
Towards Provably Correct Code Generat ion for
a Hard Rea l -Time Programming Language

Martin Frs and Markus Miiller-Olm *

Institut ffir Informatik und Praktische Mathematik
Christian-Albrechts-Universit 7Lt Kiel

Preui~erstr. 1-9, D-24105 Kiel, Germany
E-Ma~l: {mr [mmo}@informatik, uni-kiel, d400. de

Abstract. This paper sketches a hard real-time programming language
featuring operators for expressing timeliness requirements in an abstract,
implementation-independent way and presents parts of the design and
verification of a provably correct code generator for that language. The
notion of implementation correctness used as an implicit specification of
the code generator pays attention to timeliness requirements. Hence, for-
mal verification of the code generator design is a guarantee of meeting all
deadlines when executing generated code.

1 Introduction

For an increasing number of applications, software failures may be very costly in
terms of economic loss or even human suffering. This is particularly true for hard
real-time control programs, where correctness does not only depend on logical
correctness of results, but also on timely delivery of services.

Testability of such software is poor, as timing constraints add an additional
dimension to the behaviour to be examined and, furthermore, dictate the speed
of the testing process. Traditionally, this problem has lead to a purely pragmatic
separation of concerns: Algorithmic correctness is dealt with by using program-
ming notation, which - - whenever reliability is required - - is subject to thorough
or sometimes even formal investigation, whereas timing properties are dealt with
a posteriori by inspection of the machine code generated by a compiler.

Unfortunately, this approach leaves two different problems unresolved: On
one hand, investigation of the algorithmic properties stops too early in the de-
velopment process, as due to the absence of verified development software, par-
ticularly compilers, improper target code may still result. On the other hand,
inspection of timing properties starts too late in the development process, pos-
sibly leading to expensive iterations in development.

Both problems could be resolved by a programming language supplying
means to express the relevant patterns of timeliness, together with a highly

* This report reflects work that has been partially funded by the Commission of the
European Communities under ESPRIT Basic Research Action 7071 ~ProCoS]I"

'(Provably Correct Systems II) and by the Deutsche Forschungsgemeinschaft under
contract DFG La 426/13-1.

295

dependable, i.e. correctness-preserving, compiler. Firstly, a dependable com-
piler would give certainty about the correctness of machine code whenever the
same is true for the source program, making backcompilation, machine code
inspection, and similar costly target code analysis techniques superfluous. Sec-
ondly, implementation-independent means of expressing timing constraints at
the source level could make timing subject to the same paradigm of stepwise
development currently successfully applied to algorithmic development.

The traditional approach to achieving reliability of compilers is validation
by running test suites, i.e. by compiling a number of test programs and testing
their executables. It is questionable whether this can give sufficient confidence
to replace target code inspection in safety-critical software development, as test
programs normally exhibit rather simple behaviour to allow detection of errors.
As stated earlier, this is especially true with respect to timing. Hence, highly de-
pendable compilers for real-time programming languages cannot be constructed
without formal verification of their vital parts, particularly code generators.

The aim of the ESPRIT project "Provably Correct Systems 11" (abbrevi-
ated ProCoS lI) is to contribute to the state of the art in development of cor-
rect software-hardware systems for embedded, safety-critical real-time control by
elaborating an experimental framework for the stepwise, correctness-preserving
development of such systems. In this framework, the programming language
plays the role of an interface between high levels of abstraction, where system
development requires human ingenuity, and low levels of abstraction, where cor-
rectness preserving transformations can be applied fully automatic by compilers.

Thus, one of the immediate goal s of ProCoS If is to provide a prototype of a
real-time programming language designed to solve the interfacing problem be-
tween system specification and system implementation and to develop a verified
prototype compiler for this language. On one hand, the programming language
has to provide sufficiently expressive timing operators to make program cor-
rectness arguments without recurrence to a particular implementation possible.
On the other hand, it must be implementable on realistic hardware by avoiding
overly idealized timing properties.

A prototype compiler might be taken as a pragmatic proof of the latter claim.
But far beyond this, its existence will be a demonstration of the feasibility of
high-dependability compiler development, opening the perspective for banning
target-level work from safety-critical system development.

This paper gives an overview on the work undertaken thus far in ProCoS lI
towards this goal. Section 2 gives an introduction to ProCoS's real-time pro-
gramming language TimedPl., and section 3 shows how to extend it to a larger
real-time process language used to embedd TimedPl_ and the target machine
language into a common framework in section 6. In section 4, a general notion
of one process implementing another is sketched, which is exploited in section
7 to define the detailed correctness predicates for code to be generated for the
different syntactic categories of TimedPL. In section 8, these correctness pred-
icates are put to use by stating concrete target code patterns for some source
code patterns and by exploiting the algebra of the process language to show
implementation correctness.

