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Abstract.  This paper sketches a hard real-time programming language 
featuring operators for expressing timeliness requirements in an abstract, 
implementation-independent way and presents parts of the design and 
verification of a provably correct code generator for that language. The 
notion of implementation correctness used as an implicit specification of 
the code generator pays attention to timeliness requirements. Hence, for- 
mal verification of the code generator design is a guarantee of meeting all 
deadlines when executing generated code. 

1 Introduction 

For an increasing number of applications, software failures may be very costly in 
terms of economic loss or even human suffering. This is particularly true for hard 
real-time control programs, where correctness does not only depend on logical 
correctness of results, but also on timely delivery of services. 

Testability of such software is poor, as timing constraints add an additional 
dimension to the behaviour to be examined and, furthermore, dictate the speed 
of the testing process. Traditionally, this problem has lead to a purely pragmatic 
separation of concerns: Algorithmic correctness is dealt with by using program- 
ming notation, which - -  whenever reliability is required - -  is subject to thorough 
or sometimes even formal investigation, whereas timing properties are dealt with 
a posteriori by inspection of the machine code generated by a compiler. 

Unfortunately, this approach leaves two different problems unresolved: On 
one hand, investigation of the algorithmic properties stops too early in the de- 
velopment process, as due to the absence of verified development software, par- 
ticularly compilers, improper target code may still result. On the other hand, 
inspection of timing properties starts too late in the development process, pos- 
sibly leading to expensive iterations in development. 

Both problems could be resolved by a programming language supplying 
means to express the relevant patterns of timeliness, together with a highly 
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dependable, i.e. correctness-preserving, compiler. Firstly, a dependable com- 
piler would give certainty about the correctness of machine code whenever the 
same is true for the source program, making backcompilation, machine code 
inspection, and similar costly target code analysis techniques superfluous. Sec- 
ondly, implementation-independent means of expressing timing constraints at 
the source level could make timing subject to the same paradigm of stepwise 
development currently successfully applied to algorithmic development. 

The traditional approach to achieving reliability of compilers is validation 
by running test suites, i.e. by compiling a number of test programs and testing 
their executables. It is questionable whether this can give sufficient confidence 
to replace target code inspection in safety-critical software development, as test 
programs normally exhibit rather simple behaviour to allow detection of errors. 
As stated earlier, this is especially true with respect to timing. Hence, highly de- 
pendable compilers for real-time programming languages cannot be constructed 
without formal verification of their vital parts, particularly code generators. 

The aim of the ESPRIT project "Provably Correct Systems 11" (abbrevi- 
ated ProCoS lI) is to contribute to the state of the art in development of cor- 
rect software-hardware systems for embedded, safety-critical real-time control by 
elaborating an experimental framework for the stepwise, correctness-preserving 
development of such systems. In this framework, the programming language 
plays the role of an interface between high levels of abstraction, where system 
development requires human ingenuity, and low levels of abstraction, where cor- 
rectness preserving transformations can be applied fully automatic by compilers. 

Thus, one of the immediate goal s of ProCoS If is to provide a prototype of a 
real-time programming language designed to solve the interfacing problem be- 
tween system specification and system implementation and to develop a verified 
prototype compiler for this language. On one hand, the programming language 
has to provide sufficiently expressive timing operators to make program cor- 
rectness arguments without recurrence to a particular implementation possible. 
On the other hand, it must be implementable on realistic hardware by avoiding 
overly idealized timing properties. 

A prototype compiler might be taken as a pragmatic proof of the latter claim. 
But far beyond this, its existence will be a demonstration of the feasibility of 
high-dependability compiler development, opening the perspective for banning 
target-level work from safety-critical system development. 

This paper gives an overview on the work undertaken thus far in ProCoS lI 
towards this goal. Section 2 gives an introduction to ProCoS's real-time pro- 
gramming language TimedPl., and section 3 shows how to extend it to a larger 
real-time process language used to embedd TimedPl_ and the target machine 
language into a common framework in section 6. In section 4, a general notion 
of one process implementing another is sketched, which is exploited in section 
7 to define the detailed correctness predicates for code to be generated for the 
different syntactic categories of TimedPL. In section 8, these correctness pred- 
icates are put to use by stating concrete target code patterns for some source 
code patterns and by exploiting the algebra of the process language to show 
implementation correctness. 
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2 T h e  R e a l - T i m e  P r o g r a m m i n g  L a n g u a g e  TimedPL 

ProCoS's real-time programming language TimedP[ [FvK93] features concepts 
to describe both the desired logical and temporal behaviour of programs. Using 
this basic distinction, TimedPl. may be understood as being composed of 

1. a simple imperative kernel for describing logical behaviour via imperative 
sequential algorithms, 

2. timing operators for decoration of sequential algorithms, assigning execution 
times to their logical behaviour, and 

3. parallel composition of timed sequential algorithms, introducing concurrency 
for the sake of both expressivity and efficiency. 

