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A b s t r a c t .  Data flow analysis expresses the solution of an information 
gathering problem as the fixed point of a system of monotone equations. 
This paper presents a technique to improve the performance of data 
flow analysis by systematically reducing the size of the equation system 
in any monotone data flow problem. Reductions result from partition- 
ing the equations in the system according to congruence relations. We 
present a fast O(r~ log n) partitioning algorithm, where r~ is the size of the 
program, that exploits known algebraic properties in equation systems. 
From the resulting partition a reduced equation system is constructed 
that is minimized with respect to the computed congruence relation while 
still providing the data flow solution at all program points. 

1 I n t r o d u c t i o n  

Along with the growing importance of static data  flow analysis in current opti- 
mizing and parallelizing compilers comes an increased concern about the high 
time and space requirements of solving data flow problems. Experimental stud- 
ies show that  performing sophisticated analyses over even small to medium-sized 
programs can take several hours [Lan92]. Phrased in the traditional data  flow 
framework [KU77], the solution of a data flow problem is the greatest fixed point 
of a system of monotone equations. Each equation expresses the solution at one 
program point in terms of the solutions at immediately preceding (or succeeding) 
points. This formulation may result in overly large equation systems, limiting 
both the time and space ei~ciency of even the fastest fixed point evaluation 
algorithm. 

A closer inspection of equation systems reveals that  their sizes are unnecessar- 
ily enlarged due to the inherent inclusion of redundant equations. The structure 
of data  flow equation systems requires the propagation of intermediate results 
throughout the program, including the propagation to program points where 
these results are of no relevance. As a consequence, multiple equations in the sys- 
tem carry identical information. Equations that  duplicate information already 
expressed by other equations are redundant and their repeated evaluation during 
the fixed point iteration is clearly undesirable. If equivalent but smaller equation 

t Partially supported by National Science Foundation Presidential Young Investigator 
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systems without redundancies were constructed, fixed point computations would 
be faster, independent of the evaluation algorithm used. 

We present in this paper a systematic approach to minimize data flow equa- 
tion systems by discovering congruence relationships among equations. Two 
equations are congruent only if their fixed points are equal. Thus, at least one 
of two congruent equations is redundant and can therefore be eliminated. Given 
a congruence relation an equivalent but reduced equation system is constructed 
by including only a single equation from each class of congruent equations. Our 
approach is general in that it is applicable to all monotone data flow analysis 
problems. 

Previous approaches to avoid unnecessary evaluations of data flow equations 
include the methods based on static single assignmen~ form [WZ85, AWZ88, 
RWZ88, CLZ86], sparse evaluation graphs [CCF90] and dependence flow graphs 
[:IP93]. The idea behind these approaches is to by-pass some of the unnecessary 
equation evaluations by manipulating the underlying graphical program repre- 
sentation. We show that, by viewing the problem as an algebraic problem of 
congruence relations, our approach allows for conceptually simple algorithms 
that are both more general and powerful than previous graph-oriented methods. 

The results of this paper are summarized as follows. We define a congruence 
relation among data flow equations that is based on exploiting the known idem- 
potence property of the meet operator in the system. No assumptions are made 
on the sequence of intermediate values an equation may take during the fixed 
point iteration. These sequences of intermediate values are highly dependent on 
the particular iteration strategy that is used to compute the fixed point, but the 
notion of congruence is a valid relation for any such strategy. A fast partition- 
ing algorithm is presented to compute the idempotence congruence relation in 
O(nlogn) time and O(n) space, where n is the size of the program. Using the 
computed congruence relation, a reduced equation system is constructed that 
only contains a single equation from each congruence class. By the definition 
of congruence, it is sufficient to compute the fixed point over only the reduced 
system using any of the standard evaluation strategies. 

The approach of reducing equation systems by computing congruence rela- 
tions can easily be extended to include other notions of congruence. The congru- 
ence relations discussed in [DST80, NO80] are based on common snbexpressions. 
Alpern et al. [AWZ88] used a fast O(n log n) algorithm due to Hopcroft for min- 
imizing finite automata to compute congruences by common subexpression for 
program optimization. We show that Hopcroft's algorithm can equally well be 
applied to disover common subexpression in data flow equations systems in order 
t'o enable further reductions. 

The asymptotic performance of congruence partitioning to reduce a data 
flow equation system only depends on the size of the equation system. The 
complexity of the data flow problem, i.e., the cost of actually evaluating the 
equations, does not impact on the performance of the partitioning algorithm. 
The complexity of data flow problems varies dramatically, ranging from simple 
problems, such a s  live variable analysis, that can be implemented efficiently 
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using bit vectors, to sophisticated time- and space-intensive analyses, such as 
alias analysis. Naturally, the benefits of congruence partitioning increase with 
the complexity of the data  flow problem. 

We present the pertinent background in data  flow analysis in Section 2. Sec- 
tion 3 introduces congruence relations among data  flow equations. The idempo- 
tence congruence relation along with our fast partitioning algorithm is presented 
in Section 4. Section 5 discusses congruence computations based on common 
subexpressions. We compare congruence partitioning with previous work and 
discuss other related work in Section 6. Conclusions are given in Section 7. 

