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C o d e  I 

abstract-- A practical technique is presented that supports the debugging of  
parallelized code through global renaming and name reclamation. Global renaming 
creates single assignment code for programs destined to be parallelized. After 
parallelization, a reclamation of  names not useful for either the execution or 
debugging of  the code is performed. During execution non-current values can then 
be tracked and reported to the debugger. Results of  experimentation indicate the 
enlargement of  the name space is reasonable and that virtually all non-current 
values are reportable. The technique is independent of  the transformations chosen 
to parallelize the code. 

1. Introduction 
The importance of renaming as a program transformation is growing with 

the increased recognition of its value in program analysis tcy~7.wo~gj The two 
forms of renaming that have emerged as particularly useful are single assignment 
and static single assignment. In single assignment each assigmnent is made into 
a unique variable, and once computed, a variable will never be altered. Static 
single assignment differs in that although only one assignment statement may 
appear in the code for each variable, that statement can be repeatedly executed (as 
in a loop). 

The usefulness of static single assignment has been demonstrated as a 
pre-processing stage to simplify dataflow analysis during the application of 
optimizing transformations Ic~wzgl~ It has also been shown useful in applying 
optimizations such as induction variable elimination twoml Under the assumption 
of single assignment code, the problem of partitioning sequential code for a 
parallel environment is "drastically simplified" tB,~gj 
shown useful in register allocation optimizations 1~.91j" Single assignment is also 
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Although these single assignment forms have been shown to be useful for 
program analysis, their use during program execution has been restricted due to the 
impracticality of storage enlargement. In this paper we develop a technique that 
enables the use of renamed code during program execution. This is made possible 
by selectively reclaiming names prior to code execution. 

This technique developed is another application of single assignment code - 
that of symbolic debugging of code that has been transformed by either traditional 
optimizations or parallelizing transformations. Became of code modification, 
deletion, reorganization and parallelization, the actual values of variables seen at 
breakpoints during runtime will often be different from the values expected by the 
programmer viewing the sequential, untransfonned code. One approach to the 
problem of non-current variables is to force the programmer to directly view and 
debug the transformed code, but this approach requires that the user have 
familiarity with the parallel constructs available, the architecture and the mapping 
from the source to transformed code. A preferable approach is to allow the user 
to execute the transformed code on the parallel system but to debug the code from 
the viewpoint of the sequential code. 

This approach to the problem of debugging transformed code has been 
visited for code transformed for traditional optimizations tn~ZZ~3.CoM,R,S*~oSo~J 
These techniques all create a history of specific optimizations performed with the 
objective of unwinding the optimizations selectively during debugging in order to 
recover non-current variables. These techniques work with a subset of 3-4 specific 
optimizations and must be expanded if other optimizations are applied. They are 
more successful when optimizations are local, becoming complex and expensive 
when code is moved across basic blocks. The present work differs in that 
expansive code motion does not increase the complexity, the work is not 
transformation dependent and the code is not modified during debugging. This last 
point is significant because code that is modified for debugging may execute during 
debugging runs, and then fail when debugging is not invoked. 

This problem has also been considered by Gupta t~'~SJ in relation to 
debugging code reorganized by a trace scheduler. Gupta's technique enables 
expected values in reordered VLIW code to be reported. It requires debugging 
requests to be made in advance, and the recompilation of selected traces. The 
present work differs in that it allows inspection of all variables at any breakpoint 
without recompilation, and it is not architecture specific. 

Each of these methods employs ad hoe techniques for saving and 
recovering non-current values in newly defined storage locations. By contrast, 
Global Renaming allows values to be stored and recovered in a unified way, 
without consideration of any code transformation. Because each value is carried 
in a unique name, renamed code can be transformed by unrestricted paraUelizing 
transformations, and still be successfully debugged. 

Unlike using renaming as a purely analytical technique, renaming in 
debugging has a problem in the explosion of the storage associated with single 
assignment programs. This problem is resolved in this work by the application 
of a second stage that reclaims names not needed for either parallel execution or 
debugging before execution occurs. 
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Thus, this paper presents a practical approach to the use of renaming in 
debugging of paraUelized code. The techniques have been implemented and 
experimental results are presented. Through these experimental results, we 
demonstrate that after name reclamation, the storage expansion caused by the 
renaming is reasonable and virtually all non-current names can be reported. 

There are several additional advantages of using the renaming approach for 
debugging transformed code. First, the renaming allows the exploitation of 
additional parallelism in program code by reducing data dependencies. Further, this 
same analysis can be used to simplify the application of several standard 
parallelizing transformations. Finally the technique imposes no restrictions on the 
number or type of parallelizing transformations applied. This allows the approach 
to interface easily with a variety of transformational packages aimed at diverse 
target architectures. 

In this extended summary, we first present an overview of the technique. 
We then present the two analysis techniques, focusing on the reclamation of names. 
Experimental results are presented, showing that this approach is indeed a practical 
approach. 

2. Overview of Debugging with Global Renaming 
Practical high-level debugging with global renaming is accomplished in five 

stages. An overview of our technique is given in the algorithm of Figure 1. Two 
stages (numbered one and three) are introduced to bracket the application of 
paraUelizing transformations. The primary purpose of the first stage is the 
renaming of the code and the production of AVAIL sets, which are sets that retain 
the current names of variables that should be reportable after the execution of the 
associated statement number in the original program. These sets provide the value 
tracking capability used by the debugger at execution time. 