TirnedPI. is closely related to occam [inm88a], albeit dropping some features 
from occam for scientific treatability, but seriously adding to its expressivity in 
ProCoS's central field of research, namely real-time software development. 

Like in occam, a program is a set of sequential processes executing in parallel 
and communicating with each other and with the environment solely via unidi- 
rectional, synchronous channels. Synchronicity means that whenever a process 
wants to communicate on a channel it has to wait until the partner residing 
at the other end of that channel is also willing to communicate. By disallow- 
ing shared variables, there is a clear syntactic distinction between effects that 
might affect parallel partners, namely communications on channels, and those 
that are completely encapsulated in a sequential process and may be optimized 
by a compiler, namely state transformations. 

( chandecl) ::= 
<time) ::= 

<parallel component) ::= 
( inaccuray spec) ::= 

<sequential program) ::= 
<variable declaration) ::= 

<sequential process) ::= 

<upper bound) ::= 
<alternative statement} ::= 

<timed alternative) ::= 

Table 1: Outline of TimedPL's syntax 

<program> ::= <chandeci>* par (<parallel component>+) 
o h =  (channel) late=or <time>: 
( n o n -  negative real) 
( inaceuray spee) (sequential program) 
dr i f t  <real larger 1) :granulari ty <time) : 
<variable declaration)* <sequential process) 
vat <variable)* : 
skipl stop l <variable) := <expression) [ 
( channei) ? ( variable) l ( channel)!( variable) l 
<sequential process}; <sequential process) l 
i f  (bool exp.) then (seq. proc.) else (seq. proc.) I 
ghile (bool expression) do <sequential process) I 
<upper bound) l ( alternative statement) 
[ < sequential process}] < <time) 
al l  ({timed alternative)* ) 
gait <time): (channeO?(variable) -+ (seq. proc.) 

2 . 1  T h e  I m p e r a t i v e  Kerne l  " 

The imperative kernel of Timed PL is essentially the language of while programs, 
extended by input and output commands to unidirectional, synchronous chan- 
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nels, and by input-guarded alternatives providing a means to conditionally react 
upon different external stimuli arriving via channels. 

More specificly, untimed sequential processes are composed from the atomic 
processes skip (representing the identical state transformation), s top (mean- 
ing deadlock, i.e. idling forever), assignments, input commands c?z (waiting 
for communication on channel c and, if communication proceeds, assigning the 
communicated value to variable x), and output commands c!e (waiting for com- 
munication on channel c and, if communication proceeds, sending the value of 
the expression e along the channel). Atomic processes can be composed by se- 
quential composition, conditionals, while-loops, and input guarded alternatives 
to form more complicated sequential algorithms. 

The imperative kernel of TirnedPl_ is intended for describing the logical be- 
haviour of sequential algorithms. Consequently, unless restricted by addition of 
timing operators (as described in the next section), execution speed of sequential 
processes is completely unspecified. This means that any implementation yield- 
ing correct logical behaviour, i.e. input-output sequences, is acceptable regardless 
of its speed. 

More specificly, only runtime of TimedPl_'s atomic processes is unspecified, 
whereas composition operators, even those involving evaluation of control con- 
structs, do not take extra execution time beyond that taken by the component 
processes. The latter convention significantly enhances the expressive power of 
composition operators when dealing with timed component processes. 

2.2 T iming  Opera to r s  

The intended field of application of TimedPI. is hard real-time programming, 
i.e. construction of programs where correctness does not only depend on algo- 
rithmic well-behavedness, but also on never missing any deadline, be it a lower 
or an upper bound for the time of delivering a certain service. Therefore, we 
need mechanisms to constrain the runtime consumption of parts of sequential 
Mgorithms. TimedPi. offers three such mechanisms: 

1. upper bounds on the time spent by sequential processes for state transfor- 
mations, 

2. delayed readiness of guarding communications in alternatives, and 
3. upper bounds on the time-to-communication taken by a communication com- 

mand when its communication partner is ready, called the communication's 
latency. 

