
Reducing the Cost of Data Flow Analysis
By Congruence Partitioning t

Evelyn Duesterwald, Rajiv Gupta, Mary Lou Sofia

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260

A b s t r a c t . Data flow analysis expresses the solution of an information
gathering problem as the fixed point of a system of monotone equations.
This paper presents a technique to improve the performance of data
flow analysis by systematically reducing the size of the equation system
in any monotone data flow problem. Reductions result from partition-
ing the equations in the system according to congruence relations. We
present a fast O(r~ log n) partitioning algorithm, where r~ is the size of the
program, that exploits known algebraic properties in equation systems.
From the resulting partition a reduced equation system is constructed
that is minimized with respect to the computed congruence relation while
still providing the data flow solution at all program points.

1 I n t r o d u c t i o n

Along with the growing importance of static data flow analysis in current opti-
mizing and parallelizing compilers comes an increased concern about the high
time and space requirements of solving data flow problems. Experimental stud-
ies show that performing sophisticated analyses over even small to medium-sized
programs can take several hours [Lan92]. Phrased in the traditional data flow
framework [KU77], the solution of a data flow problem is the greatest fixed point
of a system of monotone equations. Each equation expresses the solution at one
program point in terms of the solutions at immediately preceding (or succeeding)
points. This formulation may result in overly large equation systems, limiting
both the time and space ei~ciency of even the fastest fixed point evaluation
algorithm.

A closer inspection of equation systems reveals that their sizes are unnecessar-
ily enlarged due to the inherent inclusion of redundant equations. The structure
of data flow equation systems requires the propagation of intermediate results
throughout the program, including the propagation to program points where
these results are of no relevance. As a consequence, multiple equations in the sys-
tem carry identical information. Equations that duplicate information already
expressed by other equations are redundant and their repeated evaluation during
the fixed point iteration is clearly undesirable. If equivalent but smaller equation

t Partially supported by National Science Foundation Presidential Young Investigator
Award CCR-9167371 and Grant CCR-9109089 to the University of Pittsburgh.

358

systems without redundancies were constructed, fixed point computations would
be faster, independent of the evaluation algorithm used.

We present in this paper a systematic approach to minimize data flow equa-
tion systems by discovering congruence relationships among equations. Two
equations are congruent only if their fixed points are equal. Thus, at least one
of two congruent equations is redundant and can therefore be eliminated. Given
a congruence relation an equivalent but reduced equation system is constructed
by including only a single equation from each class of congruent equations. Our
approach is general in that it is applicable to all monotone data flow analysis
problems.

Previous approaches to avoid unnecessary evaluations of data flow equations
include the methods based on static single assignmen~ form [WZ85, AWZ88,
RWZ88, CLZ86], sparse evaluation graphs [CCF90] and dependence flow graphs
[:IP93]. The idea behind these approaches is to by-pass some of the unnecessary
equation evaluations by manipulating the underlying graphical program repre-
sentation. We show that, by viewing the problem as an algebraic problem of
congruence relations, our approach allows for conceptually simple algorithms
that are both more general and powerful than previous graph-oriented methods.

The results of this paper are summarized as follows. We define a congruence
relation among data flow equations that is based on exploiting the known idem-
potence property of the meet operator in the system. No assumptions are made
on the sequence of intermediate values an equation may take during the fixed
point iteration. These sequences of intermediate values are highly dependent on
the particular iteration strategy that is used to compute the fixed point, but the
notion of congruence is a valid relation for any such strategy. A fast partition-
ing algorithm is presented to compute the idempotence congruence relation in
O(nlogn) time and O(n) space, where n is the size of the program. Using the
computed congruence relation, a reduced equation system is constructed that
only contains a single equation from each congruence class. By the definition
of congruence, it is sufficient to compute the fixed point over only the reduced
system using any of the standard evaluation strategies.

The approach of reducing equation systems by computing congruence rela-
tions can easily be extended to include other notions of congruence. The congru-
ence relations discussed in [DST80, NO80] are based on common snbexpressions.
Alpern et al. [AWZ88] used a fast O(n log n) algorithm due to Hopcroft for min-
imizing finite automata to compute congruences by common subexpression for
program optimization. We show that Hopcroft's algorithm can equally well be
applied to disover common subexpression in data flow equations systems in order
t'o enable further reductions.

The asymptotic performance of congruence partitioning to reduce a data
flow equation system only depends on the size of the equation system. The
complexity of the data flow problem, i.e., the cost of actually evaluating the
equations, does not impact on the performance of the partitioning algorithm.
The complexity of data flow problems varies dramatically, ranging from simple
problems, such a s live variable analysis, that can be implemented efficiently

359

using bit vectors, to sophisticated time- and space-intensive analyses, such as
alias analysis. Naturally, the benefits of congruence partitioning increase with
the complexity of the data flow problem.

We present the pertinent background in data flow analysis in Section 2. Sec-
tion 3 introduces congruence relations among data flow equations. The idempo-
tence congruence relation along with our fast partitioning algorithm is presented
in Section 4. Section 5 discusses congruence computations based on common
subexpressions. We compare congruence partitioning with previous work and
discuss other related work in Section 6. Conclusions are given in Section 7.