Algorithm -- High-level debugging of parallelizcd code 
1. Globally rename code (11~: odgJnal code, OUT: single assigrmwnt code, A VAIL sets) 
2. Apply user chosen paraileh'zation transformations(ll~: SA code, OUT:parallelizod code) 
3. Reclaim urmvedcd names (II~: paralleh'zed SA code, 

OUT." wduced name paralleh'zed code, INOUT." A VAIL) 
4. Compile (IN.." reduced name paralleh'zed code, OUT." executable code) 
5. Execute code through debugger mo&'fied to access A VAIL sets when values are requested 

Figure 1 - Overview of thc debugging technique 

A simple program is shown passing through the stages of the system in 
Figure 2. Initially the code is globally renamed. This first stage produces a 
semantically equivalent version of the program in single assignment form, which 
assigns each (potentially non-curren0 value a unique storage name. The current 
names at each statement are retained in the AVAIL sets. The reduction of 
undesirable data dependencies by the renaming can also be observed in the 
example. Antidependencies (e.g., statement S1 8 ~ S3), and output dependencies 
($6 d ~ $7) are removed in the renamed code. The resulting code has been freed 
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Software Stages Program Representations Debugglng 

Orlolnal Code 
1. X=T+A 
2. Z=2"A+6 
3.A=T+z 
4.Z=cos(A) 
5.A=X+3 
6.B=sin(A)/I'+A 
7.B=X/(1-B) 

Renamed Code 
1.XI=TI+A1 
2.Z1=2"A1+6 
3.A2=T1+Z1 
4.Z2=cos(A2) 
5.A3=X 1 +3 
6.BI=sin(A3)/TI+A3 
7.B2=X1/(1-B1) 

Perallelized/Partitioned Co~! 9 

I 1 1.Xl--rl§ 211=2"Al+e 
I I 5,A3=Xl+3 3.A2=T1+A1 

L ~  6.BI=sin(A3)JT1,A3 422=cos(A2) 

~ ~ Pro t e in  after Name Reclamation l' 41 

user 
user view ~ ...... / ( ~ ~  

- -  AVAI-C~et'~-- / 
X r A Z B  / 

1. xl  T1 A1 / 

i 15 I 
y.+il 

Figtm: 2 -- De, bugging with Global Renaming 

from about half of the original data dependencies and thus allows a more 
aggressive exploitation of parallelism. 

The single assignment c~le can now be parallelizcd by software targeted 
for any desired architecture. The choice of transformations applied in this process 
arc not important to the debugging system. Regardless of where variables arc 
moved, their version names carry the tag required by the debugger for later 
inquiries. 

Once the paraUelizcd code has been finalized, it may be that not all the 
names introduced through renaming are necessary. Some variables must be retained 
because they enable the reporting of a non-current value at debug time. In this 
example, the programmer (debugging from the viewpoint of the sequential code) 
may insert a breakpoint after statement 5 and request the value of Z. This 
breakpoint maps to statement of the parallelized code and the associated AVAIL 
set indicates that Z2 is the proper version of Z to report from the transformext 
code. Since Z2 must be reported (and not ZI) it is necessary to distinguish 
between the Zs and therefore the Z2 name must be maintained. 
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The other reason for not reclaiming names is to allow multiple copies of 
a variable to be live on different concurrent tasks, thereby enabling the exploitation 
of paraUelism. In this example, A3 cannot share storage with A1, because A1 is 
simultaneously live on a concurrent process. Similarly A2 cannot share storage 
with A1 or A3. 

The B2 variable is reclaimable because neither B1 nor B2 needs to be 
available on a concurrent task, nor is B1 live on any concurrent task. The 
decision to reclaim B2 will result in a change in statement 7 of the parallelized 
code where B2 becomes B1, and an accompanying update to the database in the 
B entry of the AVAIL set associated with statement 7. 

This paraUelized program with names reclaimed (which is no longer single- 
valued) can now be compiled and executed. The programmer, debugging from the 
viewpoint of the sequential code, places a breakpoint in the sequential code. This 
breakpoint maps through to the transformed code. When the breakpoint is 
encountered, a request for a value made by the programmer traps into the runtime 
interface. This module in turn replaces the variable name requested with the 
version name associated with the breakpoint position which is stored in the AVAIL 
data set. The debugger then proceeds to fill the revised request in the ordinary 
way. In this example, if tile programmer places a breakpoint after statement 3, 
a request for X, T, A or Z will be replaced with requests for X1, T1, A2, or ZI 
respectively and the new requests filled by the debugger. The global renaming and 
name reclamation processes are presented in greater detail in the following sections. 

3. Global Renaming 
The task of global renaming requires the creation of anew variable name 

at each variable definition, and also at each program location where divergent 
execution paths may join. This 'resolves ambiguity after the join point that may 
occur in trying to deterndne which of multiple names (values) should be used. 
Figure 3 shows this case. 

"x•b-•x ~'oin point 

a) before renaming 

X " - "  

~x9 
b) after renaming 

Figu~ 3 -- Rvnaming at join points in program flow. 