Upper bound timing. Upper bounds can be placed anywhere inside a sequen- 
tial process for bounding execution time of the enclosed part, which is itself a 
sequential process. The upper bound timing operator 

(upper bound)::= [(sequential process)] <_ (time) 
confines the enclosed sequential process to spend at most the amount allowed by 
the upper bound of time controlled by itself, i.e. not spent waiting for commu- 
nication partners, until termination. If this contradicts with timing conditions 
imposed by inner timed alternatives, the semantics is miraculous, meaning that 
the process is not implementable and has to be rejected by the compiler. 
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Timed alternatives. Lower bounds on reactivity can be achieved by using the 
delayed readiness of guarding communications offered by timed alternatives 

(timed alternative) ::= wait (time): (channel)?(variable) ~ (sequential process) . 

An alternative statement consists of processes guarded by input guards, where 
the readiness of the guarding communications is established when the delay time 
stated in the guard has elapsed. In contrast to occarn, timing is hard, i.e. readi- 
ness is established at the moment the delay elapses, not arbitrarily thereafter. 
The latter condition might seem unimplementable due to the impossibility of ab- 
solutely exact hardware clocks, but TimedPl.'s semantics features a distinction 
between local clocks (which may be inaccurate) and global time. This distinction 
is part of the definition of TimedPl_'s parallel composition operator, cf. section 
2.3. 

Communication latencies. Often systems communicating through synchronous 
channels are understood under the maximum progress assumption, where a com- 
munication has to take place as soon as both communication partners are simul- 
taneously ready for a communication. This gives nice timing properties, but 
is unrealistic even for systems with an own processor for each parallel compo- 
nent, as hardware and protocol delays in detecting readiness of a communication 
partner do not only limit reactivity, but may even blurr the temporal order of 
events. 

In TimedPl_ programs, a lower bound on progress of each communication is 
explicitely stated. I.e. if communication partners are simultaneously ready for 
a communication, communication of that or another competing event need not 
happen unless both communication partners have been simultaneously ready for 
the event for a specified amount of time, called the' latency associated to that 
event. Communication latencies are assigned at a per-channel basis by making 
latency specifications part of the channel declaration. 

2.3 Para l le l  C o m p o s i t i o n  

A real-time programming language not offering parallelism would be incomplete 
with respect to both efficiency of progams and expressibility of control algorithms 
requiring concurrent actions. Hence, TimedPL programs are systems of timed 
communicating sequential processes combined by outermost parallelism. 

In any implementation, timing properties can be guaranteed only with re- 
spect to hardware timers, which, unfortunately, do not accurately reflect real- 
world time due to clock drift and discretization. The consequences of identifi- 
cation of both timing regimes on the behaviour of synchronous systems can be 
drastic, as independent subsystems may loose synchronicity due to the imper- 
fection of technical clock devices. Thus, we have to model the effects of timer 
inaccuracies in the semantics of TimedPl_ to achieve reliable designs. 

The concept of coping with these implementation dependencies offered by 
TimedPL is straightforward: The programmer has to state acceptable clock toler- 
ances for the individual parallel components. Each parallel component is prefixed 
by an inaccuracy specification stating the maximum allowed drift and discrete- 
ness of its local clock. Semantically, these inaccuracy specifications can be taken 



299 

as a guarantee by the programmer that the correctness of his control algorithm 
will not be affected by local clocks being imprecise in the stated range. Sim- 
ilarly to the mathematical treatment of component tolerances by the calculus 
of accidental error in, e.g., electrical engineering, a calculus of nondeterminism 
caused by clock inaccuracy and of its propagation through different program- 
ming operators can be elaborated, providing a mathematically sound basis for 
mostly separating the problem of dealing with implementation tolerances from 
the design of a real-time control system as such. Work undertaken in ProCoS 1] 
on the semantic basis of such a calculus of timing inaccuracy can be found in 
[FMO93]. 

3 Extend ing  TimedPL Towards a Process  Calculus 

Timed PUs syntax, as outlined in table 1, defines different syntactic layers, namely 
programs, parallel components, sequential programs, and sequential processes, 
representing implementation concepts and thus making sense for a compilable 
language. But when reasoning about real-time control processes, that syntactic 
variety can be a burden. A more homogeneous process language TimedProc used 
in the remainder of this article as a framework for reasoning can be derived from 
TimedPl_ by dropping syntactic restrictions. In TimedProc, all the syntactic pro- 
ductions defining TimedPL's syntactic classes <program), <parallel component), 
<sequential program), and (sequential process) are put together to define the sin- 
gle syntactic class <process), allowing for parallelism, inaccuracy specifications, 
and variable declarations inside subprocesses. Furthermore, a generalized bound 
construct 

<general bound)::= [{process)] E (set of times) 
and an assertion statement 

<assertion) ::= assert (bool expression) 
are added to the process constructions. 

