
Symbolic Model Checking and
Constraint Logic Programming:

a Cross-Fertilization

M.-M. Corsini, A. Rauzy

LaBRI, URA CNRS 1304 - Universit@ Bordeaux I
351, cours de la Lib@ration,

33405 Talence Cedex FRANCE
e-malh {corsini, ranzy}@labri.u-bordeanx.fr

A b s t r a c t . In this paper, we present the constraint language Toupie
which is a finite domain /z-calculus interpreter that uses extended deci-
sion diagrams to represent relations and formulae. "Classical" constraint
logic programming languages over finite domains (CLP(~':D)) are de-
signed to find one solution to a constraint problem, eventually the best
one according to a given criterion. In Toupie, constraints are used to
characterize existing relationships between variables. We advocate the
use of this paradigm to model and solve efficiently difficult constraint
problems that are not tractable with CLP(~':D) languages.
Keywords : Symbol ic Mode l Checking, Cons t ra in t Languages

1 Introduct ion

Constraint Logic Programming (CLP) has shown to be a very at tractive field of
research over recent years, and languages such as C L P (n) [JL87], CHIP [tten90]
and PrologIII [Col90] have proved that this approach opens Logic Programming
to a wide range of real life problems.

Languages of the family CLP(•:D), with constraints over finite domains,
are based on the parad igm enumerat ion/propagat ion. They are mainly designed
to find one solution to a given problem, eventually the best one according to
some criterion (objective function). They use widely algebraic properties of the
underlying domain, i.e. the set of relative numbers.

In this paper, we present the constraint language Toupie which is based on
a different paradigm: constraints are mainly symbolic and are used to charac-
terize relationships existing between variables. Namely, Toupie implements an
extention of the proposit ional #-calculus to finite domains. The propositional/z-
calculus is a language designed to model the behavior of systems of concurrent
processes, where # denotes a least fixpoint operator used to describe properties
of finite s tate machines.

In addition to the classical functionalities of symbolic finite domain constraint
languages, a full universal quantification is available in Toupie and one can define
relations (predicates) as fixpoints of equations.

181

This gain in expressiveness is coupled with a practical efficiency that comes
from the management of the relations via decision diagrams:
- Decision diagrams encode relations in a very compact manner (thanks to the
sharing of the subtrees).
- The algorithm that computes logical operations between two decision diagrams
uses a learning mechanism: the more computations it has performed, the more
it is efficient.

The idea of using Boolean functions encoded by means of binary decision
diagrams (BDDs for short [Bry92]) to manipalute relations is due to Mac Millan
& al (see for instance [BMDH90]). Since this pioneering paper, many works have
been done on symbolic model checking, where transition systems are encoded
by means of BDDs. Very impressive examples have been shown, demonstrating
how powerful this approach is. BDDs have been used also to implement Boolean
solvers of CLP languages [BS87].

With Toupie, we extend these ideas to obtain a full constraint language and
thus we open the tt-calculus to a large spectrum of applications. Of course, prob-
lems that can be handled in this paradigm are of a different nature than those
handled in CLP(Yr/)) (that come mainly from Operation Research). For instance,
ToupYe has been used to perform very efficient abstract interpretation of Prolog
programs [CCMR93] and to verify mutual exclusion algorithms [CGR93].

In this paper, we show that Toupie is actually an efficient model-checker, or
more precisely that the use of (extended) decision diagrams instead of binary
ones (as done, for instance in [BMDtt90, Bou93, EFT93]) improve the efficiency
of symbolic model checking. We demonstrate "en passant" that the iterative
squaring technique [Bry92], that seems a so pretty idea, is very doubtful in prac-
tice. We also show some funny issues in the computation of winning strategies
in mathematical games.

It must be clear that these problems cannot be handled directly with the
implemented solvers of CLP(JC/)), due to the need of universal quantification
and fixpoints.

The remaining of the paper is organized as follows: Section 2 is devoted to a
presentation of the Toupie language. Sections 3 and 4 are devoted to applica-
tions. Finally, we examine the relation with other works in section 5.

2 T h e C o n s t r a i n t L a n g u a g e T o u p i e

2.1 Syn tax and Semant ics of Toupie P rograms

A number of different versions of the propositional g-calculus have been proposed
in the literature. Hereafter, we summarize the syntax of Toupie programs, which
departs, for many (technical) reasons, from the usual approaches.

