
Interprocedural Constant Propagation using 
Dependence Graphs and a Data-Flow Model 

David Binkley 
Loyola College in Maryland 

4501 North Charles Street, Baltimore Maryland 21210-2699, USA. 
binkley@cs.loyola.edu 

Abstract. Aggressive compilers employ a larger number of well understood optimizations in 
the hope of improving compiled code quality. Unfortunately, these optimizations require a 
variety of intermediate program representations. A first step towards unifying these optimiza- 
tions to a common intermediate representation is described. The representation chosen is the 
program dependence graph, which captures both control-flow and data-flow information from a 
program. 

The optimization of (interprocedural) constant propagation is studied. The algorithm 
developed combines a program dependence graph called the system dependence graph (SDG) 
with the ideas of data-flow computing and graph rewriting. The algorithm safely finds the 
classes of constants found by other intraprocedural and intraprocedural constant propagation 
algorithms. In addition, the SDG allows constants to propagate through procedures. This 
enables the algorithm to discover constants in a calling procedure even thought no constants 
exist in the called procedure. 

1. Introduction 
Optimizing compilers employ a larger number of well understood optimizations in the 
hope of improving object code quality. These include, for example, code motion, call 
inlining, constant propagation, dead code elimination, loop interchanging, and register 
allocation [ 1, 2]. Unfortunately, these optimizations often require different intermedi- 
ate representations of the program. 

This paper describes the first step toward reducing the number of intermediate 
representations by unifying optimizations onto a common intermediate representation. 
The representation chosen is a variation of the program dependence graph [12, 17] 
called the system dependence graph (SDG) [15]. Program dependence graphs have 
been successfully used as an intermediate representation in parallelizing and vectoriz- 
ing compilers to perform loop interchanging, strip mining, loop skewing, and other 
optimizations [2, 17]. A key feature of the SDG is its representation for programs 
with procedures and procedure calls. Recent trends toward programs with small pro- 
cedures and a high proportion of procedure calls (typical of object oriented programs) 
have intensified the need for better interprocedural optimizations. 

The optimization considered in this paper is interprocedural constant propagation 
[8, 19]. The goal of any constant propagation algorithm is to identify variables whose 
values are constant throughout all possible executions of the program. If a compiler 
can identify such variables it can improve the quality of the object code by replacing 
the variable with the constant and by propagating this constant to other expressions in 
the program, lnterprocedural constant propagation concerns the propagating of con- 
stants to, from, and through called procedures. 

The interprocedural constant propagation algorithm developed in this paper uses a 
data-flow interpretation of the SDG, incorporates symbolic execution, and uses live 
code analysis. The algorithm safely finds the same classes of constants found by trad- 
itional interprocedural and intraprocedural constant propagation algorithms [16, 19]. 
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(A safe algorithm may miss some constants but all the variables it determines to be 
constant are guaranteed to be constant on all possible executions of the program.) 

The data-flow interpretation of the SDG treats the SDG as a data-flow graph in 
which values "flow" on the dependence edges of the graph. This makes (constant) 
values available at uses as soon as they are determined (they do not have to propagate 
through unrelated nodes as in a control-flow-graph based algorithm). 

The algorithm also employs symbolic execution of the SDG. This idea is a 
modification of the graph rewriting semantics for program dependence graphs given 
by Selke in [18]. It allows, for example, the optimization of a while-loop that sums 
the numbers from 1 to 10: while constant propagation alone would determine that a 
non-constant value is produced by the statement "sum=sum+i"  in the body of the 
loop (because sum is assigned the values values 1, 3, 6, �9 �9 �9 55), symbolic execution 
replaces the loop with the assignment statement "sum = 55." 

Live-code analysis is used to increase the number of constants found. Non-live 
(i.e., dead) code includes unreachable code and useless code. Unreachable code is 
never executed on any execution of the program, while useless code has no effect on 
the output of the program. Removing unreachable code may improve constant propa- 
gation by reducing the number of definitions that reach a use. For example, if a con- 
stant and a non-constant value reach a use of x, then x's value is non-constant. If, 
however, the source of the non-constant value reaching the use of x is determined to 
be dead code and eliminated~ then x's value is constant. Removing useless code does 
not improve constant propagation, but does reduce the size of the optimized code. 