2 Data  F low Equation Systems 

A data  flow analysis is defined over a graphical representation of a program, usu- 
ally the control flow graph G = (N, E, no). The nodes N represent basic blocks 
[ASU86] in the program with a unique entry node no. The edges E represent 
transfer of control among basic blocks. We assume that  IEI = O(INI). Given 
a node n E N, pred(n) (succ(n)) denotes the set of immediate predecessors 
(successors) of node n in G. 

Data flow analyses are modeled in a data flow framework D = (L, F, G, m), 
where: 

- (L, ~, _l_, T,  A) is a semi-lattice with a set L, a partial order <, a least element 
_L (bottom), a greatest element T (top) and a meet Operator A, such that  
for all z, y, z G L: z A z = z (idempotence), z A y = y A z (commutativity),  
and z A (y A z) = (z A y) A z (associativity). 

- F C_ { f  : L ~ L} is a space of monotone flow functions over L. 
- G = (N, E, no) is a control flow graph 
- m : N ~. F is a mapping of program nodes to functions in F.  

The function re(n) mapped to a node n (also denoted f,~) models the data  
flow when execution passes through node n. If z E L holds on entry of a node n 
then f,~(z) E L holds on exit from node n. 2 

A data  flow framework induces a system of data flow equations parameterized 
by the nodes in the control flow graph: 

In0] : A 0 ( •  
= s.( A for n r no 

pEpred(n) 

The solution of a data  flow framework is the greatest fized poir~t assignment gfp : 
N ~ L of the equation system based on the initial value T.  The monotonicity of 
F ensures that  the greatest fixed point gfp (n) of each equation ~[n] exists and is 
unique. For each node n G N, gfp (n) describes the data  flow solution that  holds 
on exit of node n. 

2 The framework models both forward and backward analyses by assuming that in a 
backward analysis the transposed control flow graph G t = (N,E  t) is used, where 
E '  = {(n,m) l (,~,n) ~ V }. 
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v ~  v(xtpl])... 

"~(~ v (x [Pk ]) 
(i) 

Fig. 1. The translation of equations into graphs. 

v ~  v(x[pl]) 
, ,  o 

- "~@ v(x[pk]) 
(ii) 

The equation system X can be represented by a labeled directed graph G = 
(V, E). The vertices in V represent equation variables and the operations of the 
right hand side of equations. An edge (v, w) in E describes that the expression 
represented by vertex v depends on the input represented by vertex w. We refer 
to this graph as an equation graph. 

An equation z[n] = f~( /~ z[V]) is translated into the graph shown in 

Fig. 1 (i). Corresponding to the function symbol f,L is a vertex v(z[n]) with 
label(v(z[n]) = f,~ that has a single successor vertex with label A. The vertex 
labeled A has successors v(z[p]) for each predecessor p of node n. If the function 

f,~ is the identity function, the equation reduces to z[n] = A zip]. In this 
p~pred(n) 

case no vertex for the function symbol is created, and the vertex v(z[n]) is the 
vertex labeled A as shown in Fig. 1 (ii). We partition the vertex set V into a 
set V  ̂ of vertices labeled A (meet vertices) and a set V! of vertices with a label 
denoting any other function symbol (function vertices). 

Due to the direct correspondence between the graphical and textual represen- 
tations of an equation system we will not always explicitly distinguish between 
the two. In discussing equation systems we assume that their graphs are trans- 
formed into graphs whose vertices have an indegree and outdegree of at most 2. 
This transformation is analogous to transforming the textual representation of 
the equation system into some form of three-address-code. The associativity of 
the meet operator ensures that a graph can always be transformed into this form 
by adding some additional vertices for each vertex whose indegree or outdegree 
is greater than 2. At most a constant number of vertices is added per edge in 
this process and the number of vertices remains O(n) [DST80], where n = IN[ 
is the number of nodes in the control flow graph. 

As the running example in this paper we consider alias analysis performed 
over procedure In se r t ,  shown below. Alias analysis computes pairs of aliased 
variables. To simplify the representation, we consider a simple alias analysis 
that assumes that if a variable q is aliased to a variable p then any variable 
that q points to is aliased by any variable p points to. The lattice elements are 
collections of alias relations. A collection could be simply a set of alias pairs 
or, alternatively, a partition of the variables into sets of aliased variables. We 
omit showing the control flow graph for procedure Inse r t .  The relevant program 
points at which data flow information is computed are numbered in curly braces 
in procedure Inset*.  
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procedure Inse r t (x ,  val) / *  insert a value val in a binary tree x * /  
begin 

val:=h(val); { i } 
repeat { ~ } 

p:ffix; { 3 } 
if (val < x->key) then x=x->left; { ~ } 

else x=x->right; { 5} 
;{ 6}  
until (x = NULL); { 7} 
new(x); x->key:ffival; x->left:=NULL; x->right:=NULL; { 8} 
i~ (val < p->key) then p->left:=x{ 9} 

else p->right:=x; { 10} 
;{ 11 } 

end 

The equation system that expresses the analysis over procedure In se r t  is 
shown in Fig 2(i) along with its equation graph in Fig. 2 (ii). Each equation 
z[n] refers to the alias information that holds at the program point n marked in 
procedure Inse r t .  The meet operator A represents the union of two collections 
of alias relations into a single collection. The data flow equations are also based 
on a function kill[y] that takes as an argument a collection of alias relations C 
and eliminates all alias relations for variable y from C. For more details of the 
analysis we refer the reader to [CC77]. With respect to congruence partitioning, 
the meet A and other functions like kill[y] are merely uninterpreted symbols. 