A general bound [Tr] E T confines the enclosed process r to spend a runtime 
in the bounding set T of times until termination, where - -  as with upper bound 
timing - -  time spent waiting for a communication partner does not count. In 
the remainder of this article, the notation wait T , where T is a set of times, 
will be used as a convenient abbreviation for the process [skip] E T that idles 
for a time in T. 

An assertion a s s e r t  b does nothing (not even consume time) whenever the 
Boolean expression b is true in the current state. But whenever b evaluates to 
false, a s s e r t  b behaves completely unreliable, implying that any implementation 
is correct under these circumstances. Thus, prefixing a process by an assertion 
a s s e r t  b means that an implementation need only be well-behaved whenever b 
evaluates to true. 

We obtain a common framework for reasoning about source and target pro- 
grams by defining the semantics of the machine language by an interpreter ex- 
pressed in TimedProc in section 6, since TimedProc is a superset of our source 
language TimedPL. 
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4 I m p l e m e n t a t i o n  C o r r e c t n e s s  

When dealing with correctness of code generation we need a rigorous notion of 
whether one process implements another one or not. As we are dealing with 
embedded systems, there is a very natural notion directly at hand: 

A process r implements or refines a process ~r, denoted r ~ ~, iff ~ can 
be safely replaced by r in any context. 

I.e., r may only engage in interactions with its environment that  ~r may also 
engage in, and r must engage in any interaction Ir must engage in. This has to 
apply with respect to both the logical behaviour and timing, i.e. an implementing 
process will in particular respect all the deadlines that  the implemented process 
meets. 

Using this kind o f  reasoning, which can be formalized b y  associating each 
process with the set of trajectories over its state space it may engage in [vK93], 
algebraic laws of refinement between processes (or implementation correctness, 
respectively) can be established, equipping TimedProc with a calculus of process 
refinement. Table 2 gives examples of TimedProc's refinement rules. 

T a b l e  

X : = e ; x  : =  f "-- 

[~] < ~ 

[x := e] 6 T - 

w a i t T ; [ x : = e ] E T '  - 

wait T -3 

2: Some refinement laws of TimedProc 

:= f[e/,] 
[~] < t ' ,  if t < t '  

[X := e] E {0} ;wai t  T 

[x := e] E T' ; wait T 

wait  T ~, if T C T' 

{Assignment merge} 

{Tightening Bounds} 

{Assignment-Bound} 

{Assignment-Wait } 

{Wait-Refinement } 

where -- is semantic equivalence, i.e. :r -- ~b iff r ~ tb and tb __ ~r, and f[e/x] denotes 
expression f with every occurence of variable x being replaced by expression e. 

5 Conceptual  Framework of Code Generator  Verification 

In software engineering it is largely accepted that  the formulation of specifi- 
cations must preceede the construction of programs. Often even a derivation 
of programs out of specifications by formal or informal transformations is rec- 
ommended instead of a-posteriori verification. Similarly the design of provably 
correct machine code to be generated by a compiler should be preceeded by the 
formulation of the appropriate correctness predicate. The construction of a ver- 
ified code generator described in this paper is inspired by some ideas of [Hoa91]. 
One of them is to base correctness of code on the notion of source language 
refinement consistently extending the chain of refinement steps that  led to the 
source program down to the level of the machine program. A definition in terms 
of refinement formulae is enabled by defining the machine language semantics 
by an interpreter I in source language-like notation. 
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After the correctness relation has been fixed, correct code can be described 
by means of theorems about this relation. Typically for compound constructs 
op(zl , . . . ,  ~,~) these theorems take the form of an implication that under certain 
syntactic conditions on the surrounding code establishes the correctness of code 
for the compound construct provided correct code for the components 7rl,. . . ,  7rn 
is supplied. The collection of these theorems allows to define a compiling relation 
syntactically in a compositional way that is guaranteed to be a subrelation of the 
correctness relation, i.e. a (syntactic) specification of a correct code generator. 
In this way the collection of theorems specifies the code generator. 

In simple situations (and in particular for entire programs) the correctness 
predicate can be defined directly as refinement between the source program ~" 
and the interpretation of an implementing machine program m: 

~ ' E Z m  . 