The remainder of this paper is organized as follows: Section 2 reviews the system 
dependence graph, Selke's graph rewriting semantics, and the constant propagation 
lattice. Section 3 presents the interprocedural constant propagation algorithm based 
on the SDG as an intermediate representation. Section 4 compares this algorithm 
with existing constant propagation algorithms and Section 5 presents conclusions. 

2. Background 

2.1. The System Dependence Graph 
This section summarizes a minor extension to the definition of the SDG presented in 
[15]. The SDG models a language with the following properties: 
1. A complete system is a single main procedure and a set of auxiliary procedures. 
2. Parameters are passed by value-result.l 
3. Input and output are modeled as streams; thus, for example, print (x) is treated as 

the assignment statement "output._stream = concatenate (output_stream, x )." 

We make the further assumption that there are no calls of the form P(x, x)  or of the 
form P (g) for global variable g. The former restriction sidesteps potential copy-back 
conflicts. The latter restriction permits global variables to be treated as additional 
parameters to each procedure; thus, we do not discuss global variables explicitly. 

The SDG for system S contains one procedure dependence graph (PDG) for each 
procedure in S connected by interprocedural control- and flow-dependence edges. 
The PDG for procedure P contains vertices, which represent the components of P, 
and edges, which represent the dependence between these components. With the 

! Techniques for handling reference parameter passing and aliasing are discussed in [ 15] and [6]. 
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eXception of  call statements, a single vertex represents the predicates of if and while 
statements, assignment statements, input statements, and output statements of  P; in 
addition, there is a distinguished vertex called the entry vertex, and an initial- 
definition vertex for each variable that may be used before being defined. Initial- 
definition vertices represent the assignment of the value 0 to these variables. 

A call statement is represented using a call vertex and four kinds of parameter ver- 
tices that represent value-result parameter passing: on the calling side, parameter 
passing is represented by actual-in and actual-out vertices, which are control depen- 
dent (see below) on the call-site vertex; in the called procedure parameter passing is 
represented by formal-in and formal-out vertices, which are control dependent on the 
procedure's entry vertex. Actual-in and formal-in vertices are included for every 
parameter and global variable that may be used or modified as a result of  the call; 
formal-out and actual-out vertices are included for every parameter and global vari- 
able that may be modified as a result of  the call. (Interprocedural data-flow analysis 
is used to determine which parameters and globals may be used and/or modified as a 
result of  a procedure call [3, 4].) 

PDGs include three kinds of  intraprocedural edges: control dependence edges, data 
dependence edges, and summary edges. The source of a control dependence edge is 
either the entry vertex, a predicate vertex, or a call-site vertex. Each edge is labeled 
either true or false. A control dependence edge v ""~c u from vertex v to vertex u 
means that during execution, whenever the predicate represented b y  v is evaluated 
and its value matches the label on the edge to u, then the program component 
represented by u will eventually be executed provided the program terminates nor- 
mally (edges from entry and call-site vertices are always labeled true; these vertices 
are assumed to always evaluate to true). Note that for the block structured language 
studied here each vertex has a single incoming control edge. 

There are two kinds of  data dependence edges, flow dependence edges and def- 
order dependence edges. Flow dependence edge v --->fw runs from a vertex v that 
represents an assignment to a variable x to vertex a w that represents a use of  x 
reached by that assignment. The set of  flow dependence edges is divided into two 
subsets: loop-independent and loop-dependent: loop-dependent edges represent 
values passed from one loop iteration to another; all other flow dependence edges are 
loop-independent. A def-order edge v----~ao(u ) w runs between vertices v and w, 
where both v and w represent assignments to x, the definitions at v and w reach a com- 
mon use at u, and v lexically precedes w (i.e., v is to the left of w in the system's 
abstract syntax tree). 

Summary edges represent transitive dependences due to calls. A summary edge 
v "~s  u connects actual-in vertex v at a call-site to actual-out vertex u at the same call 
site if there is a path in the SDG from v to u that respects calling context by matching 
calls with returns. 