296

2 T h e R e a l - T i m e P r o g r a m m i n g L a n g u a g e TimedPL

ProCoS's real-time programming language TimedP[[FvK93] features concepts
to describe both the desired logical and temporal behaviour of programs. Using
this basic distinction, TimedPl. may be understood as being composed of

1. a simple imperative kernel for describing logical behaviour via imperative
sequential algorithms,

2. timing operators for decoration of sequential algorithms, assigning execution
times to their logical behaviour, and

3. parallel composition of timed sequential algorithms, introducing concurrency
for the sake of both expressivity and efficiency.

TirnedPI. is closely related to occam [inm88a], albeit dropping some features
from occam for scientific treatability, but seriously adding to its expressivity in
ProCoS's central field of research, namely real-time software development.

Like in occam, a program is a set of sequential processes executing in parallel
and communicating with each other and with the environment solely via unidi-
rectional, synchronous channels. Synchronicity means that whenever a process
wants to communicate on a channel it has to wait until the partner residing
at the other end of that channel is also willing to communicate. By disallow-
ing shared variables, there is a clear syntactic distinction between effects that
might affect parallel partners, namely communications on channels, and those
that are completely encapsulated in a sequential process and may be optimized
by a compiler, namely state transformations.

(chandecl) ::=
<time) ::=

<parallel component) ::=
(inaccuray spec) ::=

<sequential program) ::=
<variable declaration) ::=

<sequential process) ::=

<upper bound) ::=
<alternative statement} ::=

<timed alternative) ::=

Table 1: Outline of TimedPL's syntax

<program> ::= <chandeci>* par (<parallel component>+)
o h = (channel) late=or <time>:
(n o n - negative real)
(inaceuray spee) (sequential program)
dr i f t <real larger 1) :granulari ty <time) :
<variable declaration)* <sequential process)
vat <variable)* :
skipl stop l <variable) := <expression) [
(channei) ? (variable) l (channel)!(variable) l
<sequential process}; <sequential process) l
i f (bool exp.) then (seq. proc.) else (seq. proc.) I
ghile (bool expression) do <sequential process) I
<upper bound) l (alternative statement)
[< sequential process}] < <time)
al l ({timed alternative)*)
gait <time): (channeO?(variable) -+ (seq. proc.)

2 . 1 T h e I m p e r a t i v e Kerne l "

The imperative kernel of Timed PL is essentially the language of while programs,
extended by input and output commands to unidirectional, synchronous chan-

297

nels, and by input-guarded alternatives providing a means to conditionally react
upon different external stimuli arriving via channels.

More specificly, untimed sequential processes are composed from the atomic
processes skip (representing the identical state transformation), s top (mean-
ing deadlock, i.e. idling forever), assignments, input commands c?z (waiting
for communication on channel c and, if communication proceeds, assigning the
communicated value to variable x), and output commands c!e (waiting for com-
munication on channel c and, if communication proceeds, sending the value of
the expression e along the channel). Atomic processes can be composed by se-
quential composition, conditionals, while-loops, and input guarded alternatives
to form more complicated sequential algorithms.

The imperative kernel of TirnedPl_ is intended for describing the logical be-
haviour of sequential algorithms. Consequently, unless restricted by addition of
timing operators (as described in the next section), execution speed of sequential
processes is completely unspecified. This means that any implementation yield-
ing correct logical behaviour, i.e. input-output sequences, is acceptable regardless
of its speed.

More specificly, only runtime of TimedPl_'s atomic processes is unspecified,
whereas composition operators, even those involving evaluation of control con-
structs, do not take extra execution time beyond that taken by the component
processes. The latter convention significantly enhances the expressive power of
composition operators when dealing with timed component processes.

2.2 T iming Opera to r s

The intended field of application of TimedPI. is hard real-time programming,
i.e. construction of programs where correctness does not only depend on algo-
rithmic well-behavedness, but also on never missing any deadline, be it a lower
or an upper bound for the time of delivering a certain service. Therefore, we
need mechanisms to constrain the runtime consumption of parts of sequential
Mgorithms. TimedPi. offers three such mechanisms:

1. upper bounds on the time spent by sequential processes for state transfor-
mations,

2. delayed readiness of guarding communications in alternatives, and
3. upper bounds on the time-to-communication taken by a communication com-

mand when its communication partner is ready, called the communication's
latency.

Upper bound timing. Upper bounds can be placed anywhere inside a sequen-
tial process for bounding execution time of the enclosed part, which is itself a
sequential process. The upper bound timing operator

(upper bound)::= [(sequential process)] <_ (time)
confines the enclosed sequential process to spend at most the amount allowed by
the upper bound of time controlled by itself, i.e. not spent waiting for commu-
nication partners, until termination. If this contradicts with timing conditions
imposed by inner timed alternatives, the semantics is miraculous, meaning that
the process is not implementable and has to be rejected by the compiler.

