
A Practical Approach to the
Symbolic Debugging of Parallelized

Patricia Pineo Mary Lou Sofia
ppineo@alleg,edu soffa@cs.pitt.edu
(814) 332-2883 (412) 624-8425

Computer Science Department
University of Pittsburgh
Pittsburgh, PA 15260
Fax: (412) 624-5299

C o d e I

abstract-- A practical technique is presented that supports the debugging of
parallelized code through global renaming and name reclamation. Global renaming
creates single assignment code for programs destined to be parallelized. After
parallelization, a reclamation of names not useful for either the execution or
debugging of the code is performed. During execution non-current values can then
be tracked and reported to the debugger. Results of experimentation indicate the
enlargement of the name space is reasonable and that virtually all non-current
values are reportable. The technique is independent of the transformations chosen
to parallelize the code.

1. Introduction
The importance of renaming as a program transformation is growing with

the increased recognition of its value in program analysis tcy~7.wo~gj The two
forms of renaming that have emerged as particularly useful are single assignment
and static single assignment. In single assignment each assigmnent is made into
a unique variable, and once computed, a variable will never be altered. Static
single assignment differs in that although only one assignment statement may
appear in the code for each variable, that statement can be repeatedly executed (as
in a loop).

The usefulness of static single assignment has been demonstrated as a
pre-processing stage to simplify dataflow analysis during the application of
optimizing transformations Ic~wzgl~ It has also been shown useful in applying
optimizations such as induction variable elimination twoml Under the assumption
of single assignment code, the problem of partitioning sequential code for a
parallel environment is "drastically simplified" tB,~gj
shown useful in register allocation optimizations 1~.91j" Single assignment is also

L Partially supported by National Science Foundation Grant CCR-91090809 to the
University of Pittsburgh:

Presenting Author

340

Although these single assignment forms have been shown to be useful for
program analysis, their use during program execution has been restricted due to the
impracticality of storage enlargement. In this paper we develop a technique that
enables the use of renamed code during program execution. This is made possible
by selectively reclaiming names prior to code execution.

This technique developed is another application of single assignment code -
that of symbolic debugging of code that has been transformed by either traditional
optimizations or parallelizing transformations. Became of code modification,
deletion, reorganization and parallelization, the actual values of variables seen at
breakpoints during runtime will often be different from the values expected by the
programmer viewing the sequential, untransfonned code. One approach to the
problem of non-current variables is to force the programmer to directly view and
debug the transformed code, but this approach requires that the user have
familiarity with the parallel constructs available, the architecture and the mapping
from the source to transformed code. A preferable approach is to allow the user
to execute the transformed code on the parallel system but to debug the code from
the viewpoint of the sequential code.

This approach to the problem of debugging transformed code has been
visited for code transformed for traditional optimizations tn~ZZ~3.CoM,R,S*~oSo~J
These techniques all create a history of specific optimizations performed with the
objective of unwinding the optimizations selectively during debugging in order to
recover non-current variables. These techniques work with a subset of 3-4 specific
optimizations and must be expanded if other optimizations are applied. They are
more successful when optimizations are local, becoming complex and expensive
when code is moved across basic blocks. The present work differs in that
expansive code motion does not increase the complexity, the work is not
transformation dependent and the code is not modified during debugging. This last
point is significant because code that is modified for debugging may execute during
debugging runs, and then fail when debugging is not invoked.

This problem has also been considered by Gupta t~'~SJ in relation to
debugging code reorganized by a trace scheduler. Gupta's technique enables
expected values in reordered VLIW code to be reported. It requires debugging
requests to be made in advance, and the recompilation of selected traces. The
present work differs in that it allows inspection of all variables at any breakpoint
without recompilation, and it is not architecture specific.

Each of these methods employs ad hoe techniques for saving and
recovering non-current values in newly defined storage locations. By contrast,
Global Renaming allows values to be stored and recovered in a unified way,
without consideration of any code transformation. Because each value is carried
in a unique name, renamed code can be transformed by unrestricted paraUelizing
transformations, and still be successfully debugged.

Unlike using renaming as a purely analytical technique, renaming in
debugging has a problem in the explosion of the storage associated with single
assignment programs. This problem is resolved in this work by the application
of a second stage that reclaims names not needed for either parallel execution or
debugging before execution occurs.

341

Thus, this paper presents a practical approach to the use of renaming in
debugging of paraUelized code. The techniques have been implemented and
experimental results are presented. Through these experimental results, we
demonstrate that after name reclamation, the storage expansion caused by the
renaming is reasonable and virtually all non-current names can be reported.

There are several additional advantages of using the renaming approach for
debugging transformed code. First, the renaming allows the exploitation of
additional parallelism in program code by reducing data dependencies. Further, this
same analysis can be used to simplify the application of several standard
parallelizing transformations. Finally the technique imposes no restrictions on the
number or type of parallelizing transformations applied. This allows the approach
to interface easily with a variety of transformational packages aimed at diverse
target architectures.

In this extended summary, we first present an overview of the technique.
We then present the two analysis techniques, focusing on the reclamation of names.
Experimental results are presented, showing that this approach is indeed a practical
approach.

2. Overview of Debugging with Global Renaming
Practical high-level debugging with global renaming is accomplished in five

stages. An overview of our technique is given in the algorithm of Figure 1. Two
stages (numbered one and three) are introduced to bracket the application of
paraUelizing transformations. The primary purpose of the first stage is the
renaming of the code and the production of AVAIL sets, which are sets that retain
the current names of variables that should be reportable after the execution of the
associated statement number in the original program. These sets provide the value
tracking capability used by the debugger at execution time.