But in more sophisticated situations further parameters are necessary. If for 
example the data spaces of the source and the target program are different 
then a retrieve-mapping ~ that describes their relationship could be used as an 
additional parameter of the correctness predicate: 2 

6 M a c h i n e  L a n g u a g e  

The work reported in this article aims at the design of a provably correct code 
generator that translates TimedPl_ to transputer code [inm88b]. Of main inter- 
est here are the timing aspects, in particular the guarantee that time bounds 
requested in source programs are met by the generated machine code. The as- 
sumption of Timed P L that control structures do not consume time by themselves 
largely simplifies the reasoning about programs. But clearly, code running on a 
conventional processor needs time for the evaluation of the Boolean guards that 
steer the control flow and for the execution of the jump instructions that move 
the program counter to appropriate places. 

The solution to this problem is based on the observation that only the preser- 
vation of the timing of external communications and of the communicated values 
is important for correctness. Internal computation can be moved arbitrarily as 
long as this does not affect communications. Therefore a compiler for TimedPl_ 
can shift the computation time overhead for the implementation of control struc- 
tures to sequentially neighboured processes. 

This section introduces a simple abstract machine language. It has been de- 
signed in order to allow a treatment of the timing aspects in isolation and to 
illustrate how the timing of machine instructions can be formally captured in 
a process algebraic setting. A number of other translation tasks for a compiler 
to transputer code and for code for conventional processors in general are not 
discussed in this paper as solutions are well-known. Examples are the assign- 
ment of storage locations to variables, the translation of mnemonic assembler 

2 We assume that !g can be written inside the language of processes into which the 
source language is embedded. 
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instructions to sequences of bytes, and the generation of code for the evaluation 
of expressions. 

The model machine has the following components: a program counter P, 
two accumulators A and B for integer resp. Boolean values, a storage that is 
addressed directly by variable names (avoiding the compiler task of assigning 
integer addressed storage locations to program variable names), and channels 
that are addressed directly by channel names (avoiding the need to assign links 
to channels when translating TimedPL to the machine language). Its instruction 
set is given by the following grammar, where i ranges over instructions, a 

i : := s topp I eval(e) I eval(b) I s t l ( z )  I out(e) I in(c) I J(l) l eJ(1) �9 

A machine program m is a sequence of instructions. We use the notation # m  
for the length of m and m l ~ m 2  for the concatenation of mt and m2. 

Informally, the logical behaviour of the instructions is as follows: s topp stops 
the machine, eval(e) evaluates the integer expression e leaving the result in 
register A, eval(b) evaluates the boolean expression b leaving the result in register 
B, s t l ( z )  stores the contents of register A to the memory location z, out(c) 
communicates the contents of register A synchronously on channel c, in(c) reads 
an integer value synchronously from channel c and writes it to register A, j(/)  
performs a relative jump by 1, and ej(/) acts like j(l)  if the register B contains 
the value false, otherwise it transfers control to the following instruction. 

One of the ideas of the chosen approach to code generator verification is to 
define the machine language semantics via an interpreter written in a process 
language into which the source language is embedded. Typically such an inter- 
preter consists of one loop essentially. The loop's body consists of a conditional 
that branches to appropriate actions for each of the machine instructions. The 
action describing the untimed meaning of the instruction eval(e), for example, 
is given by the process A, P := e, P + 1. 

An interpreter defining the instruction timing in addition to the logical be- 
haviour can be obtained by using time bounds at appropriate places in the 
interpreter. The property of the process language that the composition opera- 
tors do not take time themselves simplifies this. Therefore time is spent only by 
the actions that describe the logical behaviour of the  single instructions. The 
idea is to define for each instruction i a set 7"(i) of possible execution times and 
to use 7"(i) as time bound for the corresponding action. The process defining 
the timed meaning of oval(e), for example, is [A,P :=e,P + 1] E T(eval(e)) .  

Processor manuals state the number of machine cycles n(i) that are necessary 
for evaluation of an instruction i. On a machine with clock rate r, execution time 
of i therefore is n(i) But this calculation is oversimplified since the clock genera- 

r " 

tor of the machine cannot be assumed to be accurate. We assume that the impre- 
cision of the clock can be quantified by a drift constant d M >  1 in the following 
way: If the machine clock advances by t then the time t' that has actually passed 
satisfies ~M < t' <dM * t. There are two possibilities for incorporation of clock 

3 At the time being the model machine does not contain instructions for the imple- 
mentation of alternatives. We are not yet able to handle them appropriately in a 
way that generalizes to transputer code. 
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drift into the semantics description by an interpreter: It can either be specified 
locally for each instruction by using ~drift(i) = {t ] ~ * n(/)r < t < d M  * n_._~],r . 

instead of T ( i )  or globally for the entire machine by applying the drift oper- 
ator d r i f t  dM at the outermost level. Local drift specification more directly 
captures the intuition that  the execution time of single instructions is not ac- 
curately determined but that  only certain intervals can be guaranteed. Global 
drift specification on the other hand can be more conveniently used in compiler 
proofs. A compiler must only check that  the globally specified drift dM of the 
machine is smaller than or equal to the drift allowed by the source program. 
Fortunately, one can show that  it is immaterial whether drift is specified locally 
or globally, because the drift operator distributes over all sequential operators 
and only weakens the time bounds of a sequential process if time bounds are not 
nested. 