2 Data F low Equation Systems

A data flow analysis is defined over a graphical representation of a program, usu-
ally the control flow graph G = (N, E, no). The nodes N represent basic blocks
[ASU86] in the program with a unique entry node no. The edges E represent
transfer of control among basic blocks. We assume that IEI = O(INI). Given
a node n E N, pred(n) (succ(n)) denotes the set of immediate predecessors
(successors) of node n in G.

Data flow analyses are modeled in a data flow framework D = (L, F, G, m),
where:

- (L, ~, _l_, T, A) is a semi-lattice with a set L, a partial order <, a least element
_L (bottom), a greatest element T (top) and a meet Operator A, such that
for all z, y, z G L: z A z = z (idempotence), z A y = y A z (commutativity),
and z A (y A z) = (z A y) A z (associativity).

- F C_ { f : L ~ L} is a space of monotone flow functions over L.
- G = (N, E, no) is a control flow graph
- m : N ~. F is a mapping of program nodes to functions in F.

The function re(n) mapped to a node n (also denoted f,~) models the data
flow when execution passes through node n. If z E L holds on entry of a node n
then f,~(z) E L holds on exit from node n. 2

A data flow framework induces a system of data flow equations parameterized
by the nodes in the control flow graph:

In0] : A 0 (•
= s.(A for n r no

pEpred(n)

The solution of a data flow framework is the greatest fized poir~t assignment gfp :
N ~ L of the equation system based on the initial value T. The monotonicity of
F ensures that the greatest fixed point gfp (n) of each equation ~[n] exists and is
unique. For each node n G N, gfp (n) describes the data flow solution that holds
on exit of node n.

2 The framework models both forward and backward analyses by assuming that in a
backward analysis the transposed control flow graph G t = (N,E t) is used, where
E ' = {(n,m) l (,~,n) ~ V }.

360

v ~ v(xtpl])...

"~(~ v (x [Pk])
(i)

Fig. 1. The translation of equations into graphs.

v ~ v(x[pl])
, , o

- "~@ v(x[pk])
(ii)

The equation system X can be represented by a labeled directed graph G =
(V, E). The vertices in V represent equation variables and the operations of the
right hand side of equations. An edge (v, w) in E describes that the expression
represented by vertex v depends on the input represented by vertex w. We refer
to this graph as an equation graph.

An equation z[n] = f~(/~ z[V]) is translated into the graph shown in

Fig. 1 (i). Corresponding to the function symbol f,L is a vertex v(z[n]) with
label(v(z[n]) = f,~ that has a single successor vertex with label A. The vertex
labeled A has successors v(z[p]) for each predecessor p of node n. If the function

f,~ is the identity function, the equation reduces to z[n] = A zip]. In this
p~pred(n)

case no vertex for the function symbol is created, and the vertex v(z[n]) is the
vertex labeled A as shown in Fig. 1 (ii). We partition the vertex set V into a
set V ̂ of vertices labeled A (meet vertices) and a set V! of vertices with a label
denoting any other function symbol (function vertices).

Due to the direct correspondence between the graphical and textual represen-
tations of an equation system we will not always explicitly distinguish between
the two. In discussing equation systems we assume that their graphs are trans-
formed into graphs whose vertices have an indegree and outdegree of at most 2.
This transformation is analogous to transforming the textual representation of
the equation system into some form of three-address-code. The associativity of
the meet operator ensures that a graph can always be transformed into this form
by adding some additional vertices for each vertex whose indegree or outdegree
is greater than 2. At most a constant number of vertices is added per edge in
this process and the number of vertices remains O(n) [DST80], where n = IN[
is the number of nodes in the control flow graph.

As the running example in this paper we consider alias analysis performed
over procedure In se r t , shown below. Alias analysis computes pairs of aliased
variables. To simplify the representation, we consider a simple alias analysis
that assumes that if a variable q is aliased to a variable p then any variable
that q points to is aliased by any variable p points to. The lattice elements are
collections of alias relations. A collection could be simply a set of alias pairs
or, alternatively, a partition of the variables into sets of aliased variables. We
omit showing the control flow graph for procedure Inse r t . The relevant program
points at which data flow information is computed are numbered in curly braces
in procedure Inset*.

361

procedure Inse r t (x , val) / * insert a value val in a binary tree x * /
begin

val:=h(val); { i }
repeat { ~ }

p:ffix; { 3 }
if (val < x->key) then x=x->left; { ~ }

else x=x->right; { 5}
;{ 6}
until (x = NULL); { 7}
new(x); x->key:ffival; x->left:=NULL; x->right:=NULL; { 8}
i~ (val < p->key) then p->left:=x{ 9}

else p->right:=x; { 10}
;{ 11 }

end

The equation system that expresses the analysis over procedure In se r t is
shown in Fig 2(i) along with its equation graph in Fig. 2 (ii). Each equation
z[n] refers to the alias information that holds at the program point n marked in
procedure Inse r t . The meet operator A represents the union of two collections
of alias relations into a single collection. The data flow equations are also based
on a function kill[y] that takes as an argument a collection of alias relations C
and eliminates all alias relations for variable y from C. For more details of the
analysis we refer the reader to [CC77]. With respect to congruence partitioning,
the meet A and other functions like kill[y] are merely uninterpreted symbols.