In addition, global renaming must find blocks of code that may be 
reentered (loops) and ensure that scalars within such blocks are expanded to 
vectors. This results in variables with altered types as well as altered names. 
Figure 4 shows this case. 
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= x LS=~=:~3 
x4(1)=x3 

x =1 x4(LS-1) 
xs(r 

x x4(tS)=x5 (LS) 

a) before renaming b) after renaming 
Figure 4 --  Renaming  repeated r 

In structured code, these join points and loops coincide with structure 
boundaries. In unstructured code, they are generally discovered by analysis on a 
Control Flow Graph (CFG). The variety of these approaches has resulted in the 
development of three distinct global renaming algorithms. The first is an algorithm 
for structured FORTRAN 77 code tP~o91~,i.~93j This algorithm produces optimal 
quality code in linear time and recognizes all high-level constructs. It is thus 
appropriate for use on a large subclass of FORTRAN programs. The second 
algorithm models unstructured code as a sequence of simple commands in a linear 
code space, i~used with arbitrary GOTO's t~'93]. It is able to assert join points 
without production of the CFG, and so although it is very general, it still operates 
in linear time. However this algorithm inserts some unnecessary assignment 
statements. The most general of the algorithms (and the most expensive) is an 
extension of the dominance frontier algorithm of Cytron, Ferrante, Rosen, Wegnmn 
and Zadecld cmwzgu which in its original form produces Static Single Assignment 
(SSA) code from unstructured code in O(n3) la'*~~ 

The extension necessary to tailor this algorithm to create single assignment 
code occurs in the discovery and renaming of loops. Each loop discovered in the 
CFG is assigned a unique looping subscript (analogous to the LS of Figure 4). 
Individual statements may belong to any number of loops. Variables defined have 
subscripts added according to loop membership of the statement. The size of the 
arrays is determined by the loop bounds. If the bounds of the loop are unknown, 
vectors are allocated as needed in "chunks" of fixed size. In practice these 
variables are often reclaimed before execution and many of these allocations do not 
OCCur .  

Although the examples show only scalar variables, array variables are also 
renamed using analogous techniques. Any time an array is altered it is renamed, 
initiating a copy into a new array object. The expansion of array objects thus 
creates arrays of arrays. 

While the renaming Of arrays continues to remove all anti and output 
dependencies, it also has the effect of increasing the number of flow dependencies. 
These come about because the copying of an array object is dependent on the 
expression defining the new element as well as tile last current array object. The 
array assignment A[7]=X is renamed as A2=copy[AI,7,Xl]. The renamed code 
explicitly shows the dependency of the statement on both Xl and Al. The global 
renaming stage removes these introduced flow dependencies when it can be 
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determined that they are unnecessary. The~ approaches and a more detailed 
discussion of global renaming are described in [Pineo93]. 

4 .  N a m e  R e c l a m a t i o n  
After the globally renamed program has been partitioned and parallelized, 

it is the task of name reclamation to eliminate the unnecessary names. This is 
accomplished in three steps by first computing the maintenance ranges of the 
values, then reclaiming the unnecessary names, and finally updating the AVAIL 
sets to reflect the changed names. 

4.1 Computing Maintenance Ranges 
As seen previously, there are two reasons for maintaining a name: 1) it 

is still live, 2) it still needs to be available for debugging. This requires the 
computation of a maintenance range for each value that includes the entire live 
range of the value and also its Available range. Symbolically, 

MP-, = R v̂ u 
where R^v is the available range of the value computed/n the sequential code and 
mapped into the transformed code, and RL, is the live range of the value in the 
transformed code. 

It is straightforward to calculate R^v by standard live range analysis with 
extensions to include statements up through the value redefinition. This is 
computed by the global renaming stage and stored in the AVAIL data set. 
However it is then incumbent upon the name reclamation stage to map these 
availability ranges into the transformed code. In this stage it is necessary to view 
both the AVAIL sets and the transformed code to determine when specific 
variables must be available to serve debugging requests in the transformed program. 
Discrete locales of availability are combined into one contiguous availability range, 
since variables are assigned only once and can therefore become available only 
o n c e .  

In the computation of RLv, it is assumed that the transformed program may 
be modified for some form of parallel execution. A live range for a value may 
end on a certain processor, but if the value is also live on a parallel task, it 
cannot be considered dead until there is a synchronization point between the tasks. 
Therefore live range analysis in a parallel environment requires an inspection of 
all subtasks that will be in concurrent execution. If a variable is live in only one 
subtask P1, then the variable dies when the last use is past. However, if the 
variable is also live on another task P2, then the variable is not dead until the P1- 
P2 synchronization following the last use. Furthermore, the variable is not 
completely dead until dead on all subtasks. 

To illustrate these computations using the code of Figure 2, the A1 
variable is available at statements S1-$2, and must be live at S1-$2. However, 
since S1 and $2 are on concurrent tasks the live range is extended to the 
synchronization point. Therefore MR^I=S1-S7. Variable Z1 has an Avail range 
of $2-$3 and live range of $2-$3, giving MRzt=S2-S3. For variable Z2 the Avail 
range, $4-$7, and live range, $4, cross parallel tasks giving a giving a maintenance 
range MR~=S 1-$7. 
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Two variables are said to have overlapping maintenance ranges if they 
must both be maintained at the same time, as in the case of Z1 and Z2 above. 
When the two variables have the same root name, eg., X1 and X3, and non- 
overlapping ranges, it is always safe to reuse the address. Symbolically, 

if MR~ n MR~ = 
and Root (V,) = Root (V2) 
then @V 2 = @V~. 