298

Timed alternatives. Lower bounds on reactivity can be achieved by using the
delayed readiness of guarding communications offered by timed alternatives

(timed alternative) ::= wait (time): (channel)?(variable) ~ (sequential process) .

An alternative statement consists of processes guarded by input guards, where
the readiness of the guarding communications is established when the delay time
stated in the guard has elapsed. In contrast to occarn, timing is hard, i.e. readi-
ness is established at the moment the delay elapses, not arbitrarily thereafter.
The latter condition might seem unimplementable due to the impossibility of ab-
solutely exact hardware clocks, but TimedPl.'s semantics features a distinction
between local clocks (which may be inaccurate) and global time. This distinction
is part of the definition of TimedPl_'s parallel composition operator, cf. section
2.3.

Communication latencies. Often systems communicating through synchronous
channels are understood under the maximum progress assumption, where a com-
munication has to take place as soon as both communication partners are simul-
taneously ready for a communication. This gives nice timing properties, but
is unrealistic even for systems with an own processor for each parallel compo-
nent, as hardware and protocol delays in detecting readiness of a communication
partner do not only limit reactivity, but may even blurr the temporal order of
events.

In TimedPl_ programs, a lower bound on progress of each communication is
explicitely stated. I.e. if communication partners are simultaneously ready for
a communication, communication of that or another competing event need not
happen unless both communication partners have been simultaneously ready for
the event for a specified amount of time, called the' latency associated to that
event. Communication latencies are assigned at a per-channel basis by making
latency specifications part of the channel declaration.

2.3 Para l le l C o m p o s i t i o n

A real-time programming language not offering parallelism would be incomplete
with respect to both efficiency of progams and expressibility of control algorithms
requiring concurrent actions. Hence, TimedPL programs are systems of timed
communicating sequential processes combined by outermost parallelism.

In any implementation, timing properties can be guaranteed only with re-
spect to hardware timers, which, unfortunately, do not accurately reflect real-
world time due to clock drift and discretization. The consequences of identifi-
cation of both timing regimes on the behaviour of synchronous systems can be
drastic, as independent subsystems may loose synchronicity due to the imper-
fection of technical clock devices. Thus, we have to model the effects of timer
inaccuracies in the semantics of TimedPl_ to achieve reliable designs.

The concept of coping with these implementation dependencies offered by
TimedPL is straightforward: The programmer has to state acceptable clock toler-
ances for the individual parallel components. Each parallel component is prefixed
by an inaccuracy specification stating the maximum allowed drift and discrete-
ness of its local clock. Semantically, these inaccuracy specifications can be taken

299

as a guarantee by the programmer that the correctness of his control algorithm
will not be affected by local clocks being imprecise in the stated range. Sim-
ilarly to the mathematical treatment of component tolerances by the calculus
of accidental error in, e.g., electrical engineering, a calculus of nondeterminism
caused by clock inaccuracy and of its propagation through different program-
ming operators can be elaborated, providing a mathematically sound basis for
mostly separating the problem of dealing with implementation tolerances from
the design of a real-time control system as such. Work undertaken in ProCoS 1]
on the semantic basis of such a calculus of timing inaccuracy can be found in
[FMO93].

3 Extend ing TimedPL Towards a Process Calculus

Timed PUs syntax, as outlined in table 1, defines different syntactic layers, namely
programs, parallel components, sequential programs, and sequential processes,
representing implementation concepts and thus making sense for a compilable
language. But when reasoning about real-time control processes, that syntactic
variety can be a burden. A more homogeneous process language TimedProc used
in the remainder of this article as a framework for reasoning can be derived from
TimedPl_ by dropping syntactic restrictions. In TimedProc, all the syntactic pro-
ductions defining TimedPL's syntactic classes <program), <parallel component),
<sequential program), and (sequential process) are put together to define the sin-
gle syntactic class <process), allowing for parallelism, inaccuracy specifications,
and variable declarations inside subprocesses. Furthermore, a generalized bound
construct

<general bound)::= [{process)] E (set of times)
and an assertion statement

<assertion) ::= assert (bool expression)
are added to the process constructions.

A general bound [Tr] E T confines the enclosed process r to spend a runtime
in the bounding set T of times until termination, where - - as with upper bound
timing - - time spent waiting for a communication partner does not count. In
the remainder of this article, the notation wait T , where T is a set of times,
will be used as a convenient abbreviation for the process [skip] E T that idles
for a time in T.