3 C o n g r u e n c e R e l a t i o n s

Given an equation system, our objective is to minimize the size of the system
without evaluating any equation. Unfortunately, even the following restricted
version of this minimization problem is NP-complete [G379]: Given a set of ex-
pressions constructed from uninterpreted constants and only the single commu-
tative and associative operator, determine the minimum number of operations
needed to evaluate all expressions. Thus, in general, we cannot expect an efficient
algorithm to be able to ehminate all redundancies from X. However, we show
that it is possible to minimize X with respect to certain well-defined classes of
redundancies using a fast algorithm.

Redundancies are eliminated by discovering congruence relationships among
equations. We only consider relationships among the final fixed point values of
equations; two equations z[n] and z[m] in a system X are called congruent only
if gfp (n) : gfp (m).

Congruence is an equivalence relation (symmetric, reflexive and transitive)
and therefore induces a partition ~r of the equations into congruence classes. All
equations that are contained in the same congruence class in ~ have an identical
fixed point. Given ~" we can reduce the original equation system by eliminating all
but one equation from each congruence class. By the definition of congruence, the
resulting reduced system is guaranteed to provide the same fixed point solution
as the original system, independent of the particular evaluation strategy used. If

362

z[1] = init

�9 [2] = , [1] ^ ~[7]

, IS] = kitt[V](, [2]) ^ (V, ~)

�9 [4] = 4 3]

Jr] = ~[6]

4 s] = kizz[~](~[7])

�9 [9] = (v, ~) ^ x [sJ

�9 [10] = ~[s] ^ (p, ~)

z[11] = z[9] ^ m[10]

~(v(x[1])

(x [21)

v2

(x ~) v (x [5])
v

- ~ v (x [6])

-") v (x [71)

v(x [9 1 ~ v(xk,~..//v(x[ll]) [101)

(1) (2)

Fig. 2. The data flow equation system (i) for a simple alias analysis over procedure
Insert and its graphical representation (ii).

needed, the solution of the reduced system can later be expanded to the solution
of all original equations using the computed partition It.

The following sections discuss how congruence relationships among the equa-
tions can be discovered by exploiting properties in the equation graph. We first
present a partitioning algorithm that discovers congruence based on the idem-
potence property of the meet operator. We then show how an algorithm due to
Hopcroft for minimizing finite automata can be adapted to discover additional
congruences that result from common subexpressions. Fig. 3 shows the reduc-
tions in the equation system for the alias analysis of procedure I n s e r t that are
achieved by congruence partitioning explained in the next sections.

4 C o n g r u e n c e b y I d e m p o t e n c e

This section describe the detection of congruences among data flow equations
that result from the idempotence of the meet operator A. Recall that a data flow
equation is of the form:

pepved(n)
Trivial congruences result from a special case of equations, where the function
f,~ is the identity function and node n has only a single predecessor p. In this

363

�9 [1] = i , i ~

z[2] = , [1] A ~ET]

�9 [3] = klu[p](,[2]) ^ (p , ,)
�9 [4] = , [3]

�9 [5] = , [3]
�9 [8] = , [4] ^ @]

,[7] = ,[6]
�9 [8] = k i z z [,] (, [7])

�9 [9] = , [8] ^ (p . ,)

, [l O] = , [8] ^ (p , ,)

, [11] ---- z[9] A , [10]

(i)

z[1] -- init
�9 [2] = , [1] ^ , [3]

�9 [3] = k l z @] (, [2]) ^ (p . ,)

,[8] = kiu[,] (, [3])

, [9] = . I s] ^ (p . ,)
�9 [10] = , [8] ^ (p . ,)

�9 [113 = , [9] ^ ,[103

(u)

, [1] = i,~it

�9 [z] = , B] ^ , [3]

, [3] = k i u k] (, [2]) ^ 0 , , ,)
�9 [8] = kill[,](,[3])
�9 [9] = , [8] ^ (p . .)

(m)

Fig. 3. The original equation system for the alias analysis of procedure In se r t (i), the
reduced system after partitioning by idempotence (ii), and the reduced system after a
combined partitioning by common subexpression and idempotence and (iii).

case the equation reduces 'to a simple copy equation z[n] = z~] . Clearly, the
fixed points of re[n] and m~v] are identical and re[n] and ~v] are congruent.

The congruence relation based on copies can easily be computed in a single
pass over the equation system. Initially, we assume each equation z[n] is in a sep-
arate congruence class. For each copy equation z[n] -- z[m] that is encountered,
the congruence class of m[m] is merged into class of re[n] creating a single class.
A reduced equation system without copies is constructed by including from each
congruence class only a single representative equation. Each operand that occurs
in an included equation is replaced by the representative of its congruence class.

Idempotence congruence extends this trivial notion of copy congruences by
also covering hidden copies. A hidden copy is an equation of the form m. = y A z
such that y and z are congruent. By the idempotence of the meet operator, the
congruence of y and z implies that gfp (y) A gfp (z) reduces to gfp (y) and equation

is essentially a copy. Thus, it can be determined that all three variables z, y, and
z are congruent. Over an equation graph G, we obtain the following definition
with respect to the idempotent meet operation A in G.

D e f i n i t i o n 1 (C o n g r u e n c e b y i d e m p o t e n c e) . Leg G = (V, E) be an equa-
tion graph. A relation C on V ks called an idempotence congruence relation, if
(v, w) e C implies one of the following conditions:
(1) v : w (the vertices v and w are identical), or
(2) one of the ~ertice~, ,ay ~, i~ la~eled ^ and (~, ~) e E implie, (~, w) e C

To verify that C is indeed a congruence relation we have to ensure that the
base case of the recursive rule (2) as well as the application of rule (2) can only
yield congruent pairs of vertices. The base case of rule (2) declares (v, w) E C
if w is the sole destination of edges leaving v. In this case v.represents a copy

364

equation and v and zo are congruent. If all destinations of edges leaving v are
congruent to a vertex ~n then v reduces to z0 by idempotence and v and w are
congruent (application of rule 2).