The availability of a value can be seen as a further use in generating 
maintenance ranges. If viewed in this way, the maintenance range within a basic 
block can be simply defined as beginning at the first position of use of the 
variable and extending to the last. 

In name reclamation, maintenance ranges are computed for each variable 
in each basic block. These "per block" maintenance ranges are used to create 
summary maintenance information, such that at each statement it is known whether 
the maintenance of a particular variable is required at any time prior to this 
statement, or at any time beyond this statement. This information is derived from 
the Control Flow Graph of the program. Backedges are removed from this graph 
since the reaching definitions of loop variables are handled by explicit mechanisms 
in renaming. In addition, irreducible flow graph constructs are resolved by 
removing edges representing backward branches in the written code. The resulting 
acyclic CFG is used to determine predecessor and successor blocks. Since there 
may also be concurrent blocks in the CFG, a block X that is concurrent to a 
block Y is considered both a predecessor and successor to Y. 

This graph is then used to create three maintenance sets per block. A 
Maintenance Range~ set is computed, which holds a minimum and maximum 
program location for each variable used or available in Basic Block~. The 
computation of availability makes use of original statement line numbers that have 
been appended to the statement during renaming. These numbers indicate the 
original statement locations of lines of program code. After the application of 
program transformations, these numbers will normally be unordered and, in 
addition, may contain duplicated or missing numbers. However, these numbers 
provide crucial mapping information. Each time a statement line number is 
encountered, the associated AVAIL set is queried and any variable available at this 
line has its maintenance range updated with the present program location (in the 
transformed program). 

After the MR i sets are computed for the blocks, they are used to compute 
boolean sets, Pre, and Post~ for each block. Pre, contains a bit for each variable 
indicating whether the variable has a maintenance range in any predecessor of BB~ 
(including concurrent blocks). Prej is calculated from the immediate predecessors 
of BB~ by 

Pre I = O 
Prei = u (Prej u MR) where a non-zero entry in M~.min k 

j ~ m~ p~d defines a true state 
of  BB l or oa~urrent 
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Posq similarly 
to BB~. Post~ 
and concurrent 

indicates variables that have maintenance ranges in any successor 
is calculated in inverse program order from immediate successors 
blocks by 

Post~, = 
Post i = U (Postj u 

j an inun s u c c  

o f  B B  l or concur ren t  

4.2 Reclaiming the Names 
After the maintenance sets have been computed, names can be reclaimed 

from the code. The injunction against values sharing a variable name when they 
have overlapping maintenance ranges allows name reclamation to be modelled as 
a graph coloring problem. The graph consists of vertices v i corresponding to each 
value generated. There is an edge from v i to vj whenever vi and vj may not share 
a variable name. Specifically this results when any of the following is true: 

1) the variables have different root names, 
2) the variables have differing dimensionality, or 
3) the variables have intersecting maintenance ranges. 

At the beginning of the name reclamation process, this graph contains n vertices 
and is colored in n colors, where n is the number of variables in the globally 
renamed program. Name reclamation seeks to rccolor this graph, using fewer 
colors. The reclaimed colors represent names that will not appear in the final 
executable program. 

The graph is traversed starting from any arbitrary node. A color pool is 
maintained which represents the set of names that have been evaluated and will 
be retained. This set corresponds to the set of names finally held by the visited 
nodes. As the graph is traversed, an attempt is made to recolor each new node 
encountered with a color already in the color pool. Each candidate color is tried 
until one is found that has no conflict with the new node, or the list is exhausted. 
If the node cannot be recolored (the nmne cannot be reclaimed) then the node's 
original color is retained and added to the color pool. 

Figure 5 -- Namo Reclamation by Recoloring 
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Figure 5 shows a globally renamed program containing five names, with 
maintenance range intersections (conflicts) shown as edges. The algorithm starts 
with an empty color pool and immediately adds A1 to the color set. A2 and A3 
are also added because conflicts in the graph do not allow any of these names to 
share storage. In processing node A4, all colors in the pool (in last-added order) 
will be tested until one is found that does not conflict with A4. If no such color 
were found, A4 would be retained. However, in this case, after A3 is rejected, 
A2 is selected to replace A4. In the processing of the A5 node, A3 and A2 are 
rejected but A1 is selected. The resultant graph contains three names. 

The algorithm presented does not compute a minimal name space, as the 
computation of a minimal name space is an NP-complete problem by a trivial 
polytransformation from graph coloring. Figure 5 shows that extra names may 
occasionally be allowed by this algorithm. A4 can be reclaimed by choosing to 
subsume A4 into either A1 or A2. The choice of A2 as described above will 
allow A5 to be reclaimed as well (subsumed by AI). However, had the A2 and 
A1 names been encountered in reverse order, causing A1 to be tried first and 
chosen, the choice of A1 for A4 forces A5 to be unnecessarily retained. The 
algorithm tries all active names starting with the last retained and the arbitrariness 
of this ordering allows nonoptimal name choices to be made in transformed 
programs. In practice extra names occur infrequently because conflict graphs tend 
to be characterized by many nodes and few edges. 