Table 3 contains the timed semantics of the machine language. A4 m describes 
the possible timed behaviours arising from interpreting machine program m. 
The assertion assert P = # m  + 1 at the end of the definition of I ensures that  
every terminating execution actually ends at address A m  + 1. Otherwise the 
interpreter behaves arbitrary and the machine program can not be a refinement 
of a reasonable program. In this way the obligation is posed on the compiler 
constructor to use only code sequences of this kind. 

Table 3: Machine Language Semantics 

def  
.M m = drift elm : I m 

def  
I m  = vat P,A,B: 

[P:=I]  6 {0} ; ,bile I _< P 

def 
Step = if m[P] 

else if 

else if 

else if 

else if 

else if 

else if 

A P < # m  do Step ; asser t  P = # m  + 1 

: stopp then stop 
re[P]= eval(e) then [A, P := e, P + 1 ] 6 Cr(eval(e)) 
rn[P] = eval(b) then [B, P := b, P + 1] e ]'(eval(b)) 
re[P] = s t l (z )  then [x, P := A, P + 1] 6 T(st l(x))  
,niP] = j(/)  then [P:=P + 1 + Z] e 7- ( j (0)  
re[P] = cj(1) then [P := i f  B then P + 1 else P + 1 + l] 6 T(cj(l)) 
re[P] = out(c) then [c!A ; P :=P + 1] 6 7"(out(c)) 

else i f  re[p] = in(c) then [c?A ; P : = P +  l] e T(in(c)) 
else chaos 

The generation of correct code employs some properties of the interpreter I that  
can be proved by application of refinement laws. For example an empty code 
sequence does not change anything and needs no time for execution: 

I <>--"  w a i t  0 . 

This indicates one way of implementing skip.  A somewhat more elaborate prop- 
erty shows how to implement an assignment statement: 

~[ < eval(e), stl(z) > ----" [z := e] 6 T(eval(e)) + T(stl(z)) . (i) 

Evaluating an expression e first and storing the result to z afterwards, behaves 
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like the assignment x := e. It terminates in a time in T(eval(e)) + 2-(stl(z)). 
Note that the additional assignment of the value of e to the register A is not 
observable since A is a local variable of Z. 

7 C o r r e c t n e s s  P r e d i c a t e s  

This section describes the correctness predicates for code to be generated for the 
different syntactic categories of Timed PL. We start with the correctness predicate 
for sequential processes. 

According to the translation theorem about parallel components sketched in 
the next section only for entire parallel components it must be checked whether 
the drift of the machine clock is tolerable. Sequential processes can be imple- 
mented with the idealized assumption that the clock is accurate. Therefore the 
machine language interpreter I with idealized instruction timing can be used 
in the correctness predicate rather than the drifting one A4. Thus an obvious 
candidate for a correctness predicate for implementation of a sequential process 
sp by a machine program m is the predicate defined by the formula 

sp E I m .  

Although this is a nice predicate for passing implementation correctness from 
sequential processes to parallel components, it is not well-suited as a predicate for 
inheriting it from sub-processes since a number of phenomena must be handled. 

(i) It must be decided whether time bounds are satisfied by the machine code. 
Since we are heading for a compositional code generator specification the cor- 
rectness predicate must give information about the execution time of the code or 
- what turns out to be more convenient - about bounds that can be guaranteed 
for the source process. 

(ii) The time needed for evaluation of Boolean guards and jumping to appro- 
priate parts of code when evaluating conditionals or loops must be transferred 
to sub-processes or sequential predecessor or successors due to the assumption 
that evaluation of control structures does not take extra time. Therefore the 
correctness predicate must also give information about spare time of the code. 

(iii) Execution of code cannot be arbitrarily moved in time if it contains commu- 
nication instructions, since the communications are visible to the environment. 
There is a rather complex dependency of inner bounds and shift of spare time. 
Consider for example the processes 

~rl = [skip ; c! 1 ; skip] 6 [0,3] and 

= [ ,k ip]  e [0,11; [c !1] e { 0 } ;  [ ,k ip]  e [0, 2] . 