Algorithm -- High-level debugging of parallelizcd code
1. Globally rename code (11~: odgJnal code, OUT: single assigrmwnt code, A VAIL sets)
2. Apply user chosen paraileh'zation transformations(ll~: SA code, OUT:parallelizod code)
3. Reclaim urmvedcd names (II~: paralleh'zed SA code,

OUT." wduced name paralleh'zed code, INOUT." A VAIL)
4. Compile (IN.." reduced name paralleh'zed code, OUT." executable code)
5. Execute code through debugger mo&'fied to access A VAIL sets when values are requested

Figure 1 - Overview of thc debugging technique

A simple program is shown passing through the stages of the system in
Figure 2. Initially the code is globally renamed. This first stage produces a
semantically equivalent version of the program in single assignment form, which
assigns each (potentially non-curren0 value a unique storage name. The current
names at each statement are retained in the AVAIL sets. The reduction of
undesirable data dependencies by the renaming can also be observed in the
example. Antidependencies (e.g., statement S1 8 ~ S3), and output dependencies
($6 d ~ $7) are removed in the renamed code. The resulting code has been freed

342

Software Stages Program Representations Debugglng

Orlolnal Code
1. X=T+A
2. Z=2"A+6
3.A=T+z
4.Z=cos(A)
5.A=X+3
6.B=sin(A)/I'+A
7.B=X/(1-B)

Renamed Code
1.XI=TI+A1
2.Z1=2"A1+6
3.A2=T1+Z1
4.Z2=cos(A2)
5.A3=X 1 +3
6.BI=sin(A3)/TI+A3
7.B2=X1/(1-B1)

Perallelized/Partitioned Co~! 9

I 1 1.Xl--rl§ 211=2"Al+e
I I 5,A3=Xl+3 3.A2=T1+A1

L ~ 6.BI=sin(A3)JT1,A3 422=cos(A2)

~ ~ Pro t e in after Name Reclamation l' 41

user
user view ~ / (~ ~

- - AVAI-C~et'~-- /
X r A Z B /

1. xl T1 A1 /

i 15 I
y.+il

Figtm: 2 -- De, bugging with Global Renaming

from about half of the original data dependencies and thus allows a more
aggressive exploitation of parallelism.

The single assignment c~le can now be parallelizcd by software targeted
for any desired architecture. The choice of transformations applied in this process
arc not important to the debugging system. Regardless of where variables arc
moved, their version names carry the tag required by the debugger for later
inquiries.

Once the paraUelizcd code has been finalized, it may be that not all the
names introduced through renaming are necessary. Some variables must be retained
because they enable the reporting of a non-current value at debug time. In this
example, the programmer (debugging from the viewpoint of the sequential code)
may insert a breakpoint after statement 5 and request the value of Z. This
breakpoint maps to statement of the parallelized code and the associated AVAIL
set indicates that Z2 is the proper version of Z to report from the transformext
code. Since Z2 must be reported (and not ZI) it is necessary to distinguish
between the Zs and therefore the Z2 name must be maintained.

343

The other reason for not reclaiming names is to allow multiple copies of
a variable to be live on different concurrent tasks, thereby enabling the exploitation
of paraUelism. In this example, A3 cannot share storage with A1, because A1 is
simultaneously live on a concurrent process. Similarly A2 cannot share storage
with A1 or A3.

The B2 variable is reclaimable because neither B1 nor B2 needs to be
available on a concurrent task, nor is B1 live on any concurrent task. The
decision to reclaim B2 will result in a change in statement 7 of the parallelized
code where B2 becomes B1, and an accompanying update to the database in the
B entry of the AVAIL set associated with statement 7.

This paraUelized program with names reclaimed (which is no longer single-
valued) can now be compiled and executed. The programmer, debugging from the
viewpoint of the sequential code, places a breakpoint in the sequential code. This
breakpoint maps through to the transformed code. When the breakpoint is
encountered, a request for a value made by the programmer traps into the runtime
interface. This module in turn replaces the variable name requested with the
version name associated with the breakpoint position which is stored in the AVAIL
data set. The debugger then proceeds to fill the revised request in the ordinary
way. In this example, if tile programmer places a breakpoint after statement 3,
a request for X, T, A or Z will be replaced with requests for X1, T1, A2, or ZI
respectively and the new requests filled by the debugger. The global renaming and
name reclamation processes are presented in greater detail in the following sections.

3. Global Renaming
The task of global renaming requires the creation of anew variable name

at each variable definition, and also at each program location where divergent
execution paths may join. This 'resolves ambiguity after the join point that may
occur in trying to deterndne which of multiple names (values) should be used.
Figure 3 shows this case.

"x•b-•x ~'oin point

a) before renaming

X " - "

~x9
b) after renaming

Figu~ 3 -- Rvnaming at join points in program flow.

In addition, global renaming must find blocks of code that may be
reentered (loops) and ensure that scalars within such blocks are expanded to
vectors. This results in variables with altered types as well as altered names.
Figure 4 shows this case.

