewrite rules for the addition and multiplication 
on natural  numbers where C -- {0, s} are constructors and :D = {+, *) are defined 
functions: 
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0 + y  --* y (1) 0 * y  -* 0 (3) 
s ( x ) + y  ---* s ( x + y )  (2) s ( x ) * y  ---+ y + x , y  (4) 

I f  we use this confluent and terminat ing set of rewrite rules for lazy narrowing ( ~ )  
as well as for normalizat ion (S) and add the inductive consequence x * 0 --+ 0 to 
S, then our lazy unification calculus with simplification has a finite search space 
for the equation x * y ~ s(0). This is due to the fact that  the following derivation 
can be terminated using the inductive consequence and the clash rule: 

= �9 y ~ s (0 )  

x S (Xl ) ,  

x s ( x l ) ,  
luc 

luc 
x 

~ s  x ~ s ( x l ) ,  

~ F A I L  

Y ~ Yl, Yl -~ Xl * Yl ..~ s(O) 

y ~ y l ,  y l ~ O ,  x l * y l ~ y 2 ,  y2 ~ s(O) 

y ~  O, yl ~ O, Xl . 0  ~ y2, y2 ~ s(O) 

y ~  0, Yl ~ 0, Xl *0  ~ 8(0), Y2 '~ 8(0) 
y ~ 0, Yl .~ 0, 0 ~ s(0), Y2 "~ s(0) 

(lazy narrowing, rule 4) 

(lazy narrowing, rule I) 

(bind variable Yl ) 

(bind variable Y2) 
(reduce xl  * O) 

(clash between 0 and s) 

The equation xa * 0 .~ s(0) could not be t ransformed into the equation 0 -.~ s(0) 
without  the inductive consequence. Consequently, an infinite derivation would oc- 
cur in our basic unification calculus of Section 3. 

Note that  other lazy unification calculi [11, 22] or lazy narrowing calculi [23, 27] 
have an infinite search space for this equation. I t  is also interesting to hote that  a 
normalizing innermost  narrowing s t rategy as in [9] has also an infinite search space 
even if the same inductive consequences are available. This shows the advantage 
of combining a lazy strategy with a simplification process. [] 

7 C o n c l u s i o n s  

In this paper  we have presented a calculus for unification in the presence of an 
equational theory. In order to obtain a small search space, the calculus is designed 
in the spirit of lazy evaluation, i.e., functions are not evaluated if their result is 
not required to solve the unification problem. The most  impor tan t  proper ty  of 
our calculus is the inclusion of a deterministic simplification process. This has the 
positive effect tha t  our calculus is more efficient (in terms of the search space size) 
than other lazy unification calculi or eager narrowing calculi (like basic narrowing, 
innermost  narrowing) with simplification. We think that  our calculus is the basis 
of efficient implementat ions  of future functional logic languages. 
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