3 C o n g r u e n c e  R e l a t i o n s  

Given an equation system, our objective is to minimize the size of the system 
without evaluating any equation. Unfortunately, even the following restricted 
version of this minimization problem is NP-complete [G379]: Given a set of ex- 
pressions constructed from uninterpreted constants and only the single commu- 
tative and associative operator, determine the minimum number of operations 
needed to evaluate all expressions. Thus, in general, we cannot expect an efficient 
algorithm to be able to ehminate all redundancies from X. However, we show 
that it is possible to minimize X with respect to certain well-defined classes of 
redundancies using a fast algorithm. 

Redundancies are eliminated by discovering congruence relationships among 
equations. We only consider relationships among the final fixed point values of 
equations; two equations z[n] and z[m] in a system X are called congruent only 
if gfp (n) : gfp (m). 

Congruence is an equivalence relation (symmetric, reflexive and transitive) 
and therefore induces a partition ~r of the equations into congruence classes. All 
equations that are contained in the same congruence class in ~ have an identical 
fixed point. Given ~" we can reduce the original equation system by eliminating all 
but one equation from each congruence class. By the definition of congruence, the 
resulting reduced system is guaranteed to provide the same fixed point solution 
as the original system, independent of the particular evaluation strategy used. If 
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z[1] = init 

�9 [2] = , [1 ]  ^ ~[7] 

, IS]  = kitt[V]( , [2])  ^ (V, ~)  

�9 [4] = 4 3 ]  

Jr] = ~[6] 

4 s ]  = kizz[~](~[7])  

�9 [9] = (v, ~) ^ x [sJ  

�9 [10] = ~[s] ^ (p, ~) 

z[11]  = z[9]  ^ m[10] 

~( v(x[1]) 

(x [21) 

v2 

( x ~ )  v (x [5]) 
v 

- ~ v ( x [ 6 ] )  

-") v (x [71) 

v(x [ 9 1 ~  v(xk,~..//v(x[ll] ) [101) 

(1) ( 2 )  

Fig. 2. The data flow equation system (i) for a simple alias analysis over procedure 
Insert  and its graphical representation (ii). 

needed, the solution of the reduced system can later be expanded to the solution 
of all original equations using the computed partition It. 

The following sections discuss how congruence relationships among the equa- 
tions can be discovered by exploiting properties in the equation graph. We first 
present a partitioning algorithm that discovers congruence based on the idem- 
potence property of the meet operator. We then show how an algorithm due to 
Hopcroft for minimizing finite automata can be adapted to discover additional 
congruences that result from common subexpressions. Fig. 3 shows the reduc- 
tions in the equation system for the alias analysis of procedure I n s e r t  that are 
achieved by congruence partitioning explained in the next sections. 

4 C o n g r u e n c e  b y  I d e m p o t e n c e  

This section describe the detection of congruences among data flow equations 
that result from the idempotence of the meet operator A. Recall that a data flow 
equation is of the form: 

pepved(n) 
Trivial congruences result from a special case of equations, where the function 
f,~ is the identity function and node n has only a single predecessor p. In this 
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�9 [1] = i , i ~  

z[2] = , [1 ]  A ~ET] 

�9 [3] = klu[p](,[2]) ^ ( p , , )  
�9 [4] = , [3 ]  

�9 [5] = , [3 ]  
�9 [8] = , [4 ]  ^ @ ]  

,[7] = ,[6] 
�9 [8] = k i z z [ , ] ( , [ 7 ] )  

�9 [9] = , [8 ]  ^ ( p . , )  

, [ l O ]  = , [ 8 ]  ^ ( p , , )  

, [11]  ---- z[9]  A , [10]  

(i) 

z[1]  --  init 
�9 [2] = , [1 ]  ^ , [3 ]  

�9 [3] = k l z @ ] ( , [ 2 ] )  ^ ( p . , )  

,[8] = kiu[ , ] ( , [3])  

, [9]  = . I s ]  ^ ( p . , )  
�9 [10] = , [8 ]  ^ ( p . , )  

�9 [113 = , [9 ]  ^ ,[103 

(u) 

, [ 1 ]  = i,~it 

�9 [z] = , B ]  ^ , [ 3 ]  

, [3 ]  = k i u k ] ( , [ 2 ] )  ^ 0 , , , )  
�9 [8] = kill[,](,[3]) 
�9 [9] = , [8 ]  ^ ( p . . )  

(m) 

Fig. 3. The original equation system for the alias analysis of procedure In se r t  (i), the 
reduced system after partitioning by idempotence (ii), and the reduced system after a 
combined partitioning by common subexpression and idempotence and (iii). 

case the equation reduces 'to a simple copy equation z[n] = z~] .  Clearly, the 
fixed points of re[n] and m~v] are identical and re[n] and ~v] are congruent. 