Connecting PDGs to form the SDG is involves, the addition of three kinds of  inter- 
procedural edges: (1) a call edge connects each call vertex to the corresponding 
procedure-entry vertex; (2) a parameter-in edge connects each actual-in vertex to the 
corresponding formal-in vertex in the called procedure; (3) a parameter-out edge 
connects each formal-out vertex to the corresponding actual-out vertex at all call 
sites. (A call edge is an interprocedural control edge; parameter-in and -out edges are 
interprocedural data dependence edges.) 

Example. Figure 1 shows the PDG of a system without call statements. Figure 
3(b) shows part of  the SDG for a system with a call statement. In Fig. 3(b) at the 
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call-site, the actual-in vertex for a is labeled"xi,=a" and the actual-out vertex 
"a=x,,,r." In procedure P, the formal-in vertex for x is labeled "x=xi," and the 
formal-out vertex "Xo,t =x." In thes.e figures as well as the remaining figures in the 
paper, actual-in, actual-out, formal-in, and formal-out vertices for the variables 
output_stream and input_stream are omitted for clarity. 

2.2. A Graph Rewriting Semantics  for the SDG 

This section first overviews Selke's graph rewriting semantics for (single procedure) 
program dependence graphs and then extends this to a graph rewriting semantics for 
the SDG. Graph rewriting first chooses a vertex that has no incoming control or 
loop-independent dependence edges. It then fires the vertex: the vertex is removed 
along with its outgoing edges. In addition, it may add, remove, or update other ver- 
tices and edges in the graph. These additional actions for each kind of vertex are 
given informally in the following table; formal definitions are given in [18]. 

Vertex Kind Rule 
Enter: No additional actions. 
Assignment: For an assignment vertex labeled "x = exp", modify the targets of all 

outgoing edges as follows: replace x with c tagged by x, written c x, 
where c is the constant value of exp (exp's value is constant be- 
cause the assignment vertex has no incoming data dependence 
edges). Tags allow subsequent rewritings to overwrite previous 
ones. Their need is illustrated in Fig. 2. 

If-predicate: Assume the predicate's value is true (the false case is symmetric). 
Remove all vertices representing statements in the false branch ot 
the if statement along with their incoming and outgoing edges. 

While-predicate: If the predicate evaluates to false then all vertices representing the 
loop are removed along with their incoming and outgoing edges. 
Otherwise, if the predicate evaluates to true then copies of the ver- 
tices that represent the body of the loop are added to the graph. 
Copies are added as if one iteration of the loop had been unrolled 
and place before the original while-loop. (The difficult part of this 
rewriting is correctly determining the dependence edges associated 
with the new vertices). 

In addition to modifying the graph, the rewriting of an input or output vertex effects 
the global input or output stream: input statements consume values from the head of 
the input stream, while output statements append values to the output stream. 

Example. For the program in Fig. 1, Fig. 2(a) shows the graph after rewriting the 
entry vertex and then the vertices labeled "x = 0" and "y = 1" (in either order). The 
rewriting of "x=2"  illustrates the need for tags: because (Y in the output vertex has 
the tag x, its value is replaced as a result of rewriting "x = 2" (Fig. 2(c)). Without 
tags, there is no way of knowing that the 0 was a rewritten x. Finally, rewriting the 
output vertex produces a 2 on the output stream (the tag is stripped when the value is 
output) and leaves the empty graph; thus, the evaluation terminates. 

Rewriting the SDG 

Rewriting the SDG requires adding a rule for call-site vertices. An information state- 
ment of this rule is given below, a formalization can be found in [51, which also 
indirectly extends Seike's semantics to the SDG. Like the while-loop rule, the call- 
site rule introduces copies of vertices. These new vertices are copies of the vertices 
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main 0 
{ 

x=0; 
y=l ;  
if(y > 0) 

x=2; 
print (x); 

} 

Figure 1. An example program and its program dependence graph. Bold arrows represent con- 
trol edges, arcs represent flow-dependence edges, and dashed lines represent def-order edges. 
(In all the figures in this paper, unlabeled control edges are assumed to be labeled true.) 

~ the 
empty 
graph 

output: [] [] [] [2] 
(a) (h) (c) (d) 

Figure 2. The rewriting of the program dependence graph from Fig. I. 

from the called procedure. Unlike the while-loop rule, computing the edges for the 
copies is trivial because of the interface (parameter vertices and edges) between a call 
site and the called procedure. 