An assertion a s s e r t b does nothing (not even consume time) whenever the
Boolean expression b is true in the current state. But whenever b evaluates to
false, a s s e r t b behaves completely unreliable, implying that any implementation
is correct under these circumstances. Thus, prefixing a process by an assertion
a s s e r t b means that an implementation need only be well-behaved whenever b
evaluates to true.

We obtain a common framework for reasoning about source and target pro-
grams by defining the semantics of the machine language by an interpreter ex-
pressed in TimedProc in section 6, since TimedProc is a superset of our source
language TimedPL.

300

4 I m p l e m e n t a t i o n C o r r e c t n e s s

When dealing with correctness of code generation we need a rigorous notion of
whether one process implements another one or not. As we are dealing with
embedded systems, there is a very natural notion directly at hand:

A process r implements or refines a process ~r, denoted r ~ ~, iff ~ can
be safely replaced by r in any context.

I.e., r may only engage in interactions with its environment that ~r may also
engage in, and r must engage in any interaction Ir must engage in. This has to
apply with respect to both the logical behaviour and timing, i.e. an implementing
process will in particular respect all the deadlines that the implemented process
meets.

Using this kind o f reasoning, which can be formalized b y associating each
process with the set of trajectories over its state space it may engage in [vK93],
algebraic laws of refinement between processes (or implementation correctness,
respectively) can be established, equipping TimedProc with a calculus of process
refinement. Table 2 gives examples of TimedProc's refinement rules.

T a b l e

X : = e ; x : = f "--

[~] < ~

[x := e] 6 T -

w a i t T ; [x : = e] E T ' -

wait T -3

2: Some refinement laws of TimedProc

:= f[e/,]
[~] < t ' , if t < t '

[X := e] E {0} ;wai t T

[x := e] E T' ; wait T

wait T ~, if T C T'

{Assignment merge}

{Tightening Bounds}

{Assignment-Bound}

{Assignment-Wait }

{Wait-Refinement }

where -- is semantic equivalence, i.e. :r -- ~b iff r ~ tb and tb __ ~r, and f[e/x] denotes
expression f with every occurence of variable x being replaced by expression e.

5 Conceptual Framework of Code Generator Verification

In software engineering it is largely accepted that the formulation of specifi-
cations must preceede the construction of programs. Often even a derivation
of programs out of specifications by formal or informal transformations is rec-
ommended instead of a-posteriori verification. Similarly the design of provably
correct machine code to be generated by a compiler should be preceeded by the
formulation of the appropriate correctness predicate. The construction of a ver-
ified code generator described in this paper is inspired by some ideas of [Hoa91].
One of them is to base correctness of code on the notion of source language
refinement consistently extending the chain of refinement steps that led to the
source program down to the level of the machine program. A definition in terms
of refinement formulae is enabled by defining the machine language semantics
by an interpreter I in source language-like notation.

301

After the correctness relation has been fixed, correct code can be described
by means of theorems about this relation. Typically for compound constructs
op(zl , . . . , ~,~) these theorems take the form of an implication that under certain
syntactic conditions on the surrounding code establishes the correctness of code
for the compound construct provided correct code for the components 7rl,. . . , 7rn
is supplied. The collection of these theorems allows to define a compiling relation
syntactically in a compositional way that is guaranteed to be a subrelation of the
correctness relation, i.e. a (syntactic) specification of a correct code generator.
In this way the collection of theorems specifies the code generator.

In simple situations (and in particular for entire programs) the correctness
predicate can be defined directly as refinement between the source program ~"
and the interpretation of an implementing machine program m:

~ ' E Z m .

But in more sophisticated situations further parameters are necessary. If for
example the data spaces of the source and the target program are different
then a retrieve-mapping ~ that describes their relationship could be used as an
additional parameter of the correctness predicate: 2

6 M a c h i n e L a n g u a g e

The work reported in this article aims at the design of a provably correct code
generator that translates TimedPl_ to transputer code [inm88b]. Of main inter-
est here are the timing aspects, in particular the guarantee that time bounds
requested in source programs are met by the generated machine code. The as-
sumption of Timed P L that control structures do not consume time by themselves
largely simplifies the reasoning about programs. But clearly, code running on a
conventional processor needs time for the evaluation of the Boolean guards that
steer the control flow and for the execution of the jump instructions that move
the program counter to appropriate places.

The solution to this problem is based on the observation that only the preser-
vation of the timing of external communications and of the communicated values
is important for correctness. Internal computation can be moved arbitrarily as
long as this does not affect communications. Therefore a compiler for TimedPl_
can shift the computation time overhead for the implementation of control struc-
tures to sequentially neighboured processes.