344

= x LS=~=:~3
x4(1)=x3

x =1 x4(LS-1)
xs(r

x x4(tS)=x5 (LS)

a) before renaming b) after renaming
Figure 4 -- Renaming repeated r

In structured code, these join points and loops coincide with structure
boundaries. In unstructured code, they are generally discovered by analysis on a
Control Flow Graph (CFG). The variety of these approaches has resulted in the
development of three distinct global renaming algorithms. The first is an algorithm
for structured FORTRAN 77 code tP~o91~,i.~93j This algorithm produces optimal
quality code in linear time and recognizes all high-level constructs. It is thus
appropriate for use on a large subclass of FORTRAN programs. The second
algorithm models unstructured code as a sequence of simple commands in a linear
code space, i~used with arbitrary GOTO's t~'93]. It is able to assert join points
without production of the CFG, and so although it is very general, it still operates
in linear time. However this algorithm inserts some unnecessary assignment
statements. The most general of the algorithms (and the most expensive) is an
extension of the dominance frontier algorithm of Cytron, Ferrante, Rosen, Wegnmn
and Zadecld cmwzgu which in its original form produces Static Single Assignment
(SSA) code from unstructured code in O(n3) la'*~~

The extension necessary to tailor this algorithm to create single assignment
code occurs in the discovery and renaming of loops. Each loop discovered in the
CFG is assigned a unique looping subscript (analogous to the LS of Figure 4).
Individual statements may belong to any number of loops. Variables defined have
subscripts added according to loop membership of the statement. The size of the
arrays is determined by the loop bounds. If the bounds of the loop are unknown,
vectors are allocated as needed in "chunks" of fixed size. In practice these
variables are often reclaimed before execution and many of these allocations do not
OCCur .

Although the examples show only scalar variables, array variables are also
renamed using analogous techniques. Any time an array is altered it is renamed,
initiating a copy into a new array object. The expansion of array objects thus
creates arrays of arrays.

While the renaming Of arrays continues to remove all anti and output
dependencies, it also has the effect of increasing the number of flow dependencies.
These come about because the copying of an array object is dependent on the
expression defining the new element as well as tile last current array object. The
array assignment A[7]=X is renamed as A2=copy[AI,7,Xl]. The renamed code
explicitly shows the dependency of the statement on both Xl and Al. The global
renaming stage removes these introduced flow dependencies when it can be

345

determined that they are unnecessary. The~ approaches and a more detailed
discussion of global renaming are described in [Pineo93].

4 . N a m e R e c l a m a t i o n
After the globally renamed program has been partitioned and parallelized,

it is the task of name reclamation to eliminate the unnecessary names. This is
accomplished in three steps by first computing the maintenance ranges of the
values, then reclaiming the unnecessary names, and finally updating the AVAIL
sets to reflect the changed names.

4.1 Computing Maintenance Ranges
As seen previously, there are two reasons for maintaining a name: 1) it

is still live, 2) it still needs to be available for debugging. This requires the
computation of a maintenance range for each value that includes the entire live
range of the value and also its Available range. Symbolically,

MP-, = R v̂ u
where R^v is the available range of the value computed/n the sequential code and
mapped into the transformed code, and RL, is the live range of the value in the
transformed code.

It is straightforward to calculate R^v by standard live range analysis with
extensions to include statements up through the value redefinition. This is
computed by the global renaming stage and stored in the AVAIL data set.
However it is then incumbent upon the name reclamation stage to map these
availability ranges into the transformed code. In this stage it is necessary to view
both the AVAIL sets and the transformed code to determine when specific
variables must be available to serve debugging requests in the transformed program.
Discrete locales of availability are combined into one contiguous availability range,
since variables are assigned only once and can therefore become available only
o n c e .

In the computation of RLv, it is assumed that the transformed program may
be modified for some form of parallel execution. A live range for a value may
end on a certain processor, but if the value is also live on a parallel task, it
cannot be considered dead until there is a synchronization point between the tasks.
Therefore live range analysis in a parallel environment requires an inspection of
all subtasks that will be in concurrent execution. If a variable is live in only one
subtask P1, then the variable dies when the last use is past. However, if the
variable is also live on another task P2, then the variable is not dead until the P1-
P2 synchronization following the last use. Furthermore, the variable is not
completely dead until dead on all subtasks.

To illustrate these computations using the code of Figure 2, the A1
variable is available at statements S1-$2, and must be live at S1-$2. However,
since S1 and $2 are on concurrent tasks the live range is extended to the
synchronization point. Therefore MR^I=S1-S7. Variable Z1 has an Avail range
of $2-$3 and live range of $2-$3, giving MRzt=S2-S3. For variable Z2 the Avail
range, $4-$7, and live range, $4, cross parallel tasks giving a giving a maintenance
range MR~=S 1-$7.

3 4 6

Two variables are said to have overlapping maintenance ranges if they
must both be maintained at the same time, as in the case of Z1 and Z2 above.
When the two variables have the same root name, eg., X1 and X3, and non-
overlapping ranges, it is always safe to reuse the address. Symbolically,

if MR~ n MR~ =
and Root (V,) = Root (V2)
then @V 2 = @V~.

The availability of a value can be seen as a further use in generating
maintenance ranges. If viewed in this way, the maintenance range within a basic
block can be simply defined as beginning at the first position of use of the
variable and extending to the last.