The congruence relation based on copies can easily be computed in a single 
pass over the equation system. Initially, we assume each equation z[n] is in a sep- 
arate congruence class. For each copy equation z[n] -- z[m] that  is encountered, 
the congruence class of m[m] is merged into class of re[n] creating a single class. 
A reduced equation system without copies is constructed by including from each 
congruence class only a single representative equation. Each operand that  occurs 
in an included equation is replaced by the representative of its congruence class. 

Idempotence congruence extends this trivial notion of copy congruences by 
also covering hidden copies. A hidden copy is an equation of the form m. = y A z 
such that  y and z are congruent. By the idempotence of the meet operator, the 
congruence of y and z implies that  gfp (y) A gfp (z) reduces to gfp (y) and equation 

is essentially a copy. Thus, it can be determined that all three variables z, y, and 
z are congruent. Over an equation graph G, we obtain the following definition 
with respect to the idempotent meet operation A in G. 

D e f i n i t i o n  1 ( C o n g r u e n c e  b y  i d e m p o t e n c e ) .  Leg G = (V, E) be an equa- 
tion graph. A relation C on V ks called an idempotence congruence relation, if 
(v, w) e C implies one of the following conditions: 
(1) v : w ( the vertices v and w are identical ), or 
(2) one of the ~ertice~, ,ay ~, i~ la~eled ^ and (~, ~) e E implie, (~, w) e C 

To verify that  C is indeed a congruence relation we have to ensure that  the 
base case of the recursive rule (2) as well as the application of rule (2) can only 
yield congruent pairs of vertices. The base case of rule (2) declares (v, w) E C 
if w is the sole destination of edges leaving v. In this case v.represents a copy 
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equation and v and zo are congruent. If all destinations of edges leaving v are 
congruent to a vertex ~n then v reduces to z0 by idempotence and v and w are 
congruent (application of rule 2). 

By its recursive definition, the idempotence congruence relation is not unique 
if G contains cycles. Consider the equations in (a): 

�9 [~] = y ( , [ o ] )  , [~ ]  = y ( , [ o ] )  , [~ ]  = ! ( , [ o ] )  
�9 [2] = , [ i ]  ^ , [3 ]  , [2 ]  = , [ i ]  ^ , [2 ]  
�9 [3] = , [2 ]  

(a)  (b)  (c)  

The partition ~rl = {ci = {z[1]}, cz = {z[2], z[3]}} with the corresponding sys- 
tem (b) describes an idempotence congruence relation. However~ the partition 

~2 - {ci = {z[1], z[21, z[3]}} also describes an idemp0tcnce congruence rela- 
tion that provides the reduced system (c) 3. We arc interested in the maximal 
idempotence congruence relation (fewest number of congruence classes) for an 
equation graph. For the remainder of this paper, we use the symbol C ~ to re- 
fer to the maximal idempotence congruence relation according to Definition I. 
The relation C* provides the coarses~ partition ~r* of the vertices in an equation 
graph such that two vertices are in the same partition only if they arc congruent 
according to Definition 1. 

We present a fast partitioning algorithm to compute ~r* that starts with an 
initial partition ~r that places all possibly congruent pairs of equations in the same 
class. The partition Ir is iteratively refined until a stable partition ~r* is reached 
that is consistent with the definition of C*. Given partition ~* we construct the 
equation system that is minimized with respect to idempotence congruence in 
the same way as previously described. That is, from each congruence class in 
7r* only one representative equation is included. The resulting equation system 
contains no copy equations and no hidden copies due to idempotence. 

4.1 The Partitioning Algorithm 

Computing the partition ~r* by iterative refinement requires first determining 
an appropriate initial partition. If two vertices arc initially placed in different 
congruence classes they can never discovered to be congruent. Thus, the initial 
partition must overestimate the congruence relation C*. A partition Ir overes- 
timates C*, if (v, w) G C* implies that the vertices v and w are placed in the 
same congruence class in 7r. In order to enable the partitioning algorithm to 
converge quickly to 7r*, we are interested in finding the finest initial partition 
that overestimates C*. 

Standard graph partitioning algorithms [AHU74] are based on an initial par- 
tition of the vertices by their label. Unfortunately, we cannot follow this approach 
for computing C*. Although function vertices with a different label cannot be 
congruent by idempotence, meet vertices may be congruent to any function ver- 

3 Note that the congruence between z[1] and z[2] only holds with respect to the greatest 
fixed point defined with the initial value T at each eqliatlon. 
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T1 T2 T3 T4 
V ( X [ 1 ] ) @ v l  ~ v ( x [ 8 ] )  @ v 2  

[2]) ~ - ~  v (x [3]) 

[5]) ~ "~ v(x[11]) T5 

@ v(x[6]) @ v 4  T6 

~v(x[7] )  @ v 3  

Fig. 4. A reverse DFST partition ~r = T1,...T6 of the equation graph from Fig. 2(ii). 

rex. We present a new partitioning algorithm and show how an overestimating 
initial partition of the vertices can be constructed in a canonical way. 