Computing the maximal degree in the graph allows an upper bound to be 
placed on the number of colors required = maxdegree + 1. In the graph of Figure 
5 the maximum degree is four, and the graph is recolored using three colors. To 
observe that maxdegree+l represents an upper bound on retained names in name 
reclamation, consider the recoloring of the ith node where the degree of nodei <= 
maxdegree. Assume also that the pool of available colors contains <= 
maxdegree+l colors. There are <= maxcolors adjacent to node i. If the color 
pool contains maxdegree+l colors, then there exists at least one color not 
represented on nodes adjacent to nodci. This color can be chosen for node~. If 
the color pool contains < maxdegree+l colors, then node~'s color can be retained 
and added to the pool. After the coloring of nod% the color pool still contains 
<= maxdegree+l colors. 

In untransformed programs, each new definition kills the range behind it 
and thus there are no maintenance range intersections. As there are therefore no 

edges, all names are reclaimed except one (i.e., X=>X1). 
A criticism of coloring algorithms may be that implementation becomes 

prohibitively expensive because the graphs, involved get quite large. This is 
especially true for graphs created with single assignment programs. In practice the 
reclamation algorithm may be implemented without building the graph, using the 
pre, post and MR sets described above. Collectively they allow the existence of 
a conflict edge to be efficiently computed. 

At each statement the name of a defined variable, V2 may be reclaimed 
if there exists another variable, V1, previously unreclaimed, such that V1 has the 
same root name and dimensionality as V2 and the two variables possess 
nonintersecting maintenance ranges." This last condition is computed by checking 
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that MRv, n MR~ = ~ within the block that V2 has no maintenance range in 
a predecessor block and that V1 has no maintenance range in a successor block. 

If the maintenance ranges are disjoint then the active name replaces the 
new name and the new name is reclaimed. This also causes maintenance sets for 
the active Variable to be updated. If no active name can be found, the new name 
is retained and added to the active set. 

X2 avail 

xl x2 x3 x4 
Prei={1 1 0 0 0}~1 

Block B I 

xl x2 x3 x4 x5 
post~{ 1 0 0 0 1} 

xl de#,aed 

I malntenance 
ranges 

X4= "-I" 
=X2 ~4 

• . 

\ 
X1,XS Ilve..evall 

Figure 6 -- Name reclamation in a basic block 

Figure 6 illustrates the action of name reclamation. The example is 
simplified by showing only a single root name. The basic block shown is 
associated with a pre and post set. These indicate that XI and X2 have 
maintenance ranges prior to B and that X1 and X5 have maintenance ranges after 
B. Beside the block the (contiguous) maintenance ranges are displayed. Active 
names that reach the block are {Xl }. During the processing of the block, X2 will 
not be reclaimed by X1 because X2 has a previous maintenance range, and also 
because X1 has a later maintenance range. X2 is then added to the active set. 
X4 is also retained because it has a nomanpty intersection with X2 and X1 has 
a post maintenance range. X5 will be subsumed by X4 because pre (X5) is false, 
post (X4) is false and X4 and X5 have an empty intersection. This reclamation 
causes updates to Pre(X4) and Post(X4) such that 

Pre(X4) = Pre(X4) I Pre(X5) 
Post(X4) = Post(X4) I Post(X5). 

The inblock maintenance ranges of X4 and X5 are also merged and information 
is retained that X5 is henceforth known as X4 in the ref~oointer set. Now X3 
cannot be subsumed by X4 because X4 has inherited post(X5). However, X3 can 
be s u b ~  by X2, and similar set updates are initiated. The block will finally 
contain only X2 and X4. 

Another form of name reclamation occurs within loops. The algorithm 
will recover the expansion of objects when the loop in qt~,stion was not chosen 
for parallelization. In the case of nested loops, each loop is associated with a 



350 

unique looping subscript. Those associated with parallelized loops are retained 
while the others are reclaimed. The reconstruction of the looping subscript portion 
of each name is done whenever the name is added to the active set. 

At the end of a block's processing, the exiting active set is saved for use 
by successor blocks. After all blocks are processed, the AVAIL database is 
updated with the name changes and rewritten for later use by the debugger. 

A more detailed View of the name reclamation algorithm is given in the 
Appendix. The efficiency of this algorithm is bounded by O(plen x Ivarl) where 
plen is the length of the transformed program, and Ivarl is the number of variables 
in the transformed program. 

5. Experimental Results 
Global renaming and name reclamation have been implemented in about 

3500 lines of C code in a system designed for structured FORTRAN 77. The 
experimental testbed consists of ten FORTRAN programs taken from the EISPACK 
and FFTPACK collections. 

The issues investigated are: 
1) Are there significant numbers of non-current variables in parallelized code? 
2) What is the storage increase associated with global renaming, and name 
reclamation? 
3) What factors are responsible for unreclaimed names? 
4) What percentage of non-current variables remain unreportable using global 
renaming and name reclamation? 

Table 1 shows the storage expansion measured in the testhed programs as 
they pass through the stages of the system. Storage is measured in words and is 
recorded for the original program, after global renaming, and after parallelization 
and name reclamation have been applied. For the purposes of measuring the 
storage implied by expanded variables in loops, any loop with uncertain bounds 
is assumed to execute 10 times 2. For example, BAKVEC's original 153 memory 
words grows to 11937 after global renaming, representing an increase of 78 times 
the original. After paraUelization and reclamation, the final storage requirement of 
BAKVEC is 283 words, or 1.g4 times the original. 