In name reclamation, maintenance ranges are computed for each variable
in each basic block. These "per block" maintenance ranges are used to create
summary maintenance information, such that at each statement it is known whether
the maintenance of a particular variable is required at any time prior to this
statement, or at any time beyond this statement. This information is derived from
the Control Flow Graph of the program. Backedges are removed from this graph
since the reaching definitions of loop variables are handled by explicit mechanisms
in renaming. In addition, irreducible flow graph constructs are resolved by
removing edges representing backward branches in the written code. The resulting
acyclic CFG is used to determine predecessor and successor blocks. Since there
may also be concurrent blocks in the CFG, a block X that is concurrent to a
block Y is considered both a predecessor and successor to Y.

This graph is then used to create three maintenance sets per block. A
Maintenance Range~ set is computed, which holds a minimum and maximum
program location for each variable used or available in Basic Block~. The
computation of availability makes use of original statement line numbers that have
been appended to the statement during renaming. These numbers indicate the
original statement locations of lines of program code. After the application of
program transformations, these numbers will normally be unordered and, in
addition, may contain duplicated or missing numbers. However, these numbers
provide crucial mapping information. Each time a statement line number is
encountered, the associated AVAIL set is queried and any variable available at this
line has its maintenance range updated with the present program location (in the
transformed program).

After the MR i sets are computed for the blocks, they are used to compute
boolean sets, Pre, and Post~ for each block. Pre, contains a bit for each variable
indicating whether the variable has a maintenance range in any predecessor of BB~
(including concurrent blocks). Prej is calculated from the immediate predecessors
of BB~ by

Pre I = O
Prei = u (Prej u MR) where a non-zero entry in M~.min k

j ~ m~ p~d defines a true state
of BB l or oa~urrent

347

Posq similarly
to BB~. Post~
and concurrent

indicates variables that have maintenance ranges in any successor
is calculated in inverse program order from immediate successors
blocks by

Post~, =
Post i = U (Postj u

j an inun s u c c

o f B B l or concur ren t

4.2 Reclaiming the Names
After the maintenance sets have been computed, names can be reclaimed

from the code. The injunction against values sharing a variable name when they
have overlapping maintenance ranges allows name reclamation to be modelled as
a graph coloring problem. The graph consists of vertices v i corresponding to each
value generated. There is an edge from v i to vj whenever vi and vj may not share
a variable name. Specifically this results when any of the following is true:

1) the variables have different root names,
2) the variables have differing dimensionality, or
3) the variables have intersecting maintenance ranges.

At the beginning of the name reclamation process, this graph contains n vertices
and is colored in n colors, where n is the number of variables in the globally
renamed program. Name reclamation seeks to rccolor this graph, using fewer
colors. The reclaimed colors represent names that will not appear in the final
executable program.

The graph is traversed starting from any arbitrary node. A color pool is
maintained which represents the set of names that have been evaluated and will
be retained. This set corresponds to the set of names finally held by the visited
nodes. As the graph is traversed, an attempt is made to recolor each new node
encountered with a color already in the color pool. Each candidate color is tried
until one is found that has no conflict with the new node, or the list is exhausted.
If the node cannot be recolored (the nmne cannot be reclaimed) then the node's
original color is retained and added to the color pool.

Figure 5 -- Namo Reclamation by Recoloring

348

Figure 5 shows a globally renamed program containing five names, with
maintenance range intersections (conflicts) shown as edges. The algorithm starts
with an empty color pool and immediately adds A1 to the color set. A2 and A3
are also added because conflicts in the graph do not allow any of these names to
share storage. In processing node A4, all colors in the pool (in last-added order)
will be tested until one is found that does not conflict with A4. If no such color
were found, A4 would be retained. However, in this case, after A3 is rejected,
A2 is selected to replace A4. In the processing of the A5 node, A3 and A2 are
rejected but A1 is selected. The resultant graph contains three names.

The algorithm presented does not compute a minimal name space, as the
computation of a minimal name space is an NP-complete problem by a trivial
polytransformation from graph coloring. Figure 5 shows that extra names may
occasionally be allowed by this algorithm. A4 can be reclaimed by choosing to
subsume A4 into either A1 or A2. The choice of A2 as described above will
allow A5 to be reclaimed as well (subsumed by AI). However, had the A2 and
A1 names been encountered in reverse order, causing A1 to be tried first and
chosen, the choice of A1 for A4 forces A5 to be unnecessarily retained. The
algorithm tries all active names starting with the last retained and the arbitrariness
of this ordering allows nonoptimal name choices to be made in transformed
programs. In practice extra names occur infrequently because conflict graphs tend
to be characterized by many nodes and few edges.

Computing the maximal degree in the graph allows an upper bound to be
placed on the number of colors required = maxdegree + 1. In the graph of Figure
5 the maximum degree is four, and the graph is recolored using three colors. To
observe that maxdegree+l represents an upper bound on retained names in name
reclamation, consider the recoloring of the ith node where the degree of nodei <=
maxdegree. Assume also that the pool of available colors contains <=
maxdegree+l colors. There are <= maxcolors adjacent to node i. If the color
pool contains maxdegree+l colors, then there exists at least one color not
represented on nodes adjacent to nodci. This color can be chosen for node~. If
the color pool contains < maxdegree+l colors, then node~'s color can be retained
and added to the pool. After the coloring of nod% the color pool still contains
<= maxdegree+l colors.