By its recursive definition, the idempotence congruence relation is not unique
if G contains cycles. Consider the equations in (a):

�9 [~] = y (, [o]) , [~] = y (, [o]) , [~] = ! (, [o])
�9 [2] = , [i] ^ , [3] , [2] = , [i] ^ , [2]
�9 [3] = , [2]

(a) (b) (c)

The partition ~rl = {ci = {z[1]}, cz = {z[2], z[3]}} with the corresponding sys-
tem (b) describes an idempotence congruence relation. However~ the partition

~2 - {ci = {z[1], z[21, z[3]}} also describes an idemp0tcnce congruence rela-
tion that provides the reduced system (c) 3. We arc interested in the maximal
idempotence congruence relation (fewest number of congruence classes) for an
equation graph. For the remainder of this paper, we use the symbol C ~ to re-
fer to the maximal idempotence congruence relation according to Definition I.
The relation C* provides the coarses~ partition ~r* of the vertices in an equation
graph such that two vertices are in the same partition only if they arc congruent
according to Definition 1.

We present a fast partitioning algorithm to compute ~r* that starts with an
initial partition ~r that places all possibly congruent pairs of equations in the same
class. The partition Ir is iteratively refined until a stable partition ~r* is reached
that is consistent with the definition of C*. Given partition ~* we construct the
equation system that is minimized with respect to idempotence congruence in
the same way as previously described. That is, from each congruence class in
7r* only one representative equation is included. The resulting equation system
contains no copy equations and no hidden copies due to idempotence.

4.1 The Partitioning Algorithm

Computing the partition ~r* by iterative refinement requires first determining
an appropriate initial partition. If two vertices arc initially placed in different
congruence classes they can never discovered to be congruent. Thus, the initial
partition must overestimate the congruence relation C*. A partition Ir overes-
timates C*, if (v, w) G C* implies that the vertices v and w are placed in the
same congruence class in 7r. In order to enable the partitioning algorithm to
converge quickly to 7r*, we are interested in finding the finest initial partition
that overestimates C*.

Standard graph partitioning algorithms [AHU74] are based on an initial par-
tition of the vertices by their label. Unfortunately, we cannot follow this approach
for computing C*. Although function vertices with a different label cannot be
congruent by idempotence, meet vertices may be congruent to any function ver-

3 Note that the congruence between z[1] and z[2] only holds with respect to the greatest
fixed point defined with the initial value T at each eqliatlon.

365

T1 T2 T3 T4
V (X [1]) @ v l ~ v (x [8]) @ v 2

[2]) ~ - ~ v (x [3])

[5]) ~ "~ v(x[11]) T5

@ v(x[6]) @ v 4 T6

~v(x[7]) @ v 3

Fig. 4. A reverse DFST partition ~r = T1,...T6 of the equation graph from Fig. 2(ii).

rex. We present a new partitioning algorithm and show how an overestimating
initial partition of the vertices can be constructed in a canonical way.

Congruence classes in a partition are represented as reverse trees of vertices
in an equation graph G. A reverse tree is a tree in which edges are directed from
children to parent vertices. Thus, ~r = T1, ..., Tk is a collection of disjoint reverse
trees and each tree T~ is a subgraph of the equation graph G. We will often refer
to the reverse trees in a partition simply as trees and use the following notation
for a given partition forest ~r. The root vertex of a tree T in ~r is denoted root(T).
For a given vertex v in a tree T, parent (v) is the unique predecessor of v in G
that is contained in T.

We construct an initial partition of the vertices in an equation graph G
during a single reverse depth-first traversal of G, i.e., a depth-first traversal of
the transposed graph of G. The resulting partition contains one tree (congruence
class) for each function vertex in G. The tree T~ for a function vertex v is
constructed by traversing each reachable edge in reverse direction, such that T~
is a reverse depth-first spanning tree (DFST) that is rooted at v and that does
not include any other function vertex. The resulting forest of reverse DFSTs
is called a reverse DFST partition. A reverse DFST partition for the equation
graph from Fig. 2(ii) is shown in Fig. 4.

A reverse DFST partition for an equation graph is not unique since selections
among multiple candidates to visit next are made arbitrarily. We show in the
following lemma that any reverse DFST partition 7r safely overestimates C*.

L e r n m a 1 Let r be a reverse DFST partition for a graph G and let v and w be
vertices in G. I f (v, w) 6 C* then v and w are in the same tree in ~r.

Proof. For a vertex v in a tree T in lr we use the notation level(v) to denote the
length of the path from v to root(T). Given two distinct trees T1 and T2 in ~r,
we first show that if v is a vertex in T1 then (v, root(T~)) f~ C* by induction on
z = leveZ(v). (Basis l = 0) Clearly; (root(T), root(T:)) r C* since two distinct
function vertices cannot be congruent by idempotence. (Ind. l > 0) By hypothesis
(w, root(T2)) ~ (2* if level(w) < I. Assume (v, root(T2)) 6 C* and level(v) = l.