There are two syntactic categories in Toupie: formulae and predicate defini-
tions. A Toupie program is a set of predicate definitions, having different head
predicate symbols. A Toupie query is a formula. Formulae have the following
form:

182

- The two Boolean constants 0 and 1.
- (Xl=X2) or (Xl=k) or (Xl#X2) or (Xl#k) where Xl and X2 are variables and

k is a constant symbol (# stands for disequality).
- p (Xl Xn) where p is an n-ary predicate variable and Xl ,Xn are

individual variables.
- " f , f �9 g , f] g, f <=> g w h e r e f and g are formulae and " , ~,

I , <=> denote the logical connectives -~, A, V, r
- f o r a l l X l , . . . , Xn f or e x i s t X l , . . . , Xn f where X l , . . . ,Xn are vari-

ables and f is a formula.

Predicate definitions are as follows:
p (Xl Xn) += f or p(Xl Xn) -= f where p is an n-ary predicate

variable, Xl ,Xn are individual variables, and f is a formula. The tokens +=
and -= denote respectively least and greatest fixpoint definition of the equation
P (X l , . . . , X n) = f .

Each variable occurring in a fixpoint definition or request must have an in-
terpretat ion domain. This domain must be declared with the first occurrence
of the variable. A domain declaration is in the form: X : { k l kn} or
X : i . . j where X is a variable the k i are constant symbols and i and j are
integers (and thus i . . j denotes the corresponding range). It is possible to de-
clare a default interpretat ion domain, and to name domains. In the following we
denote by d o m (X) the interpretation domain of a variable X.

The semantics of Toupie programs is the attended one. Tha t is that the
fixpoint of an equation p(Xl Xn) = f is computed for the inclusion order
in the powerset of dom(Xl) • . . . • dom(Xn). The interested reader could refer
to the appendix A for a precise denotational semantics. Note that the fixpoint
definitions must be monotonic in order to ensure the existency of fixpoints and
tha t this condition could be easily checked syntactically.

2 . 2 D e c i s i o n D i a g r a m s

Decision diagrams used in Toupie to encode relations, are an extension for sym-
bolic finite domains of the binary decision diagrams [Bry92].

S h a n n o n D e c o m p o s i t i o n o f R e l a t i o n s

D e f i n i t i o n 1. case connective
Let X be a variable, dora(X) : { k l , . . . , kr} be its interpretation domain, and
f l , . - - , f r be formulae. Then:

case(X, f l , . . . , f r) -- ((X -- kl) A f l) V . . . V ((X = kr) A f r)

D e f i n i t i o n 2. Shannon Normal Form
A formula f is in Shannon normal form (SNF for short) if one of the following
points holds:
- f = 0 o r f = l ,
- f -- case(X, f 1 , . . . , f r), where X is a variable and f l . . - f r are formulae in
SNF wherein X does not occur.

183

P r o p e r t y 3. Shannon Decomposition
Let V = { X 1 , . . . X n } be a set of variables, and Coast be a set of constants.
Then, for any n-ary relation R : (V --* Coast) --+ B there exists a formula in

SNF encoding R.

R e d u c e d O r d e r e d D e c i s i o n D i a g r a m s We first define decision diagrams:

D e f i n i t i o n 4 . Decision Diagrams
Let V = { X 1 , . . . , Xn} be a set of variables. A Decision Diagrams F is a directed
acyclic graph such that:

- F has two leaves 0 and 1.
- Each internal node of F is labelled with a variable X belonging to V and if

dom(X) = {kl, �9 �9 kr} then the node has r outedges labelled with k l , . . . , kr.
- If a node labelled with the variable X is reachable from a node labelled with

the variable Y then X ~ Y.

Now, it is clear that a decision diagram encodes a formula in SNF: the leaves
encode the corresponding Boolean constants and each internal node encodes a
case connective.

Now, we define a specific class of decision diagrams: reduced ordered decision
diagrams.

D e f i n i t i o n 5. Reduced Ordered Decision Diagrams
Let < be a total order over the variables X1, . . . , Xn. A Reduced Ordered Decision
Diagram F is a decision diagram such that:

- I f a node labelled with the variable X is reachable from a node labelled with
the variable Y then X > Y.

- Any node has at least two distinct sons (case(X, f , . . . , f) - f) .
- Two distinct nodes F and G are syntactically distinct, i.e. either they are

labelled with different variables or there exists an index i such that the i-nth
son of F is distinct of the i-nth son of G (reduction by means of m a x i m u m
sharing of the sub-graphs)

In the remaining, we will consider only Reduced Ordered Decision Diagrams
and call them Decision Diagrams (or DD for short).