In untransformed programs, each new definition kills the range behind it
and thus there are no maintenance range intersections. As there are therefore no

edges, all names are reclaimed except one (i.e., X=>X1).
A criticism of coloring algorithms may be that implementation becomes

prohibitively expensive because the graphs, involved get quite large. This is
especially true for graphs created with single assignment programs. In practice the
reclamation algorithm may be implemented without building the graph, using the
pre, post and MR sets described above. Collectively they allow the existence of
a conflict edge to be efficiently computed.

At each statement the name of a defined variable, V2 may be reclaimed
if there exists another variable, V1, previously unreclaimed, such that V1 has the
same root name and dimensionality as V2 and the two variables possess
nonintersecting maintenance ranges." This last condition is computed by checking

349

that MRv, n MR~ = ~ within the block that V2 has no maintenance range in
a predecessor block and that V1 has no maintenance range in a successor block.

If the maintenance ranges are disjoint then the active name replaces the
new name and the new name is reclaimed. This also causes maintenance sets for
the active Variable to be updated. If no active name can be found, the new name
is retained and added to the active set.

X2 avail

xl x2 x3 x4
Prei={1 1 0 0 0}~1

Block B I

xl x2 x3 x4 x5
post~{ 1 0 0 0 1}

xl de#,aed

I malntenance
ranges

X4= "-I"
=X2 ~4

• .

\
X1,XS Ilve..evall

Figure 6 -- Name reclamation in a basic block

Figure 6 illustrates the action of name reclamation. The example is
simplified by showing only a single root name. The basic block shown is
associated with a pre and post set. These indicate that XI and X2 have
maintenance ranges prior to B and that X1 and X5 have maintenance ranges after
B. Beside the block the (contiguous) maintenance ranges are displayed. Active
names that reach the block are {Xl }. During the processing of the block, X2 will
not be reclaimed by X1 because X2 has a previous maintenance range, and also
because X1 has a later maintenance range. X2 is then added to the active set.
X4 is also retained because it has a nomanpty intersection with X2 and X1 has
a post maintenance range. X5 will be subsumed by X4 because pre (X5) is false,
post (X4) is false and X4 and X5 have an empty intersection. This reclamation
causes updates to Pre(X4) and Post(X4) such that

Pre(X4) = Pre(X4) I Pre(X5)
Post(X4) = Post(X4) I Post(X5).

The inblock maintenance ranges of X4 and X5 are also merged and information
is retained that X5 is henceforth known as X4 in the ref~oointer set. Now X3
cannot be subsumed by X4 because X4 has inherited post(X5). However, X3 can
be s u b ~ by X2, and similar set updates are initiated. The block will finally
contain only X2 and X4.

Another form of name reclamation occurs within loops. The algorithm
will recover the expansion of objects when the loop in qt~,stion was not chosen
for parallelization. In the case of nested loops, each loop is associated with a

350

unique looping subscript. Those associated with parallelized loops are retained
while the others are reclaimed. The reconstruction of the looping subscript portion
of each name is done whenever the name is added to the active set.

At the end of a block's processing, the exiting active set is saved for use
by successor blocks. After all blocks are processed, the AVAIL database is
updated with the name changes and rewritten for later use by the debugger.

A more detailed View of the name reclamation algorithm is given in the
Appendix. The efficiency of this algorithm is bounded by O(plen x Ivarl) where
plen is the length of the transformed program, and Ivarl is the number of variables
in the transformed program.

5. Experimental Results
Global renaming and name reclamation have been implemented in about

3500 lines of C code in a system designed for structured FORTRAN 77. The
experimental testbed consists of ten FORTRAN programs taken from the EISPACK
and FFTPACK collections.

The issues investigated are:
1) Are there significant numbers of non-current variables in parallelized code?
2) What is the storage increase associated with global renaming, and name
reclamation?
3) What factors are responsible for unreclaimed names?
4) What percentage of non-current variables remain unreportable using global
renaming and name reclamation?

Table 1 shows the storage expansion measured in the testhed programs as
they pass through the stages of the system. Storage is measured in words and is
recorded for the original program, after global renaming, and after parallelization
and name reclamation have been applied. For the purposes of measuring the
storage implied by expanded variables in loops, any loop with uncertain bounds
is assumed to execute 10 times 2. For example, BAKVEC's original 153 memory
words grows to 11937 after global renaming, representing an increase of 78 times
the original. After paraUelization and reclamation, the final storage requirement of
BAKVEC is 283 words, or 1.g4 times the original.

The degree to which storage is reclaimed varies inversely with the amount
or parallelism inherent in the program. Highly parallel programs reclaim fewer
names, while programs that undergo no parallelizing transformations have virtually
all their introduced names reclaimed. The increases range from 1.1 to 7.3 times.
The unusually high enlargement figures associated with BQR come from a program
with deeply nested loops and several large parallelizable loops. The average
storage enlargement measured in these programs was over 3900 times after global
renaming. Excluding the anomalistic BQR, the average enlargement was still a
discouraging 1368 times. However, after name reclamation the average program
size was a more reasonable 2.5 times the original.

2 This figure is derived from measurements taken by Knuth ~'~J who reports
the code and execution characteristics of 495 FORTRAN programs.