Both of them can be implemented by r '  = wait  1 ; [c ! 1] E {0} ; wait  1. Execu- 
tion time of ~' is 2 and spare time in both cases is 1. But in case of r2 the spare 
time may only be used for initial (internal) actions of the sequential successor 
and must not be used for executing final (internal) actions of the sequential pre- 
decessor. On the other hand when implementing ~rl by ~r' the spare time can 
be transferred to either the predecessor or the successor or even split between 
them. 
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(iv) In contrast, internal computation can b 9 arbitrarily moved in time. If e.g. 
7ra = [z := 7] E [0, 3] is implemented by ~ = [z := 7] E {2}, then an arbitrary 
amount  of spare t ime t is available to the sequential predecessor if t - 1 t ime 
units are transferred to the sequential successor and vice versa. 

(v) Sometimes a bound requested for the source process is more narrow than the 
bound immediately guaranteed for the target code, for example if ~r4 = [c ! 1] E 
{0} is implemented by r~ = [c! 1] E [0, 1]. Then the uncertainty about  the 
termination t ime of the target program must be transferred to the sequential 
s u c c e s s o r .  

To handle these phenomena we use a triple of t ime sets as additional param- 
eters of the correctness predicate. This triple describes one possible use of the 
code in a sequential environment. It consists of 

- a lower bounded non-empty set u C ~, describing a starting t ime shift and 
a starting uncertainty accepted by the code, 

- a lower bounded non-empty set u ~ C ~ describing a resulting termination 
t ime shift and termination time uncertainty that  must be transferred to the 
sequential successor, 

- a t ime bound T C ~>0 U {oo} that  can be guaranteed for the source process. 

The predicate S defined below holds if a sequential process 7r is implemented by 
the machine program m accepting a start  shift and uncertainty u that  results in 
a termination shift and uncertainty u' such that  the bound T can be guaranteed 
for ~r. 

S ~ r m u u I T  iff for all r, r ~ E ~ > 0 s u c h t h a t r + u > 0 a n d r ~ + u  I > 0 :  

wait 7" ; [Tr] E T ; wait v ~ + u'  E_ wait 1" + u ; 27 m ; wait 'r' , 

where v + u is the set { r  + t I t E u} and r + u > 0 is written instead of t > 0 
for all f E r + u, and similarly for r '  + u'. 

Note that  for a fixed source process ~r and implementing machine code m 
different values for u, u ~, T are possible. In particular often a narrower bound T 
can be guaranteed by transferring a wider termination time uncertainty to the 
sequential successor via u I. Consider, for example, r = sk ip  ; c ! x ; s k ip  and m 
such that  27 rn = wai t  1 ; [c !x] e {0} ; wa i t  [0, 1]. We can choose u = u' = {0} 
and T = [1, 2]. Alternatively we could choose u = {0}, u' = [0, 1], T = {1}. 
Many other values for the triple u, u ~, T are also acceptable. 

Translation of the remaining syntactic categories programs, parallel compo- 
nents, and sequential programs employs the assumption that  each of the parallel 
components of a program has its own processor for execution and that  the paral- 
lel interaction of processors is correctly described by the parallel operator of the 
process language. A further assumption is that  the maximal latency ~M(C) of a 
channel c on a network of processors can be determined. Then the correctness 
predicates for the translation of these categories are given by straightforward 
refinement formulae. A formal statement is omit ted due to lack of space. 
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8 Trans la t ion  T h e o r e m s  

This section presents a few of the theorems about the code correctness predicates 
that form the specification of a code generator. The proofs for these theorems 
are based on the laws of TimedProc. Due to lack of space we do not give the 
complete collection of theorems here. Furthermore we will only give one of the 
proofs. The theorems that allow to infer implementation correctness of programs 
and parallel components from implementation correctness of their constituent 
parts are quoted here in a textual form only. For some of the constructs building 
sequential processes formal statements of the correctness theorems are given. A 
more complete collection of theorems together with their proofs can be found in 
[MO93]. 

A program pr is correctly implemented if each of its constituent parallel 
components is correctly implemented and if I >_ 6M(C) for each channel c that 
is declared in pr with latency I. This follows immediately from monotonicity of 
parallel composition with respect to refinement. 

A parallel component pc is correctly implemented if its constituent sequential 
process sp is correctly implemented (more precisely if S sp m {0} {0} T for an 
arbitrarily chosen T C_ Timeoo) and the maximum allowed drift specified in pc 
is greater than or equal to the drift dM of the machine clock. 