Example 1. Let X, Y, Z be variables and dom(X) = . ~ L
Horn(Y) = {a, b} and dora(Z) = {c, d}. Let p(X, Y, Z) =
{(a, a, c), (a, a, d), (a, b, c), (b, a, c), (b, b, c)}; then the Y (, ~ .~ .
DD associated with p for the order X < Y < Z
is pictured beside. I t encodes the formula: case(X,
case(Y, 1, case(Z, 1, 0)) , case(Z, 1, 0)) which is equiva-
lent to p.

P r o p e r t y 6. Canonicity
Let R be a n-ary relation on the variables X1, �9 �9 Xn and let < be a total order
over these variables. Then, there exists one and only one DD encoding R.

184

It follows that the test of equality between two relations encoded by means
of two DDs is reduced to a test between the addresses of the DDs.

Log ica l O p e r a t i o n s on D D s Decision Diagrams are also very efficient for
performing logical operations on relations. The following property holds:

P r o p e r t y 7. Induction Principle
Let | be any binary logical operation and let p = c a s e (X , p l , . . . , p ~) and q =
c a s e (X , q l , . . . , qr) be two formulae in SNF. Then, the following equality holds:

c a s e (X , p l , . . . , pr) | c a s e (X , q l , . . . , qr) = c a s e (X , p l | q l , . . . , Pr Q qr)

It is easy to induce an effective procedure from this principle.

M e m o r y M a n a g e m e n t fo r D D s Decision Diagrams encode relations over fi-
nite domains in a very compact way by means of the sharing of the subtrees.
This sharing is automatically performed by storing the nodes in an hashtable:
each time a node c a s e (X , P l , . . . , Pr) is required, one first looks up the table and
the node is created only if the node does not belong to it.

Another very important point that makes DDs efficient in practice is that
the computat ion procedure uses a learning mechanism: each time a computation
p | q is performed, the result is memorized in an hashtable. Thus, this com-
putat ion is never performed twice. Since the time required to an access in the
hashtable is quasi-linear, the overhead due to this memorization is negligible.
Moreover, the improvement obtained is often very big in practice, and becomes
more and more important as the size of the problem grows up.

V a r i a b l e O r d e r i n g Since the original paper by R. Bryant, it is well known
that the size of a decision diagram (binary or not) crucially relies on the indices
chosen for the variables. In his paper, R. Bryant gives an example where the
BDD can be either linear or exponential w.r.t, the number of variables following
the variable indexing.

By default, in Tonp• the variables are indexed with a very simple heuristic,
known for its rather good accuracy. It consists in traversing the formula consid-
ered as a syntactic tree with a depth-first left-most procedure and to number
variables in the induced order.

Nevertheless, this heuristic can produce very poor performances due to the
projection operation. This operation is used each time a predicate p (Xl Xn)
is called since the result of the computation of the corresponding fixpoint must
be projected on the arguments of the call, here Xl Xn. Projection can be
dramatically unefficient if arguments are not ordered as the formal parameters.

This is the reason why, the user is allowed to define its own indices by X�9177
where X is the first occurrence of a variable and • is any integer.

185

Advanced Features The effective implementation of fixpoint computations
uses some tricky algorithms (projection by renaming and tabulation, dependency
graphs) that avoid useless works and increase dramatically the performances.
The interested reader could see [CR93] for a detailed presentation.

3 Symbolic Model Checking within Toupie

3.1 The Arnold-Nivat Model of Concur rency

The notion of transition system plays an important role for describing processes
and systems of communicating processes. A simple way to represent processes
widely used in many works on semantics and verification (model checking), is to
consider that a process is a set of states and that an action or an event changes
the current state of the process and can thus be represented as a transition
between the two states. Transition systems are also used to describe systems
of communicating processes: the states of the system are tuples of states of its
components and the transitions are tuples of allowed transitions. The resulting
automaton is called by Arnold and Nivat the synchronized product. This model
of concurrency is the one used, for instance, in the model checker MEC [Arn89].
It is basically synchronous, even if it allows the description of non-synchronous
phenomena.

The idea we use, first proposed by Mac Millan & al [BMDH90], is to encode
transition systems in a symbolic way.

Ind iv idua l Processes In order to illustrate this section, we model in Toupie
the well-known Milner's scheduler [Mi189], a standard benchmark for process
algebra tools [Bou93, EFT93]. The methodology remains the same for other
problems such as the verification of mutual exclusion algorithms (see [CGR93]).