351

(words) times times
l~r_agr.am aiigkmL_z.~ ~ iner ~ incr

1. BAKVEC 153 11,937 78 283 1.84
2. BALANC 252 33,401 129 392 1.08
3. BALBAK 127 32,721 257 257 2.02
4. BANDV 277 735,021 2653 348 1.25
5. BISECT 150 45,293 300 190 1.27
6. BQR 160 4,283,868 26768 1170 7.31
7. EZFFTI 39 5,880 150 171 4.38
8. EZFFIT 6150 23,967,981 3897 7060 1.15
9. EZFFTB 6148 28,055,204 4563 13848 2.25
10.DCHDC 60 14,560 242 164 2.73

average 3903 2.53
(without BQR 1368)

Table 1 - Storage Enlargement

In these tests the renamed code was parallelized by Parafrase-2, an
automatic parallelizing package licensed through the University of Illinois tr~176
It was noted that the parallelization of globally renamed code was significantly
more successful than when the code was not renamed. Many more (and larger
loops) were found parallelizable, an effect that was directly attributable to the
reduction of data dependencies. More than six times as many program lines were
found in parallelized loops using this technique.

lmagrmn name, z ~ n . w 2 ~ l ~ .~ d l ~ c _ . l o ~ , k l ~

1. BAKVEC 130 20 15 110 85
2. BALANC 140 120 86 20 14
3. BALBAK 130 120 92 10 8
4. BANDV 71 64 90 7 10
5. BISECT 40 36 90 4 10
6. BQR 1010 1003 99 7 1
7. EZFFTI 132 130 98 2 2
8. EZFFIT 910 644 71 266 29
9. EZFFTB 7700 6506 84 1194 16
10.DCHDC 104 92 88 12 12

average 82 18

Table 2 -- Analysis of Unreelaimed Names

352

Table 2 shows the analysis of unreclaimed names. Names that are
retained because the multiple versions of a variable need to be simultaneously live
(as in a parallel loop) were charged m the parallelism column. Conversely, names
retained for the purpose of tracking non-current variables were charged to
debugging. Where code is reordered aggressively this number of variables charged
to debugging can be high (as in the case of BAKVEC), but normally this number
is eclipsed by the variables enabling additional parallelism. Over the group of
programs, about 82% of the introduced variables enabled parallelization. The
remaining 18% were required for value tracking non-current variables.

Non-current VI Unreportable
Pgl/gig~ Total VI 2anilm,lgd2ag~ %Total ~ %Total

1. BAKVEC 288 72 25 1 0.3
2. BALANC 2,499 29 1 0 0
3. BALBAK 432 38 9 0 0
4. BANDV 11,160 318 3 1 0.0
5. BISECT 5,565 57 1 0 0
6. BQR 10,332 361 3.5 0 0
7. EZFFTI 1,960 420 21 15 0.8
8. EZFFTF 12,470 1967 16 0 0
9. EZFFFB 12,335 2070 17 0 0
10.DCHDC 4,225 96 2 0 0

averages 9.8% 0.01%

Tablo 3 -- Variable Unreportability at Debug Time

Table 3 shows the measurement of the degree of non-currentness that
exists in the parallelized programs. The number of variable instances was
computed as the number of program variables times the number of program lines
(only lines past the initial declarations and comments were counted). After
transformations were applied the number of non-current variable instances (VI) was
counted by counting the number of lines at which each variable is non-current
(unreportable at debug time) and summing them over the variable set. The
percentage of non-current variable instances was computed and averaged. Finally
the number of unreportable variable instances using the proposed debugging
technique was counted. These are places where, if a variable value were requested
during debugging, the software would report the value is unavailable due to
transformations applied. The last column shows this figure as a percentage of the
total variable instances.

Some interesting results emerge from these tests. First the ballooning of
storage after global renaming is quite large. From a low of 78 times expansion
to a high of 26,000 times expansion (average 3800 times), clearly globally renamed
code is far too unwieldy to be used directly. The large variation in this expansion
depends (exponentially) on the depth of nesting in the program and (linearly) on
the program length.

353

However, name reclamation succeeds in reducing the required storage to
a manageable increase of 2.5 times the original. Of these unreclaimed names, a
large majority are instnmlental in increasing the parallelism in the program. The
contribution of these 82% is clearly seen in the improved parallelism figures. The
number of lines of code residing in parallelized loops increases an average of 6.4
times.

The experiments show that the existence of non-c/a'rent variables in
paralielized code is a problem. An average of 9.8% of all variable instances are
found in non-current ranges in these programs. This figure was unexpectedly high.
Without the debugging technique these would be unreportable at debug time. But
using these methods only 0.01% of variable instances were still unreportable (due
to eliminated code or code moved forward).

These results demonstrate the viability of the method. Not only do they
show that the rather invasive nature of parallelizing transformations produces a
large percentage of non-current variables, but they also seem to indicate that the
cost of debugging such code is small. One could argue that only 18% of the 2.5x
storage increase is due to debugging. Since

18% * 1.5x (new unreclaimed names) -- .27
it can be concluded that the storage enlargement cost of debugging transformed
code is about one quarter of the original storage.

6. Conclusions
As compilers become increasingly autonomous with respect to the

restructuring of code, the problem of debugging such transformed code grows in
importance. The approach presented in this paper offers significant advantages to
the user. lit can be used with any transformational package without placing
requirements or limitations on the transformations chosen. While the benefits of
modular systems design are well-known, this characteristic is particularly useful
with parallelizing packages, since the rapid evolution of defined transformations
cripples a transformation-dependent approach.