366

Then by rule (2) of Def. 1 also (parent(v), roog(T1)) E C* which contradicts the
hypothesis since level(parent(v)) < l.

Consider now two vertices v and w that are in distinct trees 7"1 and T2 and
neither v nor w are the root vertex in their tree. If (v, w) E C* then it follows
by rule (2) of Def. 1 that for the parent of at least one of the vertices, say v, we
obtain (parent (v), w) E C*. By repeatedly applying this argument, we eventually
derive that the root vertex of one the trees must be congruent under C* to a
vertex in the other tree, which was however shown not to be possible. Hence,
(v, w) c*. []

Our algorithm Partition operates on an initial reverse DFST partition 7r
by subsequently refining ~r until the current partition is consistent with the
definition of C*. In the resulting partition It* two vertices v and w are left in
the same tree only if (v, w) E C*.

Algorithm Partition, shown below, maintains two lists of vertices, worklisg
and splitlisg. Worklist is a list of current partition trees to be examined. Each
tree T in worklist is examined in line (5) to determine whether it contains an
interior vertex v that has a successor not in T. In this case, the vertices v and
parent(v) in T cannot be congruent under idempotence. To ensure that the two
vertices do not remain in the same tree, vertex v is placed in splitlist. During
the inner loop the tree of each vertex u in splitlist is split by disconnecting the
subtree rooted at u. After the split one of the two resulting subtrees is placed in
worklist to ensure that vertices that may trigger a subsequent split will be exam-
ined. Partition terminates when worklist is exhausted with the final partition ~-*.

Algorithm Partition performs the following operation on partition trees:
split(v): disconnects and returns the subtree rooted at v of the tree containing vertex
V .

Algorithm Partition (Partitioning by iderapotence)
Inpu t : Equation graph G = (V = V! U V^, E)
Ou t pu t : Partition lr* = 7"1,..., T~ of V according to C*
Method :
1. create an initial reverse DFST partition lr = 7'1,.. . , Tl of the vertices in V;
2. worklist *-- {T1,. . . , Tz};
3. while ~oorklist ~ r do
4. select and remove a tree T from worklist;
5. splitlist *-- {v E VAIn has one successor in T and one successor not in T} ;
6. for each r E 8plitlist such tha t u is not a root vertex in ~r do
7. let 7"1 be the tree containing vertex u;
8. add T2 4-- split(u) as a new tree to ~r;
9. ifT1 E worklist then add Tz to worklist
10. else add the smaller of T1 and Tz to worklist;
11. endfor;
12. endwhile;

We apply Partition to the initial reverse DFST partition from Fig. 4. The ini-
tial partition ~r corresponding to-Fig. 4 and the final partition ~r* after algorithm

367

Partition terminates are shown below, where congruence classes are displayed
in columns. The original complete equation system was shown in Fig. 3 (i). The
final partition 7r* describes the congruences in that system that result from the
copy equations z[4], z[5], z[7] and from the hidden copy equation z[6]. Specif-
ically, all equations in the column for z[3] in ~r* are found to have the same
fixed point as equation z[3]. The reduced equation systems in which the four
redundant (hidden) copy equations are eliminated is shown in Fig. 3 (ii).

"/r*
�9 [1] ,[3] ,[s] ,[1] =[2] =[3] ,[s]
�9 p] ,[4] ,[9] ,[4]

�9 [5] ,[10] ,Is]

�9 [9] ,[10] ,[11]

4.2 Ana lys i s

We show that algorithm Partition computes the congruence relation C*, that is,
the output partition lr* is the coarsest partition, such two vertices v and w are
contained in the same tree in ~r* only if (v, w) E C*. We proceed with the proof
by first showing in Lemma 2 that 7r* is consistent with the definition of C*, that
is, 7r* is not too coarse. We then show in Lemma 3 that algorithm Partition is
optimal in that ~r* is the coarsest consistent partitiOn.

L e m m a 2 (Cons i s t eney) . Partition ~r* is consistent with the definition of C*,
for if v is a vertez in a tree T in 7r* and v is not the root vertez of T then all
successors of v are also in T.

Proof. Assume v is a vertex in a tree T in ~r* that is not the root vertex of T.
Then v has one successor parent (v) in T. Assume on the contrary to the claim
that v has another successor w not in T. In the initial partition 7r, vertex v is in
some tree T1 _D T and all trees are initially placed in worklist. The construction of
splitlistin line (5) implies that w must also be in T1 since otherwise a split during
the first iteration would have separated vertex v from parent(v) contradicting
the assumptions. Now, consider the point during the algorithm at which vertex
w is separated from the vertices v and paren~v) and the vertices are placed in
two different trees T2 C T1 containing w and T~ C T1 containing v and parent(v).
After this separation at least one of T2 and T~ will be in worklist, which implies
that vertex v will be separated from parent (v) after the new contents of worklist
are exhausted, which again contradicts the assumptions. Hence, all successors of
v must be in T. []

L e m m a 3 (O p t i m a l i t y) . Partition 7r* is as coarse as possible, that is, i f (v, w) E
C "~ then v and w are in the same tree in partition ~r*.