The degree to which storage is reclaimed varies inversely with the amount 
or parallelism inherent in the program. Highly parallel programs reclaim fewer 
names, while programs that undergo no parallelizing transformations have virtually 
all their introduced names reclaimed. The increases range from 1.1 to 7.3 times. 
The unusually high enlargement figures associated with BQR come from a program 
with deeply nested loops and several large parallelizable loops. The average 
storage enlargement measured in these programs was over 3900 times after global 
renaming. Excluding the anomalistic BQR, the average enlargement was still a 
discouraging 1368 times. However, after name reclamation the average program 
size was a more reasonable 2.5 times the original. 

2 This figure is derived from measurements taken by Knuth ~'~J who reports 
the code and execution characteristics of 495 FORTRAN programs. 
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(words) times times 
l~r_agr.am aiigkmL_z.~ ~ iner ~ incr 

1. BAKVEC 153 11,937 78 283 1.84 
2. BALANC 252 33,401 129 392 1.08 
3. BALBAK 127 32,721 257 257 2.02 
4. BANDV 277 735,021 2653 348 1.25 
5. BISECT 150 45,293 300 190 1.27 
6. BQR 160 4,283,868 26768 1170 7.31 
7. EZFFTI 39 5,880 150 171 4.38 
8. EZFFIT 6150 23,967,981 3897 7060 1.15 
9. EZFFTB 6148 28,055,204 4563 13848 2.25 
10.DCHDC 60 14,560 242 164 2.73 

average 3903 2.53 
(without BQR 1368) 

Table 1 - Storage Enlargement 

In these tests the renamed code was parallelized by Parafrase-2, an 
automatic parallelizing package licensed through the University of Illinois tr~176 
It was noted that the parallelization of globally renamed code was significantly 
more successful than when the code was not renamed. Many more (and larger 
loops) were found parallelizable, an effect that was directly attributable to the 
reduction of data dependencies. More than six times as many program lines were 
found in parallelized loops using this technique. 

lmagrmn name, z ~ n . w 2 ~ l  ~ .~ d l ~ c _ . l o ~ , k l ~  

1. BAKVEC 130 20 15 110 85 
2. BALANC 140 120 86 20 14 
3. BALBAK 130 120 92 10 8 
4. BANDV 71 64 90 7 10 
5. BISECT 40 36 90 4 10 
6. BQR 1010 1003 99 7 1 
7. EZFFTI 132 130 98 2 2 
8. EZFFIT 910 644 71 266 29 
9. EZFFTB 7700 6506 84 1194 16 
10.DCHDC 104 92 88 12 12 

average 82 18 

Table 2 -- Analysis  of  Unreelaimed Names 
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Table 2 shows the analysis of unreclaimed names. Names that are 
retained because the multiple versions of a variable need to be simultaneously live 
(as in a parallel loop) were charged m the parallelism column. Conversely, names 
retained for the purpose of tracking non-current variables were charged to 
debugging. Where code is reordered aggressively this number of variables charged 
to debugging can be high (as in the case of BAKVEC), but normally this number 
is eclipsed by the variables enabling additional parallelism. Over the group of 
programs, about 82% of the introduced variables enabled parallelization. The 
remaining 18% were required for value tracking non-current variables. 

Non-current VI Unreportable 
Pgl/gig~ Total VI 2anilm,lgd2ag~ %Total ~ %Total 

1. BAKVEC 288 72 25 1 0.3 
2. BALANC 2,499 29 1 0 0 
3. BALBAK 432 38 9 0 0 
4. BANDV 11,160 318 3 1 0.0 
5. BISECT 5,565 57 1 0 0 
6. BQR 10,332 361 3.5 0 0 
7. EZFFTI 1,960 420 21 15 0.8 
8. EZFFTF 12,470 1967 16 0 0 
9. EZFFFB 12,335 2070 17 0 0 
10.DCHDC 4,225 96 2 0 0 

averages 9.8% 0.01% 

Tablo 3 -- Variable Unreportability at Debug Time 

Table 3 shows the measurement of the degree of non-currentness that 
exists in the parallelized programs. The number of variable instances was 
computed as the number of program variables times the number of program lines 
(only lines past the initial declarations and comments were counted). After 
transformations were applied the number of non-current variable instances (VI) was 
counted by counting the number of lines at which each variable is non-current 
(unreportable at debug time) and summing them over the variable set. The 
percentage of non-current variable instances was computed and averaged. Finally 
the number of unreportable variable instances using the proposed debugging 
technique was counted. These are places where, if a variable value were requested 
during debugging, the software would report the value is unavailable due to 
transformations applied. The last column shows this figure as a percentage of the 
total variable instances. 

Some interesting results emerge from these tests. First the ballooning of 
storage after global renaming is quite large. From a low of 78 times expansion 
to a high of 26,000 times expansion (average 3800 times), clearly globally renamed 
code is far too unwieldy to be used directly. The large variation in this expansion 
depends (exponentially) on the depth of nesting in the program and (linearly) on 
the program length. 
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However, name reclamation succeeds in reducing the required storage to 
a manageable increase of 2.5 times the original. Of these unreclaimed names, a 
large majority are instnmlental in increasing the parallelism in the program. The 
contribution of these 82% is clearly seen in the improved parallelism figures. The 
number of lines of code residing in parallelized loops increases an average of 6.4 
times. 