Congruence classes in a partition are represented as reverse trees of vertices 
in an equation graph G. A reverse tree is a tree in which edges are directed from 
children to parent vertices. Thus, ~r = T1, ..., Tk is a collection of disjoint reverse 
trees and each tree T~ is a subgraph of the equation graph G. We will often refer 
to the reverse trees in a partition simply as trees and use the following notation 
for a given partition forest ~r. The root vertex of a tree T in ~r is denoted root(T). 
For a given vertex v in a tree T, parent (v) is the unique predecessor of v in G 
that is contained in T. 

We construct an initial partition of the vertices in an equation graph G 
during a single reverse depth-first traversal of G, i.e., a depth-first traversal of 
the transposed graph of G. The resulting partition contains one tree (congruence 
class) for each function vertex in G. The tree T~ for a function vertex v is 
constructed by traversing each reachable edge in reverse direction, such that  T~ 
is a reverse depth-first spanning tree (DFST) that  is rooted at v and that  does 
not include any other function vertex. The resulting forest of reverse DFSTs 
is called a reverse DFST partition. A reverse DFST partition for the equation 
graph from Fig. 2(ii) is shown in Fig. 4. 

A reverse DFST partition for an equation graph is not unique since selections 
among multiple candidates to visit next are made arbitrarily. We show in the 
following lemma that  any reverse DFST partition 7r safely overestimates C*. 

L e r n m a  1 Let r be a reverse DFST  partition for a graph G and let v and w be 
vertices in G. I f  (v, w) 6 C* then v and w are in the same tree in ~r. 

Proof. For a vertex v in a tree T in lr we use the notation level(v) to denote the 
length of the path from v to root(T). Given two distinct trees T1 and T2 in ~r, 
we first show that  if v is a vertex in T1 then (v, root(T~)) f~ C* by induction on 
z = leveZ(v). (Basis l = 0) Clearly; (root(T ), root(T:)) r C* since two distinct 
function vertices cannot be congruent by idempotence. (Ind. l > 0) By hypothesis 
(w, root(T2)) ~ (2* if level(w) < I. Assume (v, root(T2)) 6 C* and level(v) = l. 
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Then by rule (2) of Def. 1 also (parent(v), roog(T1)) E C* which contradicts the 
hypothesis since level(parent(v)) < l. 

Consider now two vertices v and w that  are in distinct trees 7"1 and T2 and 
neither v nor w are the root vertex in their tree. If (v, w) E C* then it follows 
by rule (2) of Def. 1 that for the parent of at least one of the vertices, say v, we 
obtain (parent (v), w) E C*. By repeatedly applying this argument, we eventually 
derive that  the root vertex of one the trees must be congruent under C* to a 
vertex in the other tree, which was however shown not to be possible. Hence, 
(v, w) c*. [] 

Our algorithm Partition operates on an initial reverse DFST partition 7r 
by subsequently refining ~r until the current partition is consistent with the 
definition of C*. In the resulting partition It* two vertices v and w are left in 
the same tree only if (v, w) E C*. 

Algorithm Partition, shown below, maintains two lists of vertices, worklisg 
and splitlisg. Worklist is a list of current partition trees to be examined. Each 
tree T in worklist is examined in line (5) to determine whether it contains an 
interior vertex v that has a successor not in T. In this case, the vertices v and 
parent(v) in T cannot be congruent under idempotence. To ensure that  the two 
vertices do not remain in the same tree, vertex v is placed in splitlist. During 
the inner loop the tree of each vertex u in splitlist is split by disconnecting the 
subtree rooted at u. After the split one of the two resulting subtrees is placed in 
worklist to ensure that vertices that may trigger a subsequent split will be exam- 
ined. Partition terminates when worklist is exhausted with the final partition ~-*. 

Algorithm Partition performs the following operation on partition trees: 
split(v): disconnects and returns the subtree rooted at v of the tree containing vertex 
V .  

Algorithm Partition (Partitioning by iderapotence) 
Inpu t :  Equation graph G = (V = V! U V^, E) 
Ou t pu t :  Partition lr* = 7"1,..., T~ of V according to C* 
Method :  
1. create an initial reverse DFST partition lr = 7'1,.. . ,  Tl of the vertices in V; 
2. worklist *-- {T1,. . . ,  Tz}; 
3. while ~oorklist ~ r do 
4. select and remove a tree T from worklist; 
5. splitlist *-- {v E VAIn has one successor in T and one successor not in T} ; 
6. for each  r E 8plitlist such tha t  u is not a root vertex in ~r do 
7. let 7"1 be the tree containing vertex u; 
8. add T2 4-- split(u) as a new tree to ~r; 
9. ifT1 E worklist then  add Tz to worklist 
10. else add the smaller of T1 and Tz to worklist; 
11. endfor;  
12. endwhile; 

We apply Partition to the initial reverse DFST partition from Fig. 4. The ini- 
tial partition ~r corresponding to-Fig. 4 and the final partition ~r* after algorithm 
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Partition terminates are shown below, where congruence classes are displayed 
in columns. The original complete equation system was shown in Fig. 3 (i). The 
final partition 7r* describes the congruences in that  system that  result from the 
copy equations z[4], z[5], z[7] and from the hidden copy equation z[6]. Specif- 
ically, all equations in the column for z[3] in ~r* are found to have the same 
fixed point as equation z[3]. The reduced equation systems in which the four 
redundant (hidden) copy equations are eliminated is shown in Fig. 3 (ii). 

