
Cosy Compiler Phase Embedding
with the CoSY Compiler Model*

Mart in Alt 1 Uwe Af imann 2 Hans van Someren 3

1 Universits des Saarlandes, alt@cs.uni-sb.de
2 Universits Karlsruhe IPD, assmann@ira.uka.de

3 ACE Associated Computer Experts bv, Atnsterdam, hvs~ace.nl

A b s t r a c t . In this article we introduce a novel model for compilation
and compiler construction, the CoSy(COmpiler SYstem) model. CoSy
provides a framework for flexible combination and embedding of com-
piler phases - - called engines in the sequel - - such that the construction
of parallel and (inter-procedural) optimizing compilers is facilitated. In
CoSY a compiler writer may program some phase in a target language
and embed it transparently - - without source code changes - - into differ-
ent compiler contexts, such as with alternative phase order, speculative
evaluation 4 , parallel evaluation, and generate-and-test evaluation. Com-
priers constructed with CoSY can be tuned for different host systems
(the system the compiler runs on, not the system it produces code for)
and are transparently scalable for (shared memory) multiprocessor host
configurations.
To achieve this, CoSY provides an engine description language (EDL)
which allows to describe the control flow and interaction of compiler
engines. A novel structure definition language (fSDL) is introduced for
the specification of data, access side effects, and visibility control. A
configuration description (CCL) is used to tune the embedding of the
engines to the host system characteristics and limitations.
In order to guarantee transparent embedding, CoSY introduces for each
engine a logical view on the common intermediate representation. CoSY
generates code that maps these views onto the physical representation~
code that helps the programmer to manipulate it, as well as code that
schedules the interaction of the engines.
The proposed model of compilation does not depend on source language,
programming language, or host architecture. It is not restricted to com-
piler construction and may have applications in a wide area of software
engineering.

1 Mot ivat ion for CoSY

One of the ma jo r a ims in compiler const ruct ion is to improve the efficiency
of the generated code by extensive opt imizat ion. While this has become more

'~ This work was supported in part by ESPRIT project No. 5399 COMPARE
4 the concurrent evaluation according to different strategies with subsequent selection

of the best one

2~9

and more important since modern processors (RISC, superscalar, multi-pipeline)
have appeared, which is the best (or even a good) strategy for optimization, is
still unclear.

An optimize r writer has to choose between three strategies. The first is to
use an optimal implementation of the optimization method. This strategy is
unrealistic because most optimizations are known to be NP-hard, and thus can be
applied only for very small parts of code (compare the superoptimizer approach
[GK92] or the work on peephole optimizer generation).

Therefore, usually the second possibility is chosen, which is to use heuristics.
An additional reason for this is that not all information may be available at
a certain point in the compilation; we may have to make weak approximations
about the effects of subsequent compiler phases. This may result in an algorithm
with very unpleasant results in certain situations. Instead of making assumptions
about effects of some phases, one would like to inspect the effects by letting those
phases run, i.e. one would like to weaken the classical sequential phase ordering.

The third possibility is to apply several heuristics or a heuristic with sev-
eral settings concurrently, evaluate their results and choose the best result for
further processing. In essence this means that competition between different al-
gorithms or different parameterizations is performed. This becomes more and
more applicable because shared memory multiprocessors become common, and
one would like to make use of their parallel processing capability. However, the
use of this technique causes a lot of implementation overhead. Not only the
comparison and assessment of the results have to be implemented but also spe-
cialized data structures and algorithms which take the speculative evaluations
into account.

The CoSY model of compilation has been developed: to weaken the sequen-
tial phase ordering and to enable parallel competitive evaluation. Its aim is to
facilitate the development of fast compilers generating efficient code. It pro-
vides means to embed handwritten or generated compiler phases as black boxes
into different compiler contexts without source code changes. It can be seen as
a compiler construction toolbox, that gives us the possibility to test compiler
structures and select the best one. And it will also enable us to utilize optimiza-
tion by speculative evaluation, generate-and-test evaluation, parallel evaluation,
and alternative orderings.

1.1 Po ten t i a l of CoSy

A lot of optimization problems benefit from the capabilities of COSY; in the
following we will give some examples.