Vertex Kind Rule 
Call-site Replace the call-site vertex with copies of the vertices for the called 

procedure (except its entry vertex). Change the interprocedural 
data dependence edges into (intraprocedural) flow dependence 
edges and the parameter vertices into assignment vertices. 

Example. Figure 3 shows a program with a call and part of its rewriting. Figure 
3(b) shows the SDG for the program shown in Fig. 3(a) after rewriting the enter ver- 
tex. Figure 3(c) shows the result of rewriting the call-site vertex "call P "  where the 
flow dependence edges from "xi. =a" to "'x=xi." and from "Xo.t=x" to "'a=XoZ 
have replaced the two interprocedural data dependence edges in Fig. 3(b). 

2.3. The Constant Propagation Lattice 

This section, based largely on [19], discusses the lattice used for constant propagation 
and introduces the notion of constant confidence. As shown in Fig. 4, the constant- 
propagation lattice is composed of a top element T,  an infinite collection of constants 
fi, and a bottom element I .  The va lue  T represents "no information" or 
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main() 
[ 

a = 2 ;  
P(a); 

} 

t'(x) 
I 

X=X+ 1; 
} 

(a) 

III I I 

fJ I 

(b) (c) 

Figure 3. The call-site rewrite rule. 

optimistically some yet undetermined constant. The value l represents "non- 
constant", and is used, for example, in the case of a read statement. 

Following the data-flow model, each flow dependence edge in the SDG is labeled 
by a lattice element, which represents the current best approximation to the value 
"flowing" down the edge (i.e., the value produced by the assignment statement at the 
source of the edge). Initially, all edges are labeled -F, which represents the optimistic 
assumption that they will be labeled by some constant. 

When a use of a variable is reached by multiple definitions, the definitions are com- 
bined by the lattice meet  operator n defined by the following table: 

Rules for n 
XI"]T=x Ci["]Cj=C i i f  i = j  
xrq_L = l c i n c j = _ L  i f  i ~ j  

where x represents any of "]-, _L, or ci 

The evaluation of expressions is strict: if any of the variables in the expression has the 
v a l u e / ,  then the expression has value _L. (In some cases, this can be softened by 
taking special attributes of certain operators into account. For example, 0 times any- 
thing, including _]_, is 0.) 

q- 

�9 "" cl cj c, . ."  

.1_ 

Figure 4. The three-level constant propagation lattice. 
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Confidence 

Each constant in the program is assigned a confidence: high or low. High confidence 
is assigned to constants from the original program and all constants derived solely 
from high-confidence constants. Low confidence is assigned to all constants pro- 
duced by operations involving low-confidence constants and T). 

High confidence constants will not be changed by further constant propagation. 
This allows more aggressive optimization to be performed. Low confidence constants 
may change as a result of updates in other parts of the graph. Thus, low confidence is 
assigned to a constant to prevent the unsafe removal of graph components. 

Formally, confidence is modeled using the following lattice 

-t-confidence = high confidence 

I 
-l-co.fidence = low confidence 

where the meet operation r-lco,,fide,c e is defined as follows: 

-]-confidence I"']confidence -Lconfidence m _Lconfidence. 
In what follows, we omit the subscript confidence, when it is clear from context. 

3. Interprocedural Constant Propagation 
This section describes the interprocedural constant propagation algorithm based on 
the SDG in which constants "flow" through the SDG. The algorithm is enhanced by 
concurrently performing symbolic execution and live code analysis. Symbolic execu- 
tion is accomplished using a variation of the rules from Sect. 2.2. Live-code analysis 
is performed by initially labeling all vertices as non-live and then marking vertices as 
live only as they are encountered during constant propagation. When the algorithm 
terminates remaining non=live vertices represent dead code that can be removed from 
the SDG. 

Before presenting the interprocedural constant propagation algorithm in Sect. 3.2, 
Sect. 3.1 presents a data-flow based intraprocedural constant propagation algorithm. 
The algorithm in Sect. 3.2 will work with this or any other intraprocedural constant 
propagation algorithm. Both the intraprocedural and interprocedural algorithms have 
three steps: first the program's dependence graph is constructed. The graph is then 
rewritten according to a set of rewrite rules. Finally, the rewritten graph is used as an 
intermediate form for code generation, or, as discussed in Sect. 3.3, to produce optim- 
ized source. 