"/r* 
�9 [1] ,[3] ,[s]  ,[1] =[2] =[3] ,[s]  
�9 p] ,[4] ,[9] ,[4] 

�9 [5] ,[10] ,Is] 

�9 [9] ,[10] ,[11] 

4.2 Ana lys i s  

We show that algorithm Partition computes the congruence relation C*, that  is, 
the output partition lr* is the coarsest partition, such two vertices v and w are 
contained in the same tree in ~r* only if (v, w) E C*. We proceed with the proof 
by first showing in Lemma 2 that 7r* is consistent with the definition of C*, that  
is, 7r* is not too coarse. We then show in Lemma 3 that  algorithm Partition is 
optimal in that ~r* is the coarsest consistent partitiOn. 

L e m m a  2 (Cons i s t  eney) .  Partition ~r* is consistent with the definition of C*, 
for if  v is a vertez in a tree T in 7r* and v is not the root vertez of T then all 
successors of v are also in T.  

Proof. Assume v is a vertex in a tree T in ~r* that  is not the root vertex of T. 
Then v has one successor parent (v) in T. Assume on the contrary to the claim 
that v has another successor w not in T. In the initial partition 7r, vertex v is in 
some tree T1 _D T and all trees are initially placed in worklist. The construction of 
splitlistin line (5) implies that  w must also be in T1 since otherwise a split during 
the first iteration would have separated vertex v from parent(v) contradicting 
the assumptions. Now, consider the point during the algorithm at which vertex 
w is separated from the vertices v and paren~v) and the vertices are placed in 
two different trees T2 C T1 containing w and T~ C T1 containing v and parent(v). 
After this separation at least one of T2 and T~ will be in worklist, which implies 
that  vertex v will be separated from parent (v) after the new contents of worklist 
are exhausted, which again contradicts the assumptions. Hence, all successors of 
v must be in T. [] 

L e m m a  3 ( O p t i m a l i t y ) .  Partition 7r* is as coarse as possible, that is, i f (v,  w) E 
C "~ then v and w are in the same tree in partition ~r*. 

Proof. We show by induction on the number i of split operations performed in 
algorithm Partition that  two vertices v and w are in two distinct trees only if 
(v, w) ~ C*. (Basi~ :i = 0) The claims holds for the initial.partition by Lemma 
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1. (Ind. i > 0) Let ~r be the partit ion resulting after i -  1 split operations. The 
i-th split operation splits an edge (v, to) in some tree T only if v has another 
successor u in a different tree and by induction hypothesis: (u, to) ~ C* and 
(u, root(T)) ~ C*. Hence, by rule (2) of Definition 1: (v,w) ~ C* and also 
(v, roog(T)) r C*. Let Tx be the subtree of T rooted at v and let T2 be the 
remaining portion of T after disconnecting T1. Since the root vertices of the 
two trees, v and roo~(T), are not congruent under C*, an analogous induction 
argument to the one in the proof of Lemma 1 shows that  no vertex in T1 can be 
congruent to a vertex in T2 under C*. Thus, two vertices are in different trees 
in the new partit ion only if they are not congruent under C*. [] 

C o r o l l a r y  1. Algorighm Partition correctly computes ghe idempotence congru- 
ence rela$ion C* (by lemmas ~ and 3). 

T h e o r e m  1 ( C o m p l e x i t y ) .  AlgoriShm Partition can be implemented in 
 ime and space, , here is n ,mber of  er ices in eq ,,  ion 

graph G. 

Proof. Constructing the initial partition takes O(n) time. To calculate the total 
time spent in the while loop, we consider the number of times the trec of each 
vertex can be placed in worklist. Each time the current tree of a vertex to is 
added to worklist the tree's size is at most half the size of the previous tree 
containing w. Hence, a vertex ~ tree can bc at most log n + 1 times in worklis~. 
Spliflist is constructed by a scan of the vertices whose tree was removed from 
workHst and the total number of vertices scanned is O(nlog n). Operation split 
is executed at most n times, since there can be at most n partitions. Each call 
to splig is implemented in O(I) time by maintaining for each vertex a pointer to 
its position in the partition forest. To find the smaller of the two subtrees after 
a split in time proportional to the smaller tree (i.e., in total time O(nlog n)), 
the vertices in the two trees are counted by alternating between the trees after 
each vertex. The algorithm also requires a pointer for each vertex to its current 
partition tree, which is updated after each split only for the vertices of the smaller 
resulting tree. In summary, the total time spent in executing algorithm Partition 
is O(nlog n). The size of no auxiliary data  structure is more than O(n) and O(n) 
space is used to store the partition. [] 