The scheduler consists of one starter process and N processes which are
scheduled. The communication is organized in a ring. The transition system
describing each cycler is depicted figure 1.

t a u

1 \3 l sc I 1 sc

4 ~ tau 2

Fig. 1. The transition system encoding a cycler

Each cycler process Ci awaits the permit (rc) to start, performs the action
a, and passes the turn (sc) to the next cycler either before or after some internal

1 8 6

computat ion (tau) . The starter just initializes the process. A cycler is modeled
in Toupie as follows:

let cycler_state 0..4 ~ definition o f the domain "cycler_state"
let cycler_label {e,tau,a,sc,rc}

cyc le r (S : cyc le r_s ta te , L : cycler_label ,T : cycler_sta te) += (
((L=e) ~- (S=T))

I ((s=0) a (r.--rc) & (T=I)) I ((s= l) & (L=a) & (T=2))
I ((S=2) ~ (L=sc) & (T=3)) I ((S=2) & (L=tau) ~ (T=4))
I ((S=3) ~ (L=tau) & (T=0)) I ((8=4) ~ (L=sc) ~ (T=0))
)

The variables S and T stand for the sources and the targets of the transitions,
the variable L stands for the labels of the transitions. Note that a transition
labelled with e has been added. In the Arnold-Nivat Model, one considers that
some action in some process can be executed only simultaneoulsy with some
other action in the other processes. In order to represent asynchronous actions,
one adds transitions of the form s ~ ~ s, where s is a state and e is the label of
the empty transition.

S y n c h r o n i z a t i o n V e c t o r Now, one must synchronize the different processes,
that is to constrain, for instance, the cycler i to emit a message (transition sc)

when the cycler i + 1 receives the message (transition re) and the other processes
remain idle (transition e). The synchronization vector written as a Toupie rule
is as follows:

synchronizat ion_veer or (
SL : s t a r t e r _ l a b e l , C1L : cycler_label , CnL : cycler_label) += (

((SL=sc) ~ (elL=re) & (C2L=e) ~ . . . & (CnL=e))
I ((SL=e) ~ (C1L=a) ~ (C2L=e) & . . . & (CnL=e))
I ((SL=e) ~ (C1L=tau) ~ (C2L=e) & . . . & (CnL=e))
I ((SL=e) & (C1L=sc) k (C2L--rc) k . . . ~ (Cni=e))
. . .

)

S y n c h r o n i z e d P r o d u c t The computation of the synchronized product, that
is the automaton modeling the behavior of the system of processes, can be now
performed. The set of the reachable states of this product is computed as shown
figure 2. It requires a fixpoint computation since the reachable states are found in
a breadth-first way. The variable indices are not given in the figure. As remarked
for instance in [EFT93] (for the Boolean case), the best order is the interleaved
one, that is: S S < L S < T S < C 1 S < C 1 L < C 1 T < . . . < C n S < C n L <

C n T . In the remaining we assume such an order.

3.2 C o m p u t i n g P r o p e r t i e s

The predicates r e a c h a b l e and edge allow the verification of properties of the
system:

187

edge(~, allowed edges in the synchronized product

SS:starter_state, ST:starter_state, Y, source and target in the starter

ClS:cycler_state, CiT:cycler_state, 7, source and target in the cycler I

o.,

CnS:cycler_state, CnT:cycler_state) 7, source and target in the cycler n
+=

exist SL:starter_label, CIL:cycler_label , C2L:cycler_label
(

s t a r t e r (SS, SL, ST)
& cycler(C1S,C1L,C1T) ~t . . . & cycler(CnS,CnL,CnT)

synchronizat ion_vector (SL, C 1L C2L)
)

reachable(ST:stater_state,ClT:cycler_state , CnT:cycler_state) += (
initial_state(ST,afT, CnT)

[exist SS:starter_state, CIS:cycler_state C2S:cycler_state
(reachable(SS,CIS CnS) & edge(SS,ST,CIS,CIT CnS,CnT))

)

Fig. 2. Reachable states in the synchronized product

Dead-Locks Let us recall that a dead-lock is a state wherein no transition is
possible or only transitions leading to a deadlock state. The Toupie program to
detect dead-locks is as follows:

deadlock(S) += (reachable(S) A VT (reachable(S) A edge(S, T) => deadlock(T))

where S and T represent the variables ordered as previously.