The formation of single assignment code conveys advantages to later stages
of code analysis as well. Parallelization is far more successful and all
transformations requiring data dependence analysis are simplified. Code partitions
are also computed easily. This work suggests that single assignment code captures
properties of flow dependence that are so fundamental to the further manipulation
of code, especially in a parallel environment, that it is a very appropriate first step
to create this form from the input code via global renaming.

Name reclamation makes this a practical and workable approach by
removing the unnecessary name allocations. Using this technique, parallelized
programs are constructed in modestly expanded spaces, with far more parallelized
code. And, most importantly, these programs can be successfully debugged.

354

A P P E N D I X -- The Name Rec lama t ion Algor i thm

A l , , o r i t h t n R e c l a i m N m ~ e s f P : P r o c e d u r e)

I . C m n p u t e M a i n t e n a n c e S e t s (M E , P r q , P e s o
2 . P r o c e s s P r o g r a t n B l o c k s R e c l a i z r d n g t h e n a z n e s
3. U p d a t e A V A I L d a t a s e t w i t h c h a n g e d n m n e s
e n d R e c l a i l ~ N m n e s

C o m p u t e M a i n t e n a n c e ~;ets

1. C r e a t e P r o g r a m D e p e n d e n c e G r a p h - B a s i c B l o c k s , w i t h c o n c u n r e n c y
i n d i c a t e d .

M a r k l o o p h e a d s a n d d e l e t e b a c k e d g e s . O r i g i n a l s t a t e m e n t s a r e
m ~ u r k e d w i t h o r i g i n a l s t a t e l n e n t n u i n b e r s .

2 . R e a d A V A I L S e t a s s o c i a t e d w i t h o r i g i n a l s e q u e n t i a l p r o g r a u n .

3 . F o r e a c h B a s i c B l o c k B ~ d o (i n a n y o r d e r)
M a r k t h e b e g i n n i n g a n d e n d o f t h e m a i n t e n a n c e r a n g e M ~ o f e a c h

v a r i a b l e u s e d o r d e f i n e d i n BI~j:
F o r e a c h p r o g r a u n l i n e o f t r a u 2 s F o n n e d p r o g r a u n

F o r e a c h U S E o r D E E vaur k
i f M ~ (k) . n z i n u n d e f i n e d t h e n M l ~ (k) . l ~ _ i n = p r o g r a g n
l o c a t i o n
M t ~ (k) . n l a x = p r o g r a u n l o c a t i o n

F o r e a c h l i n e n t u n b e r r e a d o n i n p u t (p o i n t i n g to o r i s i n a l
s t a t e l n e n t l o c a t i o n }

For e a c h v a t k i n A V A I L (l i n e n u m b e r)
i f p r e s e n t l o c , < M l ~ (k) . n d n o r u n d e f i n e d t h e n

M _ i ~ (k) . m i n = p r e s e n t l o c a t i o n
i f p r e s e n t l o c > M l ~ (k) . m a x t h e n

M _ l ~ (k) . m a x = p r e s e n t l o c a t i o n

4. C a l c u l a t e P r q For e a c h B B j i n p r o g r a m o r d er . { P m i s a b o o l e a n s e t
i n d i c a t i n g w h i c h v a r i a b l e s h a v e ~ n a l n t e n a n e e r a n g e s p r i o r to B B j }

e r e , =
P r q = " U (Pr~j v ~ w h e r e a n o n - z e r o e n t r y i n M l ~ . m i E

j an ~ ~ d e f i n e s a t r u e s t a t e
oE B B j o r r

5, C a l c u l a t e P o s ~ For e a c h B B i i n i n v e r s e p r o g r m n o r d e r . (P o s t i n d i c a t e s
w h i c h v a r i a b l e s h a v e l n a i n t e n a n c e r a n g e s a f t e r B ~ }

P o s t ~,, =
P o s t I = U (Pos t~ t~ M I ~

j a n ~ m20r
o f BB~ o r � 9

e n d C o l n p u t e M a i n t e n a n c e

355

P r o c e s s P r o v . r a n a B l o c k s

1. I n i t i a l i z e
A c t i v e _ s e t , = ~ { s e t o f a c t i v e v a r i a b l e n ~ u n e s)
F o r e a c h v a r i a b l e k , r e f _ _ p o i n t e r (k) = 0 { r ~ f _ _ p o i n t e r p o i n t s to n e w

n a u n e i f v a r i a b l e i s r e n a m e d)
2 . R e n a z n e

F o r e a c h B a s / c B l o c k BB~ (i n p r o g r a m o r d e r)
2 . 1 U p d a t e l n a i n t e n a n c e s e t s

f o r a l l v a r k d o
i f O" = r e f - - p o i n t e r k) r 0 { v a ~ i s n e w n a t n e o f vark}
t h e n P r e j (j) = P r e j (k) o r Pr~O')

Pos~O") = P o s ~ (k) o r Pos~O")
M l ~ O ') . l n i n = l n i n i u n u m (M R ~(k) . l n in , M R ~(i) .~nin)
M _ ~ O ') . l n a x ---- l n a x i z n u l n (M R i (k) . l n a x , J ~ q j (j) . m a x)

2 . 2 C o m p u t e A c t i v c _ s e t j = U A c t i v e _ s e ~
j--hahn p~d BBj