The experiments show that the existence of non-c/a'rent variables in 
paralielized code is a problem. An average of 9.8% of all variable instances are 
found in non-current ranges in these programs. This figure was unexpectedly high. 
Without the debugging technique these would be unreportable at debug time. But 
using these methods only 0.01% of variable instances were still unreportable (due 
to eliminated code or code moved forward). 

These results demonstrate the viability of the method. Not only do they 
show that the rather invasive nature of parallelizing transformations produces a 
large percentage of non-current variables, but they also seem to indicate that the 
cost of debugging such code is small. One could argue that only 18% of the 2.5x 
storage increase is due to debugging. Since 

18% * 1.5x (new unreclaimed names) -- .27 
it can be concluded that the storage enlargement cost of debugging transformed 
code is about one quarter of the original storage. 

6. Conclusions 
As compilers become increasingly autonomous with respect to the 

restructuring of code, the problem of debugging such transformed code grows in 
importance. The approach presented in this paper offers significant advantages to 
the user. lit can be used with any transformational package without placing 
requirements or limitations on the transformations chosen. While the benefits of 
modular systems design are well-known, this characteristic is particularly useful 
with parallelizing packages, since the rapid evolution of defined transformations 
cripples a transformation-dependent approach. 

The formation of single assignment code conveys advantages to later stages 
of code analysis as well. Parallelization is far more successful and all 
transformations requiring data dependence analysis are simplified. Code partitions 
are also computed easily. This work suggests that single assignment code captures 
properties of flow dependence that are so fundamental to the further manipulation 
of code, especially in a parallel environment, that it is a very appropriate first step 
to create this form from the input code via global renaming. 

Name reclamation makes this a practical and workable approach by 
removing the unnecessary name allocations. Using this technique, parallelized 
programs are constructed in modestly expanded spaces, with far more parallelized 
code. And, most importantly, these programs can be successfully debugged. 
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A P P E N D I X  --  The  Name  Rec lama t ion  Algor i thm 

A l , , o r i t h t n  R e c l a i m  N m ~ e s f P : P r o c e d u r e )  

I .  C m n p u t e  M a i n t e n a n c e  S e t s  ( M E ,  P r q ,  P e s o  
2 .  P r o c e s s  P r o g r a t n  B l o c k s  R e c l a i z r d n g  t h e  n a z n e s  
3. U p d a t e  A V A I L  d a t a  s e t  w i t h  c h a n g e d  n m n e s  
e n d  R e c l a i l ~  N m n e s  

C o m p u t e  M a i n t e n a n c e  ~;ets 

1. C r e a t e  P r o g r a m  D e p e n d e n c e  G r a p h  - B a s i c  B l o c k s ,  w i t h  c o n c u n r e n c y  
i n d i c a t e d .  

M a r k  l o o p  h e a d s  a n d  d e l e t e  b a c k e d g e s .  O r i g i n a l  s t a t e m e n t s  a r e  
m ~ u r k e d  w i t h  o r i g i n a l  s t a t e l n e n t  n u i n b e r s .  

2 .  R e a d  A V A I L  S e t  a s s o c i a t e d  w i t h  o r i g i n a l  s e q u e n t i a l  p r o g r a u n .  

3 .  F o r  e a c h  B a s i c  B l o c k  B ~  d o  ( i n  a n y  o r d e r )  
M a r k  t h e  b e g i n n i n g  a n d  e n d  o f  t h e  m a i n t e n a n c e r a n g e  M ~  o f  e a c h  

v a r i a b l e  u s e d  o r  d e f i n e d  i n  BI~j: 
F o r  e a c h  p r o g r a u n  l i n e  o f  t r a u 2 s F o n n e d p r o g r a u n  

F o r  e a c h  U S E  o r  D E E  vaur k 
i f  M ~ ( k ) . n z i n  u n d e f i n e d  t h e n  M l ~ ( k ) . l ~ _ i n  = p r o g r a g n  
l o c a t i o n  
M t ~ ( k ) . n l a x  = p r o g r a u n  l o c a t i o n  

F o r  e a c h  l i n e  n t u n b e r  r e a d  o n  i n p u t  ( p o i n t i n g  to  o r i s i n a l  
s t a t e l n e n t  l o c a t i o n }  

For  e a c h  v a t  k i n  A V A I L ( l i n e  n u m b e r )  
i f  p r e s e n t  l o c , <  M l ~ ( k ) . n d n  o r  u n d e f i n e d  t h e n  

M _ i ~ ( k ) . m i n  = p r e s e n t  l o c a t i o n  
i f  p r e s e n t  l o c  > M l ~ ( k ) . m a x  t h e n  