Live-Locks The detection of live-locks is also a very important feature of a model
checker. The problem arises when the modeled processes must share a critical
ressource (a printer for instance). In this case, there is a live-lock in the system
of processes if there is an infinite execution where:
- two processes a t t empt to access to their critical section, and never succeed
- none of the processes remains idle for ever.

The methodology consists in recomputing the set of reachable states by for-
bidding the states in which one process is in its critical section. There is no
live-lock if and only if all the states of the obtained synchronized product are
dead-locks.

Bisimulalion A bisimulation is an equivalence relation between transition sys-
tems or different states of the same transition system (see the li terature for a
formal definition). The bisimulation generally considered on the Milner's sched-
uler is the observational equivalence that is to say that two states are equivalent

188

if and only if there is a path labeled with r-transition joining them. This bisim-
ulation is computed in Toupie in two steps: First, compute the r-closure of the
synchronized product, that is the paths of the form r*tr*, where t is any tran-
sition (predicate tau_path). Second, compute the equivalence relation between
states using the extended edges above.

The second step is performed with a greatest fixpoint predicate:

equivalent(X, Y) -= (
reachable(X) A reachable(Y)

AVL 7. L is a vector of labels, U and V are vectors of states
VU tau_path(X, L, U) ~ 3V (tau_path(Y, L, V) A equivalent(U, V))

A VV tau_path(Y, L, V) ~ 3U (tau_path(X, L, U) A equivalent(U, V)))

The point is that the predicate equiva len t mimics exactly the formal def-
inition of the observational equivalence. Note also that if one wants to com-
pute another bisimulation, it suffices to change the definition of the predicate
tau_path.

Other Properties In [CGR93], we show also how the fairness and the safety of
a mutual exclusion algorithm can be studied in Toupie. In mutual exclusion
algorithm the fairness is achieved whenever the following fact holds:
- If a process Pi wants to access to its critical section, it succeeds in finite time.
The safety is achieved if :
- Whenever a process Pi still remains in its non critical section (it does not
attempt to reach critical section), then the mutual exclusion algorithm works.

All of these properties are expressed in Toupie in a very natural and declar-
ative way.

Performances The table below indicates the running times for Toupie as well
as those obtained by Bouali in the one hand [Bou93] and Enders & al in the
other hand lEFT93] (the two last have been obtained on a SPARC 2 work-
station, which is slightly faster than our own). These authors use BDDs based
algorithms. The significant difference of performances in favour of Toupie comes,
in our opinion, from the use of extended decision diagrams instead of binary on6s.
The interesting point is that very good performances can be obtained by using
a general purpose constraint language instead of a specialized model checker.

processes 6] 8 I 10 I 12 I 14 I 16 I 18 I 20 I
states 577 3073 15361 73729 [3 10 ~ 1.2 107 4.8 107 1.8 l0 s

transitions 2017 13825184481 479233]2 107 8 107 3.2 l0 s 1.28 109

reachable 0sT0]ls3012s03] 3?6 14s411 5s76 I 7s36] 9s36 [
Bouali ls28 2s97 ? . ? 23s42 39s37 53s51

deadlock I OslOlOs1310s18 1 0 s 2 1 I0s261 os30 I 0s38 I os3s I
bisimulation 4s08 6s70 9s95 14s23 18s01 23s20 28s40 34s76

Bouali 19s43 39s07 v v ~ 197s80 255s62 332s54
Enders & al 2Is 40s 87s 145s 233s 348s 569s 850s

189

3.3 Iterative Squaring

A number of properties require to compute the transitive closure of the synchro-
nized product, i.e. the pairs of global states (S, T) such that there exist a path
from S to T

The transitive closure can be computed in two ways. First as follows:

path(S,T) + = edge(S,T) V 3 U (edge(S,U) A path(U,T))

Second, by means of the iterative squaring technique mentioned as a very
powerful method by several authors:

path(S, T) + = edge(S,T) v 3 U (p a t h (S , U) A path(U, T))

This technique is widely used, for instance for computing powers. Let/C be
any ring and X E /C and n E IN, then X 2'~ = X • X 2~-1 = X n x X n. The
second equality induces an iterative squaring method to compute a power.

Unfortunately, this pretty idea does not work for our purpose.
A critical example is the following: one considers N two states processes. At

each step, one and only one of them changes of state. There is a single initial
state. This example seems particularly in favour of the iterative squaring because:

- All the 2 N states of the free product are reachable.
- The number of iterations necessary to reach all the states is N while the

number of squaring is log2(N).