This section introduces a simple abstract machine language. It has been de-
signed in order to allow a treatment of the timing aspects in isolation and to
illustrate how the timing of machine instructions can be formally captured in
a process algebraic setting. A number of other translation tasks for a compiler
to transputer code and for code for conventional processors in general are not
discussed in this paper as solutions are well-known. Examples are the assign-
ment of storage locations to variables, the translation of mnemonic assembler

2 We assume that !g can be written inside the language of processes into which the
source language is embedded.

302

instructions to sequences of bytes, and the generation of code for the evaluation
of expressions.

The model machine has the following components: a program counter P,
two accumulators A and B for integer resp. Boolean values, a storage that is
addressed directly by variable names (avoiding the compiler task of assigning
integer addressed storage locations to program variable names), and channels
that are addressed directly by channel names (avoiding the need to assign links
to channels when translating TimedPL to the machine language). Its instruction
set is given by the following grammar, where i ranges over instructions, a

i : := s topp I eval(e) I eval(b) I s t l (z) I out(e) I in(c) I J(l) l eJ(1) �9

A machine program m is a sequence of instructions. We use the notation # m
for the length of m and m l ~ m 2 for the concatenation of mt and m2.

Informally, the logical behaviour of the instructions is as follows: s topp stops
the machine, eval(e) evaluates the integer expression e leaving the result in
register A, eval(b) evaluates the boolean expression b leaving the result in register
B, s t l (z) stores the contents of register A to the memory location z, out(c)
communicates the contents of register A synchronously on channel c, in(c) reads
an integer value synchronously from channel c and writes it to register A, j(/)
performs a relative jump by 1, and ej(/) acts like j(l) if the register B contains
the value false, otherwise it transfers control to the following instruction.

One of the ideas of the chosen approach to code generator verification is to
define the machine language semantics via an interpreter written in a process
language into which the source language is embedded. Typically such an inter-
preter consists of one loop essentially. The loop's body consists of a conditional
that branches to appropriate actions for each of the machine instructions. The
action describing the untimed meaning of the instruction eval(e), for example,
is given by the process A, P := e, P + 1.

An interpreter defining the instruction timing in addition to the logical be-
haviour can be obtained by using time bounds at appropriate places in the
interpreter. The property of the process language that the composition opera-
tors do not take time themselves simplifies this. Therefore time is spent only by
the actions that describe the logical behaviour of the single instructions. The
idea is to define for each instruction i a set 7"(i) of possible execution times and
to use 7"(i) as time bound for the corresponding action. The process defining
the timed meaning of oval(e), for example, is [A,P :=e,P + 1] E T(eval(e)) .

Processor manuals state the number of machine cycles n(i) that are necessary
for evaluation of an instruction i. On a machine with clock rate r, execution time
of i therefore is n(i) But this calculation is oversimplified since the clock genera-

r "

tor of the machine cannot be assumed to be accurate. We assume that the impre-
cision of the clock can be quantified by a drift constant d M > 1 in the following
way: If the machine clock advances by t then the time t' that has actually passed
satisfies ~M < t' <dM * t. There are two possibilities for incorporation of clock

3 At the time being the model machine does not contain instructions for the imple-
mentation of alternatives. We are not yet able to handle them appropriately in a
way that generalizes to transputer code.

303

drift into the semantics description by an interpreter: It can either be specified
locally for each instruction by using ~drift(i) = {t] ~ * n(/)r < t < d M * n_._~],r .

instead of T (i) or globally for the entire machine by applying the drift oper-
ator d r i f t dM at the outermost level. Local drift specification more directly
captures the intuition that the execution time of single instructions is not ac-
curately determined but that only certain intervals can be guaranteed. Global
drift specification on the other hand can be more conveniently used in compiler
proofs. A compiler must only check that the globally specified drift dM of the
machine is smaller than or equal to the drift allowed by the source program.
Fortunately, one can show that it is immaterial whether drift is specified locally
or globally, because the drift operator distributes over all sequential operators
and only weakens the time bounds of a sequential process if time bounds are not
nested.

Table 3 contains the timed semantics of the machine language. A4 m describes
the possible timed behaviours arising from interpreting machine program m.
The assertion assert P = # m + 1 at the end of the definition of I ensures that
every terminating execution actually ends at address A m + 1. Otherwise the
interpreter behaves arbitrary and the machine program can not be a refinement
of a reasonable program. In this way the obligation is posed on the compiler
constructor to use only code sequences of this kind.