Proof. We show by induction on the number i of split operations performed in
algorithm Partition that two vertices v and w are in two distinct trees only if
(v, w) ~ C*. (Basi~ :i = 0) The claims holds for the initial.partition by Lemma

368

1. (Ind. i > 0) Let ~r be the partit ion resulting after i - 1 split operations. The
i-th split operation splits an edge (v, to) in some tree T only if v has another
successor u in a different tree and by induction hypothesis: (u, to) ~ C* and
(u, root(T)) ~ C*. Hence, by rule (2) of Definition 1: (v,w) ~ C* and also
(v, roog(T)) r C*. Let Tx be the subtree of T rooted at v and let T2 be the
remaining portion of T after disconnecting T1. Since the root vertices of the
two trees, v and roo~(T), are not congruent under C*, an analogous induction
argument to the one in the proof of Lemma 1 shows that no vertex in T1 can be
congruent to a vertex in T2 under C*. Thus, two vertices are in different trees
in the new partit ion only if they are not congruent under C*. []

C o r o l l a r y 1. Algorighm Partition correctly computes ghe idempotence congru-
ence rela$ion C* (by lemmas ~ and 3).

T h e o r e m 1 (C o m p l e x i t y) . AlgoriShm Partition can be implemented in
 ime and space, , here is n ,mber of er ices in eq ,, ion

graph G.

Proof. Constructing the initial partition takes O(n) time. To calculate the total
time spent in the while loop, we consider the number of times the trec of each
vertex can be placed in worklist. Each time the current tree of a vertex to is
added to worklist the tree's size is at most half the size of the previous tree
containing w. Hence, a vertex ~ tree can bc at most log n + 1 times in worklis~.
Spliflist is constructed by a scan of the vertices whose tree was removed from
workHst and the total number of vertices scanned is O(nlog n). Operation split
is executed at most n times, since there can be at most n partitions. Each call
to splig is implemented in O(I) time by maintaining for each vertex a pointer to
its position in the partition forest. To find the smaller of the two subtrees after
a split in time proportional to the smaller tree (i.e., in total time O(nlog n)),
the vertices in the two trees are counted by alternating between the trees after
each vertex. The algorithm also requires a pointer for each vertex to its current
partition tree, which is updated after each split only for the vertices of the smaller
resulting tree. In summary, the total time spent in executing algorithm Partition
is O(nlog n). The size of no auxiliary data structure is more than O(n) and O(n)
space is used to store the partition. []

If the equation graph is constructed as described in Section 2, the size n of
the graph is linear in the size of the program. In data flow problems that are
based on a product lattice L v, such as constant propagation, the equation at
each program point is a vector z = (~1 , . . . , :sv). In constant propagation there is
a component zi for each of V program variables. In general, it will be beneficial
to break the vector equation z into a set of V components equations z l , . . . , zv
in order to expose addit ional congruences. In this granularity, the size of the
equation graph increases to V • n.

369

5 Congruence by Common Subexpression

Additional reductions in an equation system can be achieved by extending our
definition of congruence to capture redundancies that result from sources other
than idempotence. In [DST80, NO80] congruence relations are defined based on
common subexpressions. For example, in Fig. 3 (ii), the term z[8] A (p, z) is a
common subexpression in equations z[9] and z[10]. The congruence relation by
common subexpression is defined below by observing the commutativi ty of the
meet operator.

D e f i n i t i o n 2 (C o n g r u e n c e by c o m m o n s u b e x p r e s s l o n) . Let G := (V, E)
be an equation graph. A relation S on V is called common subezpression congru-
ence relation i f for vertices v and w with successors v l , . . . , vk and wl , . . . , wk,
(v, w) �9 S implies label(v) = label(w) and V 1 < i < k:

(vl, wp(i)) �9 S for some permutat ion p on {1 , . . . k} i f label(v) : A
(vi, wi) �9 S otherwise

Partitioning a graph by common subexpression is a well known problem and
a fast O (n l o g n) algorithm is due to Hopcroft 's algorithm for minimizing finite
automata [HopT1]. Among other applications, Hopcroft 's algorithm was used to
eliminate common subexpression in program optimization [AWZ88]. We present
a different application by employing the algorithm to reduce data flow equation
systems.

Hopcroft 's algorithm starts with an initial partit ion 7r in which all vertices
with an identical label are placed in the same congruence class in 7r. The al-
gorithm iterates over the congruence classes to subsequently refine the current
partit ion until it is consistent with Definition 2. The algorithm terminates with
the coarsest partition in which two equations are in the same class only if they
are congruent under S. An adaptation of Hopcroft 's partitioning algorithm to
partition equation graphs is shown below.

Algor i thm An adaptation of Hopcrof2'n partitioning algorithm
Inpu t : Equation graph G = (V = Vy U V^, E)
Ou tpu t : Partition 7r* = C1, . . . , Ck, where Ci is a collection of vertices in G
1. create an initial partition ~r -- C1, . . . , Cz of the vertices in V by their label;
2. worklist ~ {C1,...,C~};
3. w h i l e voorkllst ~ 0 do
4. select and remove Ci from worklist;
5. f o r n ~ l t o 2 d o
6. splitlist ~-- {v 6 Vy I the n-th succ. of v is in Ci}
7. U {v 6 V^ Iv has exactly n succ. in Ci}; /* commut, of A */
8. for each Cj such tha t (splitlistN Cj) ys 0 and (Cj g splitlist) do
9. create a new tree collection C in ~r;
10. move each u E (splitlistn Cj) to C;
12. if Cj E worklist t hen add C to worklist
13. else add the smaller of Cj and C to worklist;
14. endfor; endfor;
15. endwhile