T h e o r e m  1 (Trans la t ion  o f  ass ignments ) .  An assignmenl statement z := e 
can be implemented by evaluating the expression e first and then storing the 
result value to the location z with an appropriate timing condition: 

If m = < eval(e), stl(z) > and u + T(eval(e)) + T(stl(x)) C_ u' + T 

then S ( x : = e ) m u u ' T  

wait r+u; Ira; waitr' 

_ {Formula (1)} 

w a i t  7" -~- u ; [z  : =  e] 6 [ [ ( e v a l ( e ) )  -~- ' ~ .Y(s t l ( z ) )  ; w a i t  r t  

_ {Assignment-Bound law, Assignment-Wait law, Wait-Additivity} 

wait r ; [z :---- e] 6 {0} ; ,air T' + u + ~r(eval(c)) + Cr(-tl(z)) 

_z {Wait-P finement law,. +  r(e am(e)) + C_ .' + T} 

wait r ; [z := e] E {0} ; , a i r  r '  + u' + T 

_~ {Wait-Additivity, Assignment-Bound law} 

wait  r ; [x:=e] E T ; wait  r ' +  u' 
[] 

T h e o r e m 2  (Trans la t ion  of  inputs ) .  An input statement c ? x can be imple- 
mented by first reading a value from channel c and then storing it to location x, 
with an appropriate timing condition: 

Ifm = < in(c), stl(z) >, u ---- {0} and ~'(in(c)) + q'(stl(z)) C_ u' + T 

then S ( c ? . x ) m u u ' T  

Proof. 
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The difference in the timing conditions of the above two theorems mirrors that 
internal actions can be shifted arbitrarily in contrast to externally visible com- 
munications. For the implementing code of an assignment statement any starting 
shift set u is acceptable as long as it is compensated by the termination shift set 
u'. Possible starting and termination shift sets for the code of an input statement 
however are more precisely determined. 

T h e o r e m  3 (Trans la t ion  of  sequent ia l  compos i t ion) .  Concatenating code 
for two processes 7q and ~r2 yields code for their sequential composition 7q ; lr2. 
The sum of bounds of the components provide a guaranteeable bound. The ter- 
mination uncertainty of the first component must be acceptable as a starting 
uncertainty for the second component: 

I f  S 7rl m l  u l  u i T1, S ~r2 m2 u2 ut2 T~, and u'~ C u= 

then ,9 ( r l ;  r2) (m l~m=)  u, u~ (711 + T2) 

T h e o r e m 4  (Trans la t ion  of  u p p e r - b o u n d s ) .  An upper-bound t can be as- 
serted for a source program r if a subset of [0, t] is 9uaranteeable: 

I f  S r r m u u ' T  and T C [O,t] thenS([~r] <_ t) m u u ' T  . 

These theorems together with theorems for the remaining constructs induce 
syntactically defined subrelations of the correctness predicates. The remaining 
task of compiler construction is to implement these relations. We intend to 
build a prototype implementation in a functional language like Miranda or ML 
[Tur86, Wik87]. Thus we must construct functions corresponding to the induced 
relations. The problem is that the timing parameters u, u' and T can be neither 
parameters nor parts of the result as in both cases there is a large freedom of 
choice for them. But the choice is not arbitrary. Only some of the possible values 
can succesfully be used. Our idea is to use a finite characterization of the set of 
all possible triples (u, u l, T) or of a useful subset. 

9 Discuss ion 

This paper has given an overview on current work done in the ProCoS lI project 
concerning the construction of a provably correct compiler for a hard real-time 
language. The construction has been split into a number of tasks: 

(i) A precise definition of the source language has been given. In particular 
its semantics has been formalized. Work towards this goal is documented in 
[FMO93, FvK93, vK93]. Furthermore to allow algebraic reasoning about pro- 
grams, refinement laws have been established. Section 2 to 4 gave an informal 
account on this work. 

(ii) Similarly, a precise definition of the target language is required. Up-to-now a 
model machine language has been considered (see section 6 and [MO93]). Clearly, 
to obtain a compiler that translates to machine code of an actual processor its 
machine language must be formalized. This has been done in the predecessor 
project ProCoS I for the trausputer [inm88b], but without considering timing 
[Pro93]. We plan to extend this work towards timing. 
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(iii) The code to be generated by the compiler has been specified (see sections 
7 and 8 and [MO93]). 

(iv) This code generator specification will be transformed to a fully constructive 
version. 

(v) The compiler will be implemented in a functional language. This comprises 
construction of a frontend and the implementation of the code generator. 

(vi) For a dependable compiler, also a reliable execution mechanism for the 
implementation language of the compiler is necessary. [BBF92] shows how this 
can be achieved by application of bootstrapping. A more detailed account can 
be found in [Pro93]. 
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