Table 3: Machine Language Semantics

def
.M m = drift elm : I m

def
I m = vat P,A,B:

[P:=I] 6 {0} ; ,bile I _< P

def
Step = if m[P]

else if

else if

else if

else if

else if

else if

A P < # m do Step ; asser t P = # m + 1

: stopp then stop
re[P]= eval(e) then [A, P := e, P + 1] 6 Cr(eval(e))
rn[P] = eval(b) then [B, P := b, P + 1] e]'(eval(b))
re[P] = s t l (z) then [x, P := A, P + 1] 6 T(st l(x))
,niP] = j(/) then [P:=P + 1 + Z] e 7- (j (0)
re[P] = cj(1) then [P := i f B then P + 1 else P + 1 + l] 6 T(cj(l))
re[P] = out(c) then [c!A ; P :=P + 1] 6 7"(out(c))

else i f re[p] = in(c) then [c?A ; P : = P + l] e T(in(c))
else chaos

The generation of correct code employs some properties of the interpreter I that
can be proved by application of refinement laws. For example an empty code
sequence does not change anything and needs no time for execution:

I <>--" w a i t 0 .

This indicates one way of implementing skip. A somewhat more elaborate prop-
erty shows how to implement an assignment statement:

~[< eval(e), stl(z) > ----" [z := e] 6 T(eval(e)) + T(stl(z)) . (i)

Evaluating an expression e first and storing the result to z afterwards, behaves

304

like the assignment x := e. It terminates in a time in T(eval(e)) + 2-(stl(z)).
Note that the additional assignment of the value of e to the register A is not
observable since A is a local variable of Z.

7 C o r r e c t n e s s P r e d i c a t e s

This section describes the correctness predicates for code to be generated for the
different syntactic categories of Timed PL. We start with the correctness predicate
for sequential processes.

According to the translation theorem about parallel components sketched in
the next section only for entire parallel components it must be checked whether
the drift of the machine clock is tolerable. Sequential processes can be imple-
mented with the idealized assumption that the clock is accurate. Therefore the
machine language interpreter I with idealized instruction timing can be used
in the correctness predicate rather than the drifting one A4. Thus an obvious
candidate for a correctness predicate for implementation of a sequential process
sp by a machine program m is the predicate defined by the formula

sp E I m .

Although this is a nice predicate for passing implementation correctness from
sequential processes to parallel components, it is not well-suited as a predicate for
inheriting it from sub-processes since a number of phenomena must be handled.

(i) It must be decided whether time bounds are satisfied by the machine code.
Since we are heading for a compositional code generator specification the cor-
rectness predicate must give information about the execution time of the code or
- what turns out to be more convenient - about bounds that can be guaranteed
for the source process.

(ii) The time needed for evaluation of Boolean guards and jumping to appro-
priate parts of code when evaluating conditionals or loops must be transferred
to sub-processes or sequential predecessor or successors due to the assumption
that evaluation of control structures does not take extra time. Therefore the
correctness predicate must also give information about spare time of the code.

(iii) Execution of code cannot be arbitrarily moved in time if it contains commu-
nication instructions, since the communications are visible to the environment.
There is a rather complex dependency of inner bounds and shift of spare time.
Consider for example the processes

~rl = [skip ; c! 1 ; skip] 6 [0,3] and

= [,k ip] e [0,11; [c !1] e { 0 } ; [,k ip] e [0, 2] .

Both of them can be implemented by r ' = wait 1 ; [c ! 1] E {0} ; wait 1. Execu-
tion time of ~' is 2 and spare time in both cases is 1. But in case of r2 the spare
time may only be used for initial (internal) actions of the sequential successor
and must not be used for executing final (internal) actions of the sequential pre-
decessor. On the other hand when implementing ~rl by ~r' the spare time can
be transferred to either the predecessor or the successor or even split between
them.

305

(iv) In contrast, internal computation can b 9 arbitrarily moved in time. If e.g.
7ra = [z := 7] E [0, 3] is implemented by ~ = [z := 7] E {2}, then an arbitrary
amount of spare t ime t is available to the sequential predecessor if t - 1 t ime
units are transferred to the sequential successor and vice versa.

(v) Sometimes a bound requested for the source process is more narrow than the
bound immediately guaranteed for the target code, for example if ~r4 = [c ! 1] E
{0} is implemented by r~ = [c! 1] E [0, 1]. Then the uncertainty about the
termination t ime of the target program must be transferred to the sequential
s u c c e s s o r .

To handle these phenomena we use a triple of t ime sets as additional param-
eters of the correctness predicate. This triple describes one possible use of the
code in a sequential environment. It consists of

- a lower bounded non-empty set u C ~, describing a starting t ime shift and
a starting uncertainty accepted by the code,

- a lower bounded non-empty set u ~ C ~ describing a resulting termination
t ime shift and termination time uncertainty that must be transferred to the
sequential successor,

- a t ime bound T C ~>0 U {oo} that can be guaranteed for the source process.

The predicate S defined below holds if a sequential process 7r is implemented by
the machine program m accepting a start shift and uncertainty u that results in
a termination shift and uncertainty u' such that the bound T can be guaranteed
for ~r.