Several problems can exploit speculative evaluation. Register allocation can
be performed with different numbers of registers for parameter passing, global
registers, and basic block local registers. Because register allocation and instruc-
tion scheduling influence each other, speculative evaluation can be used to find a
better code ordering [Bra91]. Different register allocation methods can be applied
competitively, and a machine simulator or a performance prediction tool engine

280

can be used to select the best version (this also means that the simulator or per-
formance prediction engine is part of the compiler context). Currently there are

number of different algorithms for pointer alias analysis; such analysis is the
basis for optimization on programs with pointers. Because it is difficult to judge
in advance which of them yields the best result they can be run competitively
and by combining their results better information can be obtained. There are
many more examples, but the central issue is: how can we avoid reprogramming
engines when we embed them in a different context? How can we experiment
with different parameterizations of the algorithms and make use of competitive
evaluation?

With speculative evaluation there are alternative algorithms to produce the
competing versions. We can also use the generate-and-test method, employing
one algorithm which generates several alternative versions, one after the other.
Generate-and-test is applicable when the range of the parameters we want to
manipulate is intractably large. As an example regard the register allocation
algorithm of Chaitin [Cha82]. It has about two parameters we can tune, the
first is which registers are deleted from the interference graph in a round and
the second is which registers must be spilled if the graph cannot be colored. We
can easily imagine a register allocator that generates several of these allocations
and have again a selector engine that measures register life times to select the
best version. We may stop the production of new versions if we think we have
reached a local optimum. Generate-and-test, however, needs special prerequisites
in the engines. Is it possible to avoid reprogramming of engines and embed them
transparently into such a context?

Another parameter that influences the optimization results is how the op-
timization engines are ordered. Because certain optimizations enable or disable
others (see [WS90]), the optimizer writer should be given a means to embed an
engine into several ordering contexts, e.g. into loops that run until no optimiza-
tion can be applied anymore (exhaustive transformation); or into loops whose
iteration number is configured by the machine. Of course exhaustive transforma-
tion can be implemented with support of the algorithm to indicate what changed,
but this may slow down an engine when it is embedded in a non-loop context.
How can we automate the detection of such changes and achieve transparent
embedding of engines into alterable orderings?

One method to speed up an algorithm is making a parallel version for it. It
is often argued that this is of no use in a compiler because there are a lot of
dependencies among the engines. While this is true in general there are certain
optimizations which don't have internal dependencies, e.g. when some analyses
are done on procedures in a data parallel way [LR92]. For these cases we would
like to give the programmer an easy method to embed his engine into a parallel
context. However, this normally requires rewriting of a large amount of code
because synchronization primitives have to be inserted. How can the transparent
embedding of an engine into a parallel context be achieved?

Besides that CoSY answers all these questions a further advantage is that
it uses a clear specification methodology for interfaces between the engines to

281

enhance the modularity and the maintainability of the generated systems. We
are able to replace engines by new releases with a small amount of time and
system resources. Because side effects of engines are known precisely, the effects
of such an exchange can be estimated and lead at most to a regeneration of
the system. This also enhances reusability and interoperability between several
compilation systems. It is easy to reuse some engine from an other system, also
in object format. The clear specification allows to generate efficient sequential
compilers for uni-processor systems.

The aim of this overview article is to explain how CoSY solves flexible engine
embedding transparently. In essence this is achieved by a separation of interac-
tion of engines, the engines themselves, and the access of the engines to the
common data. While engines are user-provided (hand-written or generated), in-
teraction of engines and access of the engines to data are generated by CoSY
and depend on the embedding of the engine. For this CoSY introduces three
languages that work together. EDL (engine description language) describes the
interaction of the engines and is used for generation of control flow embedding,
i.e. supervising code. fSDL (full structure definition language) is used to describe
the view of an engine including its side effects so that the access functions to the
data can be generated according to the embedding as well as the data structure
definitions. And CCL (COSY configuration language) makes it possible to adapt
the configuration of the generated compiler to the particular characteristics and
limitations of the host system for efficiency reasons.

2 M e c h a n i s m s f o r f l e x i b l e e n g i n e e m b e d d i n g

In CoSY we use the following compilation model. A set of engines work in paral-
lel on global data (common data pool, CDP) so that exchange of information is
easy. Engines are synchronized under the control of (generated) supervisor code.
Access to the data is - - and this is (programming) convention - - done using ac-
cess routines from a generated library and macro package, the data manipulation
and control package (DMCP).

In order to achieve flexible and transparent engine embedding CoSY uses the
following mechanisms. The interaction of engines and the embedding context of
an engine is described by a fixed set of interaction schemes from which the su-
pervisor code can be generated. With knowledge of the interaction definition, the
DMCP library is generated which guarantees synchronized access. This means
that the actual (physical) access method of an engine to its data is determined
by the context it runs in. Engines can be clustered together to processes and this
information can be used to optimize synchronization for these combined engines.