If the equation graph is constructed as described in Section 2, the size n of 
the graph is linear in the size of the program. In data  flow problems that  are 
based on a product lattice L v,  such as constant propagation, the equation at 
each program point is a vector z = (~1 , . . . ,  :sv). In constant propagation there is 
a component zi for each of V program variables. In general, it will be beneficial 
to break the vector equation z into a set of V components equations z l , . . . ,  zv  
in order to expose addit ional  congruences. In this granularity, the size of the 
equation graph increases to V • n. 
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5 Congruence by Common Subexpression 

Additional reductions in an equation system can be achieved by extending our 
definition of congruence to capture redundancies that  result from sources other 
than idempotence. In [DST80, NO80] congruence relations are defined based on 
common subexpressions. For example, in Fig. 3 (ii), the term z[8] A (p, z) is a 
common subexpression in equations z[9] and z[10]. The congruence relation by 
common subexpression is defined below by observing the commutativi ty of the 
meet operator. 

D e f i n i t i o n  2 ( C o n g r u e n c e  by  c o m m o n  s u b e x p r e s s l o n ) .  Let  G := (V, E)  
be an equation graph. A relation S on V is called common  subezpression congru- 
ence relation i f  for  vertices v and w with successors v l , . . . ,  vk and wl ,  . . . , wk,  
(v, w) �9 S implies label(v) = label(w) and V 1 < i < k: 

(vl, wp(i)) �9 S for  some permutat ion p on {1 , . . .  k} i f  label(v) : A 
(vi, wi) �9 S otherwise 

Partitioning a graph by common subexpression is a well known problem and 
a fast O ( n l o g n )  algorithm is due to Hopcroft 's algorithm for minimizing finite 
automata  [HopT1]. Among other applications, Hopcroft 's algorithm was used to 
eliminate common subexpression in program optimization [AWZ88]. We present 
a different application by employing the algorithm to reduce data  flow equation 
systems. 

Hopcroft 's algorithm starts with an initial partit ion 7r in which all vertices 
with an identical label are placed in the same congruence class in 7r. The al- 
gorithm iterates over the congruence classes to subsequently refine the current 
partit ion until it is consistent with Definition 2. The algorithm terminates with 
the coarsest partition in which two equations are in the same class only if they 
are congruent under S. An adaptation of Hopcroft 's partitioning algorithm to 
partition equation graphs is shown below. 

Algor i thm An adaptation of Hopcrof2'n partitioning algorithm 
Inpu t :  Equation graph G = (V = Vy U V^, E) 
Ou tpu t :  Partition 7r* = C1, . . . ,  Ck, where Ci is a collection of vertices in G 
1. create an initial partition ~r -- C1, . . . ,  Cz of the vertices in V by their label; 
2. worklist ~ {C1,...,C~}; 
3. w h i l e  voorkllst ~ 0 do  
4. select and remove Ci from worklist; 
5. f o r n ~ l  t o 2 d o  
6. splitlist ~-- {v 6 Vy I the n-th succ. of v is in Ci} 
7. U {v 6 V^ Iv has exactly n succ. in Ci}; /* commut, of A */ 
8. for each Cj such tha t  (splitlistN Cj) ys 0 and (Cj g splitlist) do 
9. create a new tree collection C in ~r; 
10. move each u E (splitlistn Cj)  to C; 
12. if  Cj E worklist t hen  add C to worklist 
13. else add the smaller of Cj and C to worklist; 
14. endfor;  endfor;  
15. endwhile  
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If Hopcroft's algorithm is apphed over the equation graph for the alias anal- 
ysis of procedure Inse r t ,  the two equations z[9] : (p, a~) A z[8] and z[10] : 
z[8] A (p, z) in Fig. 3 (i) are discovered to be congruent. The discovery of con- 
gruences due to common subexpressions may enable the detection of additional 
congruences by idempotence. For example, once we know that the two equa- 
tions z[9] and ~[10] are congruent, it can in turn be determined that equation 
z[ll] = z[9] A z[10] is actually a hidden copy and in fact all three equations 
z[9], z[10] and z[ll] are congruent. To enable these second order effects, we can 
incorporate the results of common subexpression partitioning into the initial 
partition for idempotence partitioning. This is achieved by applying algorithm 
Partition to the equation graph that results if all vertices that were already 
found to be congruent are merged into a single vertex. The reductions in the 
equation system from Fig. 3 (i) that axe enabled in this process are shown in 
Fig. 3 (iii). The additional improvements over the equations system that results 
from only partitioning by idempotence (Fig. 3 (ii)) are due to the discovery of 
the congruence among equations a~[9], z[10] and a~[ll]. 