S ~ r m u u I T iff for all r, r ~ E ~ > 0 s u c h t h a t r + u > 0 a n d r ~ + u I > 0 :

wait 7" ; [Tr] E T ; wait v ~ + u' E_ wait 1" + u ; 27 m ; wait 'r' ,

where v + u is the set { r + t I t E u} and r + u > 0 is written instead of t > 0
for all f E r + u, and similarly for r ' + u'.

Note that for a fixed source process ~r and implementing machine code m
different values for u, u ~, T are possible. In particular often a narrower bound T
can be guaranteed by transferring a wider termination time uncertainty to the
sequential successor via u I. Consider, for example, r = sk ip ; c ! x ; s k ip and m
such that 27 rn = wai t 1 ; [c !x] e {0} ; wa i t [0, 1]. We can choose u = u' = {0}
and T = [1, 2]. Alternatively we could choose u = {0}, u' = [0, 1], T = {1}.
Many other values for the triple u, u ~, T are also acceptable.

Translation of the remaining syntactic categories programs, parallel compo-
nents, and sequential programs employs the assumption that each of the parallel
components of a program has its own processor for execution and that the paral-
lel interaction of processors is correctly described by the parallel operator of the
process language. A further assumption is that the maximal latency ~M(C) of a
channel c on a network of processors can be determined. Then the correctness
predicates for the translation of these categories are given by straightforward
refinement formulae. A formal statement is omit ted due to lack of space.

306

8 Trans la t ion T h e o r e m s

This section presents a few of the theorems about the code correctness predicates
that form the specification of a code generator. The proofs for these theorems
are based on the laws of TimedProc. Due to lack of space we do not give the
complete collection of theorems here. Furthermore we will only give one of the
proofs. The theorems that allow to infer implementation correctness of programs
and parallel components from implementation correctness of their constituent
parts are quoted here in a textual form only. For some of the constructs building
sequential processes formal statements of the correctness theorems are given. A
more complete collection of theorems together with their proofs can be found in
[MO93].

A program pr is correctly implemented if each of its constituent parallel
components is correctly implemented and if I >_ 6M(C) for each channel c that
is declared in pr with latency I. This follows immediately from monotonicity of
parallel composition with respect to refinement.

A parallel component pc is correctly implemented if its constituent sequential
process sp is correctly implemented (more precisely if S sp m {0} {0} T for an
arbitrarily chosen T C_ Timeoo) and the maximum allowed drift specified in pc
is greater than or equal to the drift dM of the machine clock.

T h e o r e m 1 (Trans la t ion o f ass ignments) . An assignmenl statement z := e
can be implemented by evaluating the expression e first and then storing the
result value to the location z with an appropriate timing condition:

If m = < eval(e), stl(z) > and u + T(eval(e)) + T(stl(x)) C_ u' + T

then S (x : = e) m u u ' T

wait r+u; Ira; waitr'

_ {Formula (1)}

w a i t 7" -~- u ; [z : = e] 6 [[(e v a l (e)) -~- ' ~ .Y(s t l (z)) ; w a i t r t

_ {Assignment-Bound law, Assignment-Wait law, Wait-Additivity}

wait r ; [z :---- e] 6 {0} ; ,air T' + u + ~r(eval(c)) + Cr(-tl(z))

z {Wait-P finement law,. + r(e am(e)) + C .' + T}

wait r ; [z := e] E {0} ; , a i r r ' + u' + T

_~ {Wait-Additivity, Assignment-Bound law}

wait r ; [x:=e] E T ; wait r ' + u'
[]

T h e o r e m 2 (Trans la t ion of inputs) . An input statement c ? x can be imple-
mented by first reading a value from channel c and then storing it to location x,
with an appropriate timing condition:

Ifm = < in(c), stl(z) >, u ---- {0} and ~'(in(c)) + q'(stl(z)) C_ u' + T

then S (c ? . x) m u u ' T

Proof.

307

The difference in the timing conditions of the above two theorems mirrors that
internal actions can be shifted arbitrarily in contrast to externally visible com-
munications. For the implementing code of an assignment statement any starting
shift set u is acceptable as long as it is compensated by the termination shift set
u'. Possible starting and termination shift sets for the code of an input statement
however are more precisely determined.

T h e o r e m 3 (Trans la t ion of sequent ia l compos i t ion) . Concatenating code
for two processes 7q and ~r2 yields code for their sequential composition 7q ; lr2.
The sum of bounds of the components provide a guaranteeable bound. The ter-
mination uncertainty of the first component must be acceptable as a starting
uncertainty for the second component:

I f S 7rl m l u l u i T1, S ~r2 m2 u2 ut2 T~, and u'~ C u=

then ,9 (r l ; r2) (m l~m=) u, u~ (711 + T2)

T h e o r e m 4 (Trans la t ion of u p p e r - b o u n d s) . An upper-bound t can be as-
serted for a source program r if a subset of [0, t] is 9uaranteeable:

I f S r r m u u ' T and T C [O,t] thenS([~r] <_ t) m u u ' T .