Surprisingly, it is not the case, as shown in the following table.

[processes 1 4 I S 1 1 6 1 3 2 I 64 1128

path (iter.) 0s05 0s16 0s7613s16 14s23}6Ss96
path (squr.) 0s05 0s20 0s98 6s15 84s40 ?

This phenomenon appears on almost all examples we have tried. A possible
explanation could be that iterative squaring is efficient when the product of two
objects has the same size than the objects themselves. Of course, it is not the
case with DDs.

4 W i n n i n g W a y s

4.1 Ar t i f ic ia l In t e l l i gence Classics

Toupie can be used to solve classical AI puzzles like N-Queens or Pigeon-Holes
problems. Indeed, these problems do not require the expressiveness power of
the language. Nevertheless, it is interesting to note that the performances are
comparable with those obtained with CLP(~':D) languages based on the enumer-
ation/propagation paradigm. The tests were performed on a Sparc 1 IPX, with
16MB RAM and 16MB of swap space. The running times given for CLP(~-7:))
have been obtained with (Cosytec) CHIP [Hen90] on a Sparc 2.

190

Queens The following table summarizes the running times for computing the
Decision Diagrams that encode all the solutions of the N-queens problem for
different values of N.

[Queens 1 5 1 6 1 7 1 8 1 9 1 1 0 1
Toupie 0s05 0s06 0s25 0s58 2s20 6s73
CHIP 0802 0802 0s08 0s40 2s10 6s50

Pigeon-Hole The same for the pigeon-hole problem:

IPigeons/Holesl 8/81 9/8 I 9/9 110/9110/10 111/10111/11112/11112/12113/12 l
I Toupie 0s05 0s45 0s25 ls25 2873 3s.:1 1,10~311 98.:5 25~63 34~40 I

CHIP 9s08 10s12 82s96 92880 848s80 .

4.2 G a m e s

More exciting is the analysis of two players mathematical games allowed in
Toupie, thanks to the quantification and fixpoint mechanisms. The Nim game
is a good illustration of this technics. Hereafter follows its rules:

The game begin with N lines numbered from 1 to N and containing 2 x i - 1
matches at line i. At each step, the player who has the turn takes as many
matches as he wants in one of the line (but of course, at least one). Then the
turn changes. The winner is the player who takes the last match.

In order to model the Nim game, one takes as many variables as there are
lines (each variable taking its value in 0..2 x i - 1) plus one variable to model
the turn. A move is represented by means of a predicate move(S, T) where the
two vectors S and T encode two configurations of the variables (see section 3 for
more explanations on the construction of this predicate).

The modeling of the configuration where there is a winning strategy is very
simple and pretty in Toupie. It is programmed by means of two predicates:

winning(S) + = 3 T (move(S, T) ^ losing(T))
losing(S) + = Y T (move(S, T) ~ winning(T))

Note that the player who has the turn looses when he (or she) cannot play
any move. That is when his (or her) position (S) is such that Y T -,move(S, T)
that is the initial step of the fixpoint computation.

The running times are reported in the following table.

lines 4 1 5 I 6 I 7 I 8
reachable configurations 384 3840 46080 645120 10321920
time to compute them 0s21 0s43 0s75 ls25 ls93
time to compute winning positions Os50 ls73 6s23 25s18 141s60

191

5 R e l a t e d Works

CLP(:7:7)) As mentioned in the introduction, the nature of the problems han-
dled with classical CLP(~':D) languages is different from the nature of the prob-
lems handled with Toup• This comes from the fact that the underlying data-
structures are not the same. The use of DDs permits - from a practical point
of view - the introduction of a full universal quantification and fixpoint com-
putations but do not permit the use of branch and bound paradigm. There are
strong motivations (thanks to applications) to introduce a Toup• solver
in a CLP(.T:D) language complementarily to the currently implemented solvers.
The introduction of universal quantification is rather simple. The introduction
of a least fixpoint mechanism should not be too difficult by using tabulation
mechanism, whilst the introduction of greatest fixpoints is more tedious.

Binary Decison Diagrams have been used in order to implement the Boolean
solver of CHIP [BS87]. Toupie can be seen as an extension of this work in several
ways: extension of BDDs to finite domains, extension of the constraint language
to the p-calculus.