Unfortunately, applying each partitioning algorithm once may not provide 
optimal results. In general, congruences that are found based on idempotence 
may enable the discovery of additional common subexpressions and vice versa. 
Thus, to find the maximal number of congruences requires computing the tran- 
sitive closure Of the union of the two congruence relations. This closure can be 
computed by iterating over the two partitioning algorithms until no more con- 
gruence can be discovered. Each time a new iteration is started the size of the 
equation graph is reduced resulting in a bound of O(n ~ log r~). In practice, the 
number of common subexpressions in an equation graph may be smaU, in which 
case, it may be sufficient to compute each congruence partitioning only once. 
While this may sacrifice optimality, equation system reduction remains fast. Ex- 
perimentation is needed to determine the benefits of computing the iterated 
congruence closure. 

6 R e l a t e d  W o r k  

A number of previous methods has focused on suppressing some of the unnec- 
essary equation evaluations by manipulating the underlying graphical program 
representation. The sparse evaluation graph (SEG) approach [CCF90], achieves 
reductions in data flow equation systems indirectly by specializing a program's 
control flow graph G with respect to each analysis problem such that smaller 
equation systems will be generated. The SEG is obtained from a control flow 
graph G by eliminating some of the nodes in G that have an identity flow func- 
tion. The construction of a S EG requires O(e+n 2) time using dominance frontiers 
[CCF90] and O(e • a(e)) time using a recent more complicated algorithm [CF93], 
where e is the number of edges in a program's control flow graph G and rr is the 
number of nodes in G. The SEG approach compares directly with our idempo- 
tence congruence partitioning algorithm in that the removal of control flow graph 
nodes with identity: flow functions results in the elimination of redundant (hid- 
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den) copy equations. However, there are important problems for which the SEG 
approach fails to eliminate all (hidden) copies and algorithm Partition would 
construct strictly smaller equation systems. Constant propagation is an example 
of such a problem. It is likely in constant propagation that no flow graph nodes 
have an identity flow function, in which case the SEG would be identical to the 
original flow graph graph. However, even flow graph nodes with a non-identity 
flow function generate copy and hidden copy equations for all program variables 
that are not assigned a new value within that node. As our partitioning approach 
operates on the level of individual equation operations, these redundancies are 
exposed and can therefore be eliminated. In addition, congruence partitioning 
is, unlike the SEG approach, extensible to discover redundancies due to common 
subexpressions enabling further reductions in an equation system. 

Other methods that improve data flow analysis by building specialized pro- 
gram graphs are applicable to only certain data flow problems. The pargifioned 
variaMe ~eehmque [Zad84] constructs for each variable a simplified flow graph 
that enables a fast evaluation of the solution. However, this method is restricted 
to parfiiionable data flow problems that permit the analysis of each variable par- 
tition in isolation. The global value graph [RL77, RT82], static single assiggmenf 
form (SSA) [SS70] and dependence flow graphs [JP93] are graphical represen- 
tations that provide connections between definitions and uses of program vari- 
ables. SSA form is constructed in O(e + n 2) time based on dominance frontiers 
[CFR+91] and in O(e x a(e)) time based on a recent algorithm [CF93]. The ben- 
efits of using SSA for data flow analysis are limited to problems that are based 
on definition-use connections, such as constant propagation [WZ85]. A problem 
like available expressions does not benefit from SSA. The same limitation applies 
to the related depe,tde~ce flo~o graphs that are constructed in O(V x e) time, 
where V is the number of program variables. 

Computing congruence relations based on common subexpressions is a well 
known problem and efficient algorithms have been developed [NO80, DST80, 
HopT1]. Hopcroft's partitioning algorithm for minimizing finite automata was 
used in program optimization to detect equalities among variables based on 
common subexpressions over an extended SSA form of the program [AWZ88]. 
The authors describe a strategy to manipulate the SSA representation in or- 
der to combine congruent (equal) variables values from different branches of a 
structured if-statement. This treatment can be viewed as handling a special case 
of detecting idempotence congruences. Other methods to eliminate redundant 
program computations include value numbering [CS70], global value number- 
ing based on SSA form [RWZ88] and methods based on the global value graph 
[RT82]. 

7 Conclusion 

We presented a new and efficient approach to improve the performance of any 
monotone data flow ~nalysis by reducing the size of data flow equation systems 
through congruence partitioning. The presented partitioning algorithms discover 
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congruences among data  flow equations by exploiting the algebraic properties of 
idempotence and commutativity of the meet operator. A remaining property of 
the meet that  we have not discussed is associativity. Unfortunately, discovering 
congruences that  are due to associativity is a much harder problem. The diffi- 
culty of discovering congruences by associativity results from the fact that  an 
exponential number of different sequences of meet operations can yield congru- 
ent values by associativity. This problem with associative operators also arises 
in program optimizations, where reassoeiation techniques have been used as a 
heuristic to discover certain equalities by associativity [CM80]. We are currently 
considering whether reassociation would be a suitable approach to enable further 
reductions in data  flow equation systems. 

Our approach of congruence partitioning demonstrates the feasibility of ap- 
plying principles of program optimization and analysis, such as common subex- 
pression elimination, to optimize the analyzers themselves. We expect to inves- 
tigate this issue further aft part of our future work. 
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