3.1. Intraprocedural Constant Propagation 

The intraprocedural constant propagation algorithm is essentially a data-flow inter- 
preter. The interpreter propagates constants by continually firing (rewriting) vertices 
and propagating values along edges. Because no run-time information is available, 
the conditions under which a vertex can be fired differ from the rewriting discussed in 
Sect. 2.2. These differences are given in Rule 1. The remaining rewrite rules push 
information along the edges of the PDG. 

1. The rewriting rules from Sect. 2.2 are modified as follows: 

(a) A vertex representing an action with a side effect (e.g., printing) is never fired 
and is therefore removed from the graph only if it represents dead code. 
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(b) Since the rewriting of a while loop increases code size, two limits are placed 
on the number of such rewritings. These limits are controlled by the con- 
stants: size_increase and max_times. Size_increase limits the final code size 
of the loop (after optimization) to some multiple of the original loop code size. 
Thus, the number of unrollings is dependent on the effectiveness of optimiza- 
tion on the copy of the loop body. Since optimization may remove the entire 
body, max_times is used to limit the maximum number of times a loop can be 
unrolled. For example, max_times is needed to stop the optimization of 
"while (n > O) n = 1." 

2. A def-order edge a "~ao(,) b in which a and b have the same control predecessor 
implies the previously conditional assignment at b has been made unconditional 
with respect to the definition at b by an application of Rule 5. In this case, only 
the second definition at b actually reaches u, so the edges a -"~a,,(,) b and a ----~fu 
are removed from the graph. 

3. If all incoming flow dependence edges for variable v have the same constant value 
c on them and these constants have high confidence then, the edges are removed 
and v is replaced by c v. (If a previous rewrite has replaced v with c" then all 
remainiing incoming flow dependence edges must have c on them.) Any vertex 
left with no outgoing edges represents dead code and can be removed. 

4. For an assignment vertex labeled "x = e", the expression e is evaluated by first 
using the meet operation to determine a value for each variable v used in e, then 
computing the value for e. Finally, this value is placed on all outgoing flow 
dependence edges of the assignment vertex. The confidence of this value is the 
meet of the confidences of all the input values. (Edges from non-live vertices 
contain the value of T with low confidence.) 

5. A predicate vertex p, labeled with expression e is evaluated in the same manner as 
an assignment vertex. The resulting value v may cause certain control successors 
o f p  to become live: if v is "Y then none of the control successors become live; if v 
is t rue then the t rue  successors become live; if v is false then the false successors 
become live; finally, if v is _L then all successors become live. Furthermore, if v 
is true or false with high confidence then all targets of outgoing control edges 
from p whose labels match v are made control dependent on the p ' s  control prede- 
cessor. All remaining control successors of p along with their (transitive) control 
successors and p are removed from the graph. 

Example.  Figure 5(a) shows the graph before the rewriting of the vertex labeled 
"a = 2." The subsequent rewriting of the if vertex produces Fig. 5(b). After rewrit- 
ing the remaining assignment vertex, the graph cannot be further rewritten because 
printing represents an operation with a side-effect. (As example of dead-code remo- 
val, if the if-predicate vertex had an incoming control edge and thus could not have 
been re-written, the read vertex would still have been removed as unreachable-code.) 

Example.  Figure 6 illustrates the propagating of values along data-flow edges. 
Figure 6(a) shows a sample PDG (in the figure _L represents a value previously deter- 
mined to be non-constant). Figure 6(b) shows the effect of Rule (4) on the statement 
"x = T '  from the body of the if statement. Figure 6(c) shows the result of  firing the 
other vertex labeled "x = 2" using the assignment-vertex rewrite rule from Sect. 2.2. 
Finally, Fig. 6(d) shows the result of  firing Rule 3: all the incoming edges of  the ver- 
tex labeled "print (2")" have the constant 2 with high confidence on them. 



(b) 

PO 
{ 

a=2; 
if (a = 0) 

read (b); 
else 

b=a*2; 
print (b); 

(a) 

382 

Figure 5. An intraprocedure constant propagation example. 

/ ' 0  
{ 

x=2; 
while ( I )  
{ 

i f ( l )  
{ 

x=2; 
} 

print (x); 
1 (a) 

C 
(c) 

x I 

\ 

\ 

2 high 

(b) (d) 

Figure 6. An example that propagates values along data-flow edges. 