2 . 3 R e c l a i m n a m e s i n B B j
f o r e a c h U S E (v a t k)

i f t e l _ p o i n t e r k = j (> 0) t h e n
r e p l a c e vark w i t h vaz~

f o r e a c h D E F (v a t k) , t r y to z ~ c l a t m n ~ u n e (u n t i l r e c l a i m e d
o r l i s t e x h a u s t e d) :

f f r e f _ _ p o i n t e r k = j (> 0) (v a r i a b l e a l r e a d y r e c l a i l n e d }
t h e n r e p l a c e v a t k w i t h v a ~

e l s e
f o r e a c h v a t A i n active__set~ w i t h r o o t n ~ u n e l n a t c h i n g v a t k

d e t e z l r l i n e w h e t h e r i n a i n t e n a n c e r a n g e s a r e d i s j o i n t :
f f n o t P r e f k) { n o p r e v i o u s l n a i n t e n a n c e r a n g e

vary)
a n d M l ~ (k) d n i n > = p r e s e n t p m g r ~ u n l o c a t i o n
a n d n o t P o s ~ (A) { n o l a t e r l n a i n t e n a n c e r a n g e f o r

Val'A)
a n d M d ~ (A) . l n a x < = p r e s e n t p r o g r a t n l o c a t i o n

t h e n { m c l a i t n vark, r e p l a c e w i t h varA}
m f p o i n t e r k = A
P o s ~ (A) = P o s ~ (k)
M _ l ~ (A) . l n a x = M _ ~ (k) . l n a x

i f v a t k n o t r ~ c l a i ~ e d
t h e n { a d d v a t k to a c t i v e se t j }
r e c o m p u t e l o o p i n g s u b s c r i p t , r e t a i n i n g o n l y t h o s e

a s s o c i a t e d w i t h p a r a l l e l i z e d l o o p s

2 . 4 S a v e a c t i v e s e t l { t o b e u s e d b y i r ~ m e d i a t e s u c c e s s o r b l o c k s }
e n d P r o c e s s B l o c k s

R e w r i t e A V A I L ~ e t s

F o r e a c h l ine,
F o r e a c h r o o t n a ~ n e r

l e t x,ar k ---- A V A I L (i , r)
i f r e f _ _ p o i n t e r k = j t h e n A V A I L (i , r) = va~j

R e w r i t e A V A I L s e t to d i s k
e n d R e w r i t e A V A I L s e t s

356

e~'o'gllt~c8
[BoDa91] M. Benitez and L Davidson, "Code Generation for Streaming: an Access/Execute
Mechanism", 4th ASPLOS Conference, Santa Cruz, April 1991, pp. 132-141.

[BiNaRo89] L. Bic, M. Nagel, and J. Roy, "Automatic Data/Program Partitioning Using
the Single Assignment Principle", Supercomputing 89, pp. 551-556, Aug 1989.

[CoMeRu88] D. Coutant, S. Meloy and M. Ruscetta, "DEC: A Practical Approach to
Source-Level Debugging of Globally Optimized Code", SIGPLAN '88 Conf on Prog Lang
DasiglJ and Impl, Atlanta, GA, Jane 1988, pp. 125-134.

[CyF�9 R. Cytron and J. Ferrante, "What's in a Name? -or- The Value of Renaming
for Parallelism Detection and Storage Allocation", Procetxh'ngs of ACM Conference on
Parallel Progranuning. pp 19-27. 1987.

[CFRWZ91] R. Cytron, J. Ferrantc, B. Rosen, M. Wogman and K. Zadeck, "Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph", ACM Trans
on Progranmdng Lang and Systems, October 1991, pp. 451-490.

[Gupt88] R. Gupta, "Debugging Code Reorganized by a Trace Scheduling Compiler,"
Proceedings of Supercomputing 88 Conference, 1988.

[Henn82] I. Hennessy, "Symbolic Debugging of Optimized Code", ACM Transactions on
Progranmdng Languages and Systems, Vol. 4 No. 3, July 1982. pp. 323-344.

[Kaut71] D. Knuth, "An Empirical Study of FORTRAN Programs", Software Practice
and Experience 1:2, 1971, pp. 105-133.

[PGHILSg0] Polyehronopoulos, Crirkar, Haghighat, Leang, Schouten, "Patafrasc-2 User's
Newsletter", Center for Supercomputing R&D, University of Illinois, Urbana Illinois. Fall
1990.

[Pinto93] P.P. Pineo, "The High-lewl Debugging of P~allelized Code using Code
Liberation", Ph.D. Thesis, Department of Computer Science, University of Pittsburgh, April
1993.

[PiSogl] P.P. Pineo and M. L. Sofia, "Debugging Parallelized Code using Code Liberation
Techniques", Proceetfl'ngs of thv ACM/ONR Workshop on Parallel and Distn'butat
Debugging, May 20-21, 1991, pp. 102-114.

[PoSog8] L. Pollock and M. L. Sofia, "High-Level Debugging with the Aid of an
Incremental Optimizer", Proceedings of the 21st Hawaii Intl Conference on System
Sciences, January 1988.

[Wolf89] M. Wolfe, Ontimizin~ SunercomDilers for Stmcrcomnuters. MIT Press, 1989.

[Wolf92] M. Wolfe, "Beyond Induction Variables", SIGPLAN '92 conf on Prog Lang
Design and Impl, San Francisco, CA, pp. 162-174.

[Z~1183] P. Zellwegcr, "An Interactive High-Level Debugger for Control-Flow Optimized
Programs", Proceedin#s of the ACM Sigsoft/Sigplan Soft. Eng. Syrup on High-Level
Debugging, March 1983, pp 159-171.