Model Checkers Toup• is much more related to model checkers such as MEC
[Arn89]. These programs are specialized for the verification of systems of finite
state machines and communicating processes. Of course, they present the advan-
tages and disadvantages of a specialized implementation: they are more efficient
but far less flexible. It remains that DDs permit to encode in a very compact
way even huge automata (DDs capture the regularity of these graphs by means
of subtree sharing) - - space consumption is the main problem of model checking
- - and that properties can be written in Toupie in a very simple, elegant and
declarative way.

Deductive Data Bases The semantics of Toupie is close to the semantics of de-
ductive data base languages. In particular, all the Toupie formulae can be easily
expressed in terms of the relational algebra. The difference comes, here again,
from two points: first, in Toup• the fixpoints definitions are explicitely declared,
and can be either least or greatest fixpoints, with the possibility to mix both (un-
der the condition that formulae remain monotonic). Note also that, since Toupie
semantics does not make the closed world assumption, the negation is naturally
handled. Second, the underlying data structures are not the same. DDs allow a
very efficient manipulation of relations, but are limited to small domains. More-
over, in the current implementation of Toup• all the created DDs are stored in
memory and cannot be put on an external device.

6 C o n c l u s i o n and Future Works

In this paper, we have presented several nontrivial applications of Toupie. These
applications show that #-calculus over finite domains has a great expressive
power and that this expressiveness is coupled with a good practical efficiency
thanks to the use of Decision Diagrams.

192

Nevertheless Toupie can be improve is several ways: DD management, intro-
duction of arithmetic builtins, heuristics for variable indexing, . . .

Toupie can be considered from two different points of view:
- As a new solver for CLP(UT?) allowing a kind of relational calculus within

this framework. This solver could come in addition to the classic ones. However,
it remains some problems to integrate it smoothly (see section 5).

- As a new paradigm for constraint logic languages. In this case, the /~-
calculus should be adapted in order to be a full programming language. This
could be done in two ways: first restrict the language (for the constraint on the
Herbrand universe) in order to make the relations computable by means of a
tabulat ion mechanism. This implies to forbid general universal quantification
and greatest fixpoints on this domain. Second, by using widening operators as
proposed by the Cousot in [CC92]. This approach could be of a particular interest
to analyse higher order functional languages as well as to introduce disjunction
in constraints over continuous domains.

References

[A~n89]

[BMDHg0]

[Bou93]

[Sty92]

[BS87]

[cc921

[CCMR93]

[CGR93]

[Co190]

[cR93]

[EFT93]

A. Arnold. MEC: a System for Constructing and Analysing Transition
Systems. In Workshop on Automatic Verification Methods/or Finite State
Systems, June 1989.
J.R. Burch, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model

Checking: 102~ States and Beyond. IEEE transactions on computers, 1990.
A. Bouali. Etudes et mises en oeuvre d'outils de vdrification basge sur la
bisimulation. PhD thesis, Universit6 Paris VII, 03 1993. in french.
R. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams. ACM Computing Surveys, 1992.
W. Buettner and H. Simonis. Embedding Boolean Expressions into Logic
Programming. Journal of Symbolic Computation, 4:191-205, 1987.
R. Cousot and P. Cousot. Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation. research report
LIX/RR/92/09, Ecole Polytechnique, 1992.
M-M. Corsini, B. Le Chattier, K. Musumbu, and A. Rauzy. Efficient Ab-
stract Interpretation of Prolog Programs by means of Constraint Solving
over Finite Domains (extended abstract). In Proceedings of the 5th Int.
Symposium on Programming Language Implementation and Logic Program-
ming, PLILP'93, Estonie, 1993.
M-M. Corsini, A. Griffault, and A. Rauzy. Yet another Application for
Toupie: Verification of Mutual Exclusion Algorithms. In proceedings of
Logic Programming and Automated Reasonning, LPAR'93. LNCS, 1993.
A. Colmerauer. An introduction to prologIII. Communications of the
ACM, 28 (4), july 1990.
M-M. Corsini and A. Rauzy. First Experiments with Toupie. Technical
Report 577-93, LaBRI - Universit6 Bordeaux I, 1993.
R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for Symbolic
Model Checking in CCS. Journal of Distributed Computing, 6:155-164,
June 1993.

193

[Heng0]

[JL87]

[MilS9]

[vn86]

P. Van Hentenryck. Constraint Handling in Logic Programming. Logic
Programming. MIT Press, 1990.
J. Jaffar and J.L. Lassez. Constraint logic programming. In Proceedings of
Principle of Programming Languages (POPL '87), january 1987.
R. Milner. Communication and Concurrency. Prentice Hall, New York,
1989.
J. Ullman. Implementation of logical query languages for databases. A CM
Transactions on Database System% 10, 03 1986.