3.2. Interprocedural Constant Propagation 
An interprocedural constant propagation algorithm can be obtained by adding the 
call-site rewrite rule from Sect. 2.2 to the intraprocedural algorithm developed in 
Sect. 3.1. However, this algorithm fails to take advantage of opportunities to partially 
propagate constants to, from, and through procedures when only some of the parame- 
ters are constants. For example, Rule 3 (ser below) makes use of the fact that the 
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incoming summary edges of an actual-out vertex indicate which actual-parameter's 
initial values must be constants in order to propagate constants through the called pro- 
cedure to the actual-out vertex. 

The following rules augment the intraprocedural constant propagation rules from 
Sect. 3.1 to perform interprocedural constant propagation: 
1. Actual-in and formal-out vertices are treated as assignment vertices and 

parameter-in and parameter-out edges are treated as flow dependence edges. 
2. Parallel to while-loop unrolling, application of the call-site rewrite rule of Sect. 

2.2 is limited by the constants callsize_increase and callmaxtimes. 
3. If all the incoming summary edges of an actual-out vertex v labeled "a =x,,ut" 

have constants of high confidence on them, then a new assignment vertex labeled 
"a =c"  is added to the SDG. Constant c is the value produced for x by the called 
procedure (see below). The new vertex has an incoming control edge from the 
control predecessor of  the call-site vertex and all outgoing data dependence edges 
of the actual-out vertex are moved to the new vertex. Finally, the actual-out ver- 
tex is marked useless (see Rule 6). 

4. If  the incoming parameter-out edge of an actual-out vertex labeled "a =.rout" has 
the constant c of high confidence on it then the actual-out vertex is replaced, as in 
Rule 3, by a vertex labeled "a = c." 

5. If  all incoming parameter-in edges to formal-in vertex labeled "x =xi," have the 
same constant c on them and these constants have high confidence, then a new 
vertex labeled "x = c" is added. This vertex is control dependent on the called 
procedure's entry vertex and the flow edges of the formal-in vertex are moved to 
the new vertex. At all call-sites the corresponding actual-in vertices are marked 
as useless (see Rule 6). 

6. If, at all call-sites on P, the actual-in and actual-out vertices for a parameter are 
marked as useless, then these vertices are removed from the SDG along with the 
corresponding formal-in and formal-out vertices. This rule uniformly removes 
one of  P ' s  parameters. 

7. A call-site vertex with only useless actual-out vertices is removed. Recall that 
there are actual-out vertices for input and output streams. Thus, a call with no 
actual-out vertices returns no values and produces no side-effects. 

Computing the value of an actual parameter in Rule (3) requires executing some 
part of the called procedure. A program that contains the necessary statements to 
compute this value can be obtained from the SDG using program slicing [15]. In par- 
ticular, a "b2" slice contains the necessary program components. Once this slice has 
been computed there are two ways of determining the final value of x. First, the con- 
stant propagation algorithm could be run on a copy of the the slice. The second, more 
efficient, option is to produce execute object code from the slice and then execute this 
object code [7]. (Because of the possibility of non-terminating computations, some 
limit must be placed on the resources devoted to computing x 's  value.) 

Example. (In the following two examples, Rule 2 is ignored; thus, no in-lining is 
performed.) For the system shown in Fig. 7, Fig. 8 shows the PDG for procedure P 
after using Rule 3 to rewrite both actual-out vertices of the first call-site on Q and 
Rule 7 to subsequently remove the call-site. The actual-out vertex for y, for example, 
was the target of two summary edges, which had the constants 2 and 8 on them. Rule 
3 replaced this actual-out vertex with an assignment vertex labeled "y = 12" (12 is the 
value computed by Q using the input values 2 and 8). The final SDG and its 
corresponding program (see Sect. 3.3) are shown in Fig. 9. 
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main() P(x, y) Q(a, b) 
[ [ { 

i = 2; Q(x, y); a = a * 2; 
j =  8; x =  x - 2 ;  b = b + a; 
P(i, j); Q(x, y); } 
print(j); print (x); 

I I 

Figure 7. An interprocedural constant propagation example. 

Figure 8. The PDG for procedure P of Fig. 7 after applying Rules 3 and 7 to the first call on Q. 