370

If Hopcroft's algorithm is apphed over the equation graph for the alias anal-
ysis of procedure Inse r t , the two equations z[9] : (p, a~) A z[8] and z[10] :
z[8] A (p, z) in Fig. 3 (i) are discovered to be congruent. The discovery of con-
gruences due to common subexpressions may enable the detection of additional
congruences by idempotence. For example, once we know that the two equa-
tions z[9] and ~[10] are congruent, it can in turn be determined that equation
z[ll] = z[9] A z[10] is actually a hidden copy and in fact all three equations
z[9], z[10] and z[ll] are congruent. To enable these second order effects, we can
incorporate the results of common subexpression partitioning into the initial
partition for idempotence partitioning. This is achieved by applying algorithm
Partition to the equation graph that results if all vertices that were already
found to be congruent are merged into a single vertex. The reductions in the
equation system from Fig. 3 (i) that axe enabled in this process are shown in
Fig. 3 (iii). The additional improvements over the equations system that results
from only partitioning by idempotence (Fig. 3 (ii)) are due to the discovery of
the congruence among equations a~[9], z[10] and a~[ll].

Unfortunately, applying each partitioning algorithm once may not provide
optimal results. In general, congruences that are found based on idempotence
may enable the discovery of additional common subexpressions and vice versa.
Thus, to find the maximal number of congruences requires computing the tran-
sitive closure Of the union of the two congruence relations. This closure can be
computed by iterating over the two partitioning algorithms until no more con-
gruence can be discovered. Each time a new iteration is started the size of the
equation graph is reduced resulting in a bound of O(n ~ log r~). In practice, the
number of common subexpressions in an equation graph may be smaU, in which
case, it may be sufficient to compute each congruence partitioning only once.
While this may sacrifice optimality, equation system reduction remains fast. Ex-
perimentation is needed to determine the benefits of computing the iterated
congruence closure.

6 R e l a t e d W o r k

A number of previous methods has focused on suppressing some of the unnec-
essary equation evaluations by manipulating the underlying graphical program
representation. The sparse evaluation graph (SEG) approach [CCF90], achieves
reductions in data flow equation systems indirectly by specializing a program's
control flow graph G with respect to each analysis problem such that smaller
equation systems will be generated. The SEG is obtained from a control flow
graph G by eliminating some of the nodes in G that have an identity flow func-
tion. The construction of a S EG requires O(e+n 2) time using dominance frontiers
[CCF90] and O(e • a(e)) time using a recent more complicated algorithm [CF93],
where e is the number of edges in a program's control flow graph G and rr is the
number of nodes in G. The SEG approach compares directly with our idempo-
tence congruence partitioning algorithm in that the removal of control flow graph
nodes with identity: flow functions results in the elimination of redundant (hid-

371

den) copy equations. However, there are important problems for which the SEG
approach fails to eliminate all (hidden) copies and algorithm Partition would
construct strictly smaller equation systems. Constant propagation is an example
of such a problem. It is likely in constant propagation that no flow graph nodes
have an identity flow function, in which case the SEG would be identical to the
original flow graph graph. However, even flow graph nodes with a non-identity
flow function generate copy and hidden copy equations for all program variables
that are not assigned a new value within that node. As our partitioning approach
operates on the level of individual equation operations, these redundancies are
exposed and can therefore be eliminated. In addition, congruence partitioning
is, unlike the SEG approach, extensible to discover redundancies due to common
subexpressions enabling further reductions in an equation system.

Other methods that improve data flow analysis by building specialized pro-
gram graphs are applicable to only certain data flow problems. The pargifioned
variaMe ~eehmque [Zad84] constructs for each variable a simplified flow graph
that enables a fast evaluation of the solution. However, this method is restricted
to parfiiionable data flow problems that permit the analysis of each variable par-
tition in isolation. The global value graph [RL77, RT82], static single assiggmenf
form (SSA) [SS70] and dependence flow graphs [JP93] are graphical represen-
tations that provide connections between definitions and uses of program vari-
ables. SSA form is constructed in O(e + n 2) time based on dominance frontiers
[CFR+91] and in O(e x a(e)) time based on a recent algorithm [CF93]. The ben-
efits of using SSA for data flow analysis are limited to problems that are based
on definition-use connections, such as constant propagation [WZ85]. A problem
like available expressions does not benefit from SSA. The same limitation applies
to the related depe,tde~ce flo~o graphs that are constructed in O(V x e) time,
where V is the number of program variables.

Computing congruence relations based on common subexpressions is a well
known problem and efficient algorithms have been developed [NO80, DST80,
HopT1]. Hopcroft's partitioning algorithm for minimizing finite automata was
used in program optimization to detect equalities among variables based on
common subexpressions over an extended SSA form of the program [AWZ88].
The authors describe a strategy to manipulate the SSA representation in or-
der to combine congruent (equal) variables values from different branches of a
structured if-statement. This treatment can be viewed as handling a special case
of detecting idempotence congruences. Other methods to eliminate redundant
program computations include value numbering [CS70], global value number-
ing based on SSA form [RWZ88] and methods based on the global value graph
[RT82].