M _ l ~ ( k ) . m a x  = p r e s e n t  l o c a t i o n  

4.  C a l c u l a t e  P r q  For  e a c h  B B j  i n  p r o g r a m  o r d er .  { P m  i s  a b o o l e a n  s e t  
i n d i c a t i n g  w h i c h  v a r i a b l e s  h a v e  ~ n a l n t e n a n e e  r a n g e s  p r i o r  to  B B j }  

e r e ,  = 
P r q  = " U (Pr~j v ~ w h e r e  a n o n - z e r o  e n t r y  i n  M l ~ . m i E  

j an ~ ~ d e f i n e s  a t r u e  s t a t e  
oE B B j  o r  r  

5,  C a l c u l a t e  P o s ~  For  e a c h  B B i  i n  i n v e r s e  p r o g r m n  o r d e r .  ( P o s t  i n d i c a t e s  
w h i c h  v a r i a b l e s  h a v e  l n a i n t e n a n c e r a n g e s  a f t e r  B ~ }  

P o s t  ~,, = 
P o s t  I = U (Pos t~  t~ M I ~  

j a n  ~ m20r 
o f  BB~  o r  � 9  

e n d  C o l n p u t e  M a i n t e n a n c e  



355 

P r o c e s s  P r o v . r a n a  B l o c k s  

1. I n i t i a l i z e  
A c t i v e _ s e t ,  = ~ { s e t  o f  a c t i v e  v a r i a b l e  n ~ u n e s )  
F o r  e a c h  v a r i a b l e  k ,  r e f _ _ p o i n t e r ( k ) =  0 { r ~ f _ _ p o i n t e r p o i n t s  to  n e w  

n a u n e  i f  v a r i a b l e  i s  r e n a m e d )  
2 .  R e n a z n e  

F o r  e a c h  B a s / c  B l o c k  BB~ ( i n  p r o g r a m  o r d e r )  
2 . 1  U p d a t e  l n a i n t e n a n c e  s e t s  

f o r  a l l  v a r  k d o  
i f  O" = r e f - - p o i n t e r k )  r 0 { v a ~  i s  n e w  n a t n e  o f  vark} 
t h e n  P r e j ( j )  = P r e j ( k )  o r  Pr~O')  

Pos~O" ) = P o s ~ ( k )  o r  Pos~O" ) 
M l ~ O ' ) . l n i n  = l n i n i u n u m ( M R  ~(k ) . l n in ,  M R  ~(i) .~nin)  
M _ ~ O ' ) . l n a x  ---- l n a x i z n u l n ( M R  i ( k ) . l n a x ,  J ~ q  j ( j ) . m a x  ) 

2 . 2  C o m p u t e  A c t i v c _ s e t j  = U A c t i v e _ s e ~  
j--hahn p~d BBj 

2 . 3  R e c l a i m  n a m e s  i n  B B j  
f o r  e a c h  U S E  ( v a t  k ) 

i f  t e l _ p o i n t e r  k = j ( > 0 )  t h e n  
r e p l a c e  vark w i t h  vaz~ 

f o r  e a c h  D E F  ( v a t  k ) ,  t r y  to  z ~ c l a t m  n ~ u n e ( u n t i l  r e c l a i m e d  
o r  l i s t  e x h a u s t e d ) :  

f f  r e f _ _ p o i n t e r  k = j ( > 0 )  ( v a r i a b l e  a l r e a d y  r e c l a i l n e d }  
t h e n  r e p l a c e  v a t  k w i t h  v a ~  

e l s e  
f o r  e a c h  v a t  A i n  active__set~ w i t h  r o o t n ~ u n e  l n a t c h i n g  v a t  k 

d e t e z l r l i n e  w h e t h e r  i n a i n t e n a n c e  r a n g e s  a r e  d i s j o i n t :  
f f  n o t  P r e f k )  { n o  p r e v i o u s  l n a i n t e n a n c e  r a n g e  

vary)  
a n d  M l ~ ( k ) d n i n  > =  p r e s e n t  p m g r ~ u n  l o c a t i o n  
a n d  n o t  P o s ~ ( A )  { n o  l a t e r  l n a i n t e n a n c e r a n g e  f o r  

Val'A) 
a n d  M d ~ ( A ) . l n a x  < =  p r e s e n t  p r o g r a t n  l o c a t i o n  

t h e n  { m c l a i t n  vark, r e p l a c e  w i t h  varA} 
m f  p o i n t e r  k = A 
P o s ~ ( A )  = P o s ~ ( k )  
M _ l ~ ( A ) . l n a x  = M _ ~ ( k ) . l n a x  

i f  v a t  k n o t  r ~ c l a i ~ e d  
t h e n  { a d d  v a t  k to  a c t i v e  se t j }  
r e c o m p u t e  l o o p i n g  s u b s c r i p t ,  r e t a i n i n g  o n l y  t h o s e  

a s s o c i a t e d  w i t h  p a r a l l e l i z e d  l o o p s  

2 . 4  S a v e  a c t i v e  s e t  l { t o  b e  u s e d  b y  i r ~ m e d i a t e  s u c c e s s o r  b l o c k s }  
e n d  P r o c e s s  B l o c k s  

R e w r i t e  A V A I L  ~ e t s  

F o r  e a c h  l ine,  
F o r  e a c h  r o o t  n a ~ n e  r 

l e t  x,ar k ---- A V A I L  ( i , r )  
i f  r e f _ _ p o i n t e r  k = j t h e n  A V A I L  ( i , r )  = va~j 

R e w r i t e  A V A I L  s e t  to  d i s k  
e n d  R e w r i t e  A V A I L  s e t s  
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