Example. In the preceding example constant propagation removed procedure Q 
entirely. This example illustrates the removing of one of Q's parameters. Consider 
the optimization of the program in Fig. 7 if the initial value of j is non-constant (i.e., 
replace " j = 8 "  with "read(j)"). In this case, the call-sites on procedure Q cannot be 
removed from P; however, propagating constants through call-sites, the incoming 
parameter-in edges of the formal-in vertex for parameter x in procedure Q both have 
the constant 2 with high confidence on them. Rule 5 rewrites the graph by replacing 
this formal-in vertex with the assignment vertex "x = 2." This produces a version of 
P without actual parameter x and a version of Q without formal parameter a. The 
resulting optimized version of the system is shown below: 

main 0 P (y ) Q ( b ) 
{ { { 

read (j); Q (y); b = b + 4; 
P (j); Q (y); ] 
print (j); print (4); 

J ] 

3.3. Producing Source Code After Optimization 

This secdon discusses how optimized source code is produced from the optimized 
SDG. Three uses of this source code include illustrating the effects of optimization to 
students and others unfamiliar with optimization, debugging optimized code, and 
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producing optimized object code (although using the SDG as an intermediate form 
and directly producing optimized object code would be more efficient). For example, 
in debugging, making a programmer aware of optimization's effect allows the pro- 
grammer to better understand the output from a debugger when debugging optimized 
code. This avoids the need to only debug unoptimized code or use a debugger that 
attempts the difficult and often impossible task of reversing optimization in an attempt 
to recover the state of the unoptimized program [10]. 

Producing source code from the optimized SDG is a two step process. Step one 
"backs up" optimization in order to allow step two to reconstitute a system from the 
SDG. The reasons this backup is necessary is that the data-flow interpretation of the 
SDG allows partial evaluation of statements. For some statement types (e.g., call 
statements) partially evaluated statements cannot be part of a source program. 

The backing up of optimization is necessary in two cases. First, when a constant 
has been propagated to an actual-in vertex but the actual-out vertex has not been 
removed from the graph. This is illustrated in Fig. 10(a) where the actual-in vertex 
labeled "Xin = 1 a' ' requires the call statement "call P(1)", while the actual-out vertex 
labeled "a =xo,,t" requires the call statement "call P(a)." The second case occurs 

main() 

{ PO; 
print(16); 

} 

PO 

{ print (4); 
} 

Figure 9. The result of optimizing the program from Fig. 7. 

Original Graph After Backup Final Code 

(a) call 
backup 

(b) while 
backup 

~ { a= l ;  
P(a); 

} 

while (_L) 
i=i+l; 

} 

Figure 10. Examples of the two cases in which optimization backup is necessary. 
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when c v has replaced v but there remains a reaching definition of v. This is illustrated 
in Fig. 10(b) where the use of i in the while loop shown in Fig. 10(b) has an incoming 
loop-carried flow dependence edge. 

In both cases, backup of the optimization that replaced v with c v at vertex x 
involves three steps: (1) potentially adding a new assignment vertex, labeled "v =c," 
(2) adding a flow dependence edge from this new vertex to x, and (3) replacing c v 

with v in the label of x. Step (1) adds an assignment vertex only if a previous backup 
has not already added an assignment to the same variable at the same l o c a t i o n .  The 
l o c a t i o n  of this vertex is that of an assignment statement not nested within any other 
control structure 2 and immediately before the statement representing x and all state- 
ments representing vertices that have flow dependence edges to x. 

Example. Figure 10(a) shows a partial SDG before and after applying the call-site 
backup step and (part of) the final reconstituted program. Figure 10(b) shows a par- 
tial SDG before and after applying the second backup step along with (part of) the 
final reconstituted program. 

After all necessary backups, the final step in the constant propagation algorithm 
reconstitutes optimized source code from the optimized SDG. The difficult problem 
in reconstitution is finding a total order for the vertices in each r e g i o n  of each PDG 
(roughly put, a region is the body of an if statement or while loop---see [14]). In gen- 
eral the reconstitution problem is NP-complete [14]; however, for an SDG optimized 
using the rules in this paper, reconstitution requires only O (nlogn) time, where n is 
the number of vertices in the optimized SDG (see Sect. 4). The NP-complete aspect 
of the problem is avoided by using order information from the unoptimized program. 