A A Denotational Semantics of Toupie

The semantics of Toupie formulae is determined with respect to a structure S =
(Const,]21 where Coast is an interpretation domain,]2 is a denumerable set of variables
including all the variables of the program. As in DATALOG [Ul186], we assume 1) the
unicity of names (two distinct constant symbols denotes two distinct constants) and
2) the closure of the domain, that is to say that Coast is the set of all the constants
occurring in the considered formula or program.

D e f i n i t i o n 8. Individual Variable Assignments
An individual variable assignment is a mapping a from]2 into Const such that ~(X) 6
dom(X) for ail the variables X occurring in the program.

For sake of brievety, we assume in the following the condition ~(X) 6 dom(X).

D e f i n i t i o n 9. Relations
A relation on S is a mapping from]2 --. Const into B, where X ~ Y stands for the set
of mappings from X to Y and B stands for the Boolean values.

D e f i n i t i o n 10. Predicate Variable Interpretations
Let P r be the set of predicates occurring in the program. A predicate variable inter-
pretation is a mapping from Pr into (IN ~ Coast) --+ B, where IN stands for the set of
natural numbers.

This definition avoids the complications due to the different arities of the predicates.
For a predicate of arity n, it suffices to consider that the corresponding function depends
only on the first n numbers.

The semantics of a formula is thus a relation, and the semantics of a predicate
(defined with a fixpoint equation) is a mapping from (IN --* Const) into B.

A Toupie program P assigns a meaning to a set of predicate symbols Pr . The
semantics of the program is defined as the least fixpoint of a transformation 7-. Let us
note 7~7~ the set P r --* (IN ~ Coast) -+ IS of predicate variable interpretations, and
T~E the set (]2 ~ Const) --~ B of relations.

The program defines a continuous transformation:

7- : PT~ - . PTZ

Each formula f defines a function:

And each equation defines a function:

7-[E~ : ~'n -~ (IN -~ Coast) -~ B

The definition of T will use the following notation.

194

D e f i n i t i o n 11. Substi tutions
Let f : A ---* B be a function. Let a n , . . . , an be distinct elements of A and b l , . . . , b~
be arbi t rary elements of B. We note

f [a l / b l , . . . , an/bn]

the function g : A ~ B such that gal = fb i (1 < i < n) and ga = f a (Va
{ a l , a n }) .
The notat ion [a ~ / b l , . . . , an/bn] stands for f [a ~ / b l , . . . , an /bn] where f is an arbi trary
function.

We are now in position to define the semantic function T. Let r be a predicate
variable interpretat ion, a be an individual variable assignment, and a be an element
of (IN ---. Cons t) . T is defined inductively on the structure of formulae in the following
w a y :

- Til]]~r a = 1 -and T [O] r r~ = 0 .
- " r I x ~ = x , l ~ ~ = ~ (x ~) = , , (x ,) .

- : r I x ~ = k I ~ ~ = ~ (x d = k .

- 7 - l [f ~ g] ~ o , = 7 - [f l l r o, ^ 7 " M ~ , ~ .

- T F X f]l ~r r = Akedo~(X)(Tl[f] ~r e~[X/k]).

-- 7"~[3 X f '~ 7r ol = V k E d o m (X) (~ J " [[f I 7r or ' IX/k]) .

- T I P (X 6 , . . . ,Xi~)] r a = r (P) (a (X 6) , . . . , c~(Xi~)).
- T [[P (X 1 , . . . , Z , ,) + = f]} r a=7-[[f]] r [X1/cr(1), . . . , X n / (r (n)] .
- Finally, the transformation associated with the program is:

7"[Eq~ . . . E q ,] ,: = ,~b,~ /7 - IEq~] ,~, . . . , p n / 7 " [E q , d ,q
where the pl are the predicates defined by the equations Eqi .

D e f i n i t i o n 12. Denotation of a Toupie Formula wrt a Program
Let P be a Toup• program. Let f be a Toupie formula. Let D be the set of variables
occurring free in f . By definition, the deno ta t ion of f wrt P is the function /) I f] :
(D --~ C o a s t) --* B such that, for all o~ e (D ---* Coast) ,

/)[f]o~ = T I f] (# (T [P])) c d ,

where ~ ' is any variable assignment such that

c~'X = a X (VX E D).

(The underlying program is kept implicit .)

Note that the introduction of least fixpoint definitions complicates the notations
but not the semantics itself.