7 Conclusion

We presented a new and efficient approach to improve the performance of any
monotone data flow ~nalysis by reducing the size of data flow equation systems
through congruence partitioning. The presented partitioning algorithms discover

372

congruences among data flow equations by exploiting the algebraic properties of
idempotence and commutativity of the meet operator. A remaining property of
the meet that we have not discussed is associativity. Unfortunately, discovering
congruences that are due to associativity is a much harder problem. The diffi-
culty of discovering congruences by associativity results from the fact that an
exponential number of different sequences of meet operations can yield congru-
ent values by associativity. This problem with associative operators also arises
in program optimizations, where reassoeiation techniques have been used as a
heuristic to discover certain equalities by associativity [CM80]. We are currently
considering whether reassociation would be a suitable approach to enable further
reductions in data flow equation systems.

Our approach of congruence partitioning demonstrates the feasibility of ap-
plying principles of program optimization and analysis, such as common subex-
pression elimination, to optimize the analyzers themselves. We expect to inves-
tigate this issue further aft part of our future work.

References

[AHU74]

[ASUS6]

[AWZ88]

[cc77]

[CCF90]

[CF93]

[CFR+91]

[CLZ86]

[CM80]

A.V. Aho, J.E. Hopcroft, and J.D. Unman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.
A.V. Alto, R. Sethl, and J.D. Ullman. Compilers, principles, techniques, and
tools. Addison-Wesley Publishing Company, Massachusetts, 1986.
B. Alpern, M. Wegman, and F.K. Zadeck. Detecting equality of values in
programs. In Proe. 15th Annual ACM Symp. on Principles of Programming
Languages, pages 1-11, San Diego, California, January 1988.
P. Cousot and R. Cousot. Static determination of dynamic properties of
generalized type unions. In Proc. A CM Conf. on Language Design for Reli-
able Software, pages 77-93, Raleigh, North Carolina, March 1977.
J.D. Chol, R.K. Cytron, and J. Ferrante. Automatic construction of sparse
data flow evaluation graphs. In Conf. Rec. 18th Annual ACM Syrup. on
Principles of Programming Languages, pages 55-66, Orlando, Florida, Jan-
uary 1990.
R.K. Cytron and J. Ferrante. Efficiently computing C-nodes on-the-fly.
Proc. 1993 Workshop on Languages and Compilers for Parallelism, 1993.
R.K. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F.K. Zadeck. Ef-

ficiently computing static single assignment form and the control depen-
dence graph. A CM Transactions of Programming Languages and Systems,
13(4):451-490, October 1991.
R.K. Cytron, A. Lowry, and F.K. Zadeck. Code motion of control struc-
tures in hlgh-level languages. In Conf. Rec. 13th Annual ACM Syrup. on
Principles of Programming Languages, pages 70-85, St. Petersburg Beach,
Florida, January 1986.
J. Cocke and P.W. Markstein. Measurement of program improvement al-
gorithms. In Proc. Information Processing 80. North Holland Publishing
Company, 1980.

[csT0]

[DST80]

[GJ~9]

[Hop71]

[JP93]

[KUT~]

[Lan92]

[NO80]

[RL77]

[RT82]

[RWZ88]

[ss~0]

[wz85]

[Zad84]

373

J. Cocke and J.T. Schwartz. Programming languages and their compilers;
preliminary notes. Courant Institute of Mathematical Sciences, New York
University, April 1970.

P.J. Downey, R. Sethi, and R.E. Tarjan. Variations on the common subex-
pression problem. Journal of the ACM, 27(4):758-771, October 1980.

M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman and
Company, New York, 1979.

J.E. Hopcroft. An n log n algorithm for minimizing states in finite automata.
In Theory of Machines and Computations. Academic Press, New York, 1971.

R. Johnson and K. Pingali. Dependence-based program analysis. In Proe.
ACM SIGPLAN '93 Conf. on Programming Language Design and Imple-
mentation, pages 78-89, Albuquerque, New Mexico, June 1993.

J.B. Kam and J.D. Uilman. Monotone data flow analysis frameworks. Acta
Informatica, 7(3):305-317, July 1977.

W.A. Landi. Interprocedurat aliasing in the presence of pointers. PhD thesis,
Rutgers University, New Brunswick, New Jersey, 1992.

G. Nelson and D.C. Oppen. Fast decision procedures based on congruence
closures. Journal of the ACM, 27(2), April 1980.

J. Reif and J. Lewis. Symbolic evaluation and the global value graph. In
Conf. Ree. ~th Annual ACM Syrup. on Principles of Programming Lan-
guages, pages 104-118, January 1977.

J. Reif and R.E. Tarjan. Symbolic program analysis in almost linear time.
SIAM Journal of Computing, 11(1):81-93, February 1982.

B. Rosen, M. Wegman, and F.K. Zadeck. Global value numbers and redun-
dant computations. In Conf. Rec. 15th Annual ACM Syrup. on Principles of
Programming Languages, pages 12-27, San Diego, California, January 1988.

R.M. Shapiro and H. Saint. The representation of algorithms. Technical
Report CA-7002-1432, Massachusetts Computer Associates, 1970.

M. Wegman and F.K. Zadeck. Constant propagation with conditional
branches. In Conf. Rec. l~th Annual A CM Syrup. on Principles of Program-
ming Languages, pages 291-299, New Orleans, Louisiana, January 1985.

F.K. Zadeck. Incremental data flow analysis in a structured program editor.
In Proe. A CM SIGPLAN Syrup. on Compiler Construction, pages 132-143,
June 1984.