These theorems together with theorems for the remaining constructs induce
syntactically defined subrelations of the correctness predicates. The remaining
task of compiler construction is to implement these relations. We intend to
build a prototype implementation in a functional language like Miranda or ML
[Tur86, Wik87]. Thus we must construct functions corresponding to the induced
relations. The problem is that the timing parameters u, u' and T can be neither
parameters nor parts of the result as in both cases there is a large freedom of
choice for them. But the choice is not arbitrary. Only some of the possible values
can succesfully be used. Our idea is to use a finite characterization of the set of
all possible triples (u, u l, T) or of a useful subset.

9 Discuss ion

This paper has given an overview on current work done in the ProCoS lI project
concerning the construction of a provably correct compiler for a hard real-time
language. The construction has been split into a number of tasks:

(i) A precise definition of the source language has been given. In particular
its semantics has been formalized. Work towards this goal is documented in
[FMO93, FvK93, vK93]. Furthermore to allow algebraic reasoning about pro-
grams, refinement laws have been established. Section 2 to 4 gave an informal
account on this work.

(ii) Similarly, a precise definition of the target language is required. Up-to-now a
model machine language has been considered (see section 6 and [MO93]). Clearly,
to obtain a compiler that translates to machine code of an actual processor its
machine language must be formalized. This has been done in the predecessor
project ProCoS I for the trausputer [inm88b], but without considering timing
[Pro93]. We plan to extend this work towards timing.

308

(iii) The code to be generated by the compiler has been specified (see sections
7 and 8 and [MO93]).

(iv) This code generator specification will be transformed to a fully constructive
version.

(v) The compiler will be implemented in a functional language. This comprises
construction of a frontend and the implementation of the code generator.

(vi) For a dependable compiler, also a reliable execution mechanism for the
implementation language of the compiler is necessary. [BBF92] shows how this
can be achieved by application of bootstrapping. A more detailed account can
be found in [Pro93].

References

[BBF92]

[FMO93]

[FvK93]

IRK93]

[MO93]

[Hoa85]

[Hoa91]

[inm88a]
[inmSSb]

[Pro93]

[Tur86]
CW k87]

Bettina Buth, Karl-Heinz Buth, Martin Fr~nzle, Burghard v. Karger, Yas-
sine Lakhneche, Hans Langmaack, and Markus Mfiller-Olm. Provably
correct compiler development and implementation. In U. Kastens and
P. Pfahler, editors, Compiler Construction, pages 141-155. Springer, 1992.
LNCS 641.
Martin Fr~nzle and Markus Mfiller-Olm. Drift and Granularity of Time in
Real-Time System Implementation. ProCoS H project document [Kiel MF
10/2], Christian-Albrechts-Universit~t Kiel, Germany, August 1993.
Martin Frs and Burghard yon Karger. Proposal for a Programming Lan-
guage Core for ProCoS 1[. ProCoS]I project document [Kid MF 11/3],
Christian-Albrechts-Universit~t Kiel, Germany, August 1993.
Burghard yon Karger. A simple wide-spectrum model for real time systems.
ProCoS II project document [OU BvK 9/6], Oxford University Programming
Research Group, UK, August 1993.
Markus Mfiller-Olm. On Translation of TimedPL and Capture of Machine
Instruction Timing. ProCoS lI project document [Kid MMO 6/2], Christian-
Albrechts-Universit~t Kiel, Germany, August 1993.
C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall Interna-
tional, 1985.
C.A.R. Hoare. Refinement algebra proves correctness of compiling speci-
fications. In C.C. Morgan and J.C.P. Woodcock, editors, 3rd Refinement
Workshop, Workshops in Computing, pages 33-48. Springer-Verlag, 1991.
INMOS ltd. oecam ~ Reference Manual. Prentice Hall International, 1988.
INMOS ltd. Transputer Instruction Set - A Compiler Writer's Guide. Pren-
tice Hall International, 1988.
Dines Bjcrner, C.A.R. Hoare, Hans Langmaack (Eds.). Provably correct sys-
tems. ProCoS I final deliverable, 1993. Available from the Department of
Computer Science, Technical University of Denmark, Building 3440, DK-
2800 Lyngby.
David Turner. An overview of miranda. SIGPLAN Notices, 1986.
.~ke Wikstrfm. Functional Programming Using Standard ML. Series in
Computer Science. Prentice-Hall, 1987.