4. Related Work 
This section compares the SDG based constant propagation algorithm to previous 
constant propagation algorithms discussed by Wegman' and Zadeck [19] and Cal- 
lahan, Cooper, Kennedy, Torczon, and Grove [8, 13]. 

Wegman and Zadeck [19] discuss an intraprocedural constant propagation algo- 
rithm that finds all simple constants--constant that can be found assuming no infor- 
mation about the direction of branches and storing only one value per variable--and 
one that finds all c o n d i t i o n a l  c o n s t a n t s - - t h o s e  constants that can be determined by 
including tests for constants in the conditional branches. (Wegman and Zadeck actu- 
ally discuss two algorithms of each type, which differ only in their complexity.) 
These algorithms are based on the static single assignment (SSA) graph [11], which 
augments a standard control-flow graph with special ~ vertices--assignments of the 
form "x = O(x, x)." These vertices are placed at control join-points whenever two 
definitions ofx  reach the join-point. The result is that every use ofx (other than at a t~ 
vertex) is reached by a single definition. A similar effect can be obtained using the 
SDG and valve nodes [9]. Reaching definitions are captured in the SSA graph by 
SSA-edges, which are similar to data dependence edges in an SDG. For some pro- 
grams, including ~ vertices and SSA-edges can reduce the number of edges represent- 
ing reaching definitions when compared to the SDG for the same program. This is 
done at the expense of introducing additional vertices. 

2 For c v to replace v a rewrite rule from Sect. 2.2 must have been used. Therefore, no incoming control 
edge should be present for the vertex (i.e., it should not be nested within any other control structure). 
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The algorithm discussed in Sect. 3.1, which finds all conditional constants, is essen- 
tially equivalent to the intraprocedural constant propagation algorithms given by 
Wegman and Zadeck. For interprocedural constant propagation, which Wegman and 
Zadeck also discuss, the algorithm developed in Sect. 3.2 has some advantages. 
These include, the use of summary edges in Interprocedural Rule (3) to determine 
that a procedure returns a constant value at a particular call-site even through other 
call-sites on the same procedure may pass non-constant values to the procedure. 
Rewriting an actual-out vertex using Rule (3) can "decouple" the body of the called 
procedure from the computation of the return value for the actual parameter. For 
example, consider a procedure with two parameters, a counter and some other vari- 
able. If the counter's return value can be determined to be constant using Rule (3) 
then the computation of the called procedure that involves the other variable can 
proceed in parallel with subsequent computations of the calling procedure that 
involve the counter. 

Callahan et. al. discuss several interprocedural constant propagation algorithms 
centered around the constructions of jump and return functions. These functions 
describe how constants flow from procedure to procedure. The summary edges in the 
SDG and program slices taken with respect to actual-out vertices can be used to com- 
pute jump and return functions analogous to those discussed in [8]. A comparison of 
this approach to those suggested in [8] is the topic of future research. 

5. C o n c l u s i o n  

Using dependence graphs and a data-flow model provides an efficient algorithm for 
interprocedural constant propagation. In many cases graph transformations are easier 
to visualize, create, and understand than transformations involving sets of variables 
and program text. One reason for this is that dependence graphs allow the program 
components involved in the optimization to be more easily isolated from other pro- 
gram components regardless of their textual location in the source code. 

A key feature of the SDG is its inclusion of summary edges. These edges allow 
constants to propagate through called procedures, which increases the number of con- 
stants found by the algorithm. Summary edges have also proved useful in other 
operations involving the SDG, for e.xa.mple the two step program slicing algorithm 
presented in [15]. 

Finally, the adequacy of the SDG for representing programs [5] and the use of 
semantics preserving graph transformations [18] provides safety. Because each 
rewriting step is guaranteed to preserve the semantics of the original program, the 
program produced as a result of constant propagation is guaranteed to preserve the 
semantics of the original unoptimized program. The algorithm inherits its correctness 
proof from the correctness of the semantics based transformations. Thus, it success- 
fully combines the rather theoretical results involving the adequacy and semantics of 
the SDG with the production of a practical algorithm. The result is a provably correct 
algorithm tor interprocedural constant propagation. 
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