This may be necessary to tailor a CoSY system to the host on which it runs,
i.e. to adapt it to a limited number of processors, processes, semaphores or some
amount of shared memory. The following sections will explain these mechanisms
in more detail.

282

I engine 1)"""'~

Iengine2 I ~
e e e

D

M

C

P - - ~ t CDP /

Fig. 1. The CoSY model, engines and the common data pool

2.1 Con tex t specif icat ion by in t e rac t ion schemes

We identified several useful interaction schemes for compilation systems: It is
possible to embed an engine into sequence, loop, pipeline, data parallel, specu-
lative, server and generate-and-test contexts.

Sequence and loop inter.action model sequential evaluation and iteration over
a set of engines. When there are no data dependencies between the activities of
some engines, CoSY aims to set up a parallel evaluation of these. Engines in a
loop may be reactivated for another loop incarnation if a special loop termina-
tion engine decides to start the engine sequence again. Such repeated execution
normally occurs in a transformation engine which depends on information it
modifies (e.g. dead-code elimination together with constant propagation).

Engines which are embedded in a pipeline receive an arbitrary number of
work units one after the other and overlap their successive operations on them
in time. For example, intraprocedural optimization can often be pipelined with
the code generator. With data parallel interaction as many engines are created as
there are work units. Most of the intraprocedural dataflow analysis settings can
be mapped to this scheme. Synchronization code for accessing global information
can be generated automatically.

A speculative interaction scheme embeds a fixed number of engines such that
these engines may work without disturbing each other. Each engine gets its own
version of the data in which those parts are replicated that would cause depen-
dencies (shadowing). After the run of these engines, a selector engine investigates
the results and selects the best. A very interesting application is the concurrent
execution of code selectors followed by an assessment engine that chooses the
best result.

A server interaction scheme allows an engine to call another engine from
its algorithmic part, e.g. a constant propagation engine may call an interpreter
engine for evaluating constant expressions.

In optimistic (generate-and-test) interaction a producer is combined with an
experimental engine in such a way, that the producer can create new versions
arbitrarily often, arid submit them to an experimental engine which can try them

283

out for feasibility. These versions are tested in parallel, each by a new experi-
mental engine. The results of these experiments are collected and the best one
is chosen by a special selector engine. This means that here an arbitrary num-
ber of versions can be investigated. Optimistic register allocation with several
parameters is a nice example of this.

All interaction scheme specifications are block structured, i.e. an interaction
scheme combines some component engines to a new one, a composite engine,
which can be combined again. This results in a hierarchical specification of in-
teraction schemes, the engine hierarchy.

This also means that the generation of the supervisor code can be done in a
hierarchical way: each interaction scheme results in an engine stub that super-
vises the component engines, and engine envelopes, for each component engine
one, which provide a standard interface between the stub and the component
engines. (See figure 2)

? composite engine

stub of corn ~slte engine

I
I envelopel

I
I

J ;

envelope2

i i

i t DMCP t t
I I I I
I I I I
! l I l

Fig. 2. What CoSY generates and how engines are embedded into the generated code

2 . 2 D a t a S t r u c t u r e D e f i n i t i o n

We developed a language (fSDL) for the specification of the data structures the
engines work on. An engine works on typed memory pieces, called operators in

284

fSDL. Each operator has a fixed number of fields that can be divided into two
sets, the annotations and the structure carrying fields that point to other op-
erators. Sets of operators, their fields and properties (about which more below)
are collected in so-called domains, forming the types in the system. Structural
objects consist of operators from a domain with their internal edges. The edges
are implicitly drawn by the structural fields. From this data structure speci-
fication a variety of functions can be generated, e.g. equality predicates, copy
functions etc. The allowed types of fields may be extended by externally defined
data structures, called opaques; they are the black boxes in the specification.
Their use requires that some interfaces have to be explicitly defined such as the
equality predicate.

The language has a mechanism for specifying data structures with generic or
non-standard functionality, the functor. It is a parametrized specification, the
parameters are domains on which the new structure is based. The result of the
instantiation is a data structure (a domain in fSDL) with the added functionality.
We will see in the examples through the paper that we import the integer of the
machine with its usual operations as opaque and the functionality of a list by
applying a functor.

2.3 Access specification by views and side effects

If we specify engine interactions (control flow) we can not yet guarantee that
the system runs correctly, because of the side effects and data dependencies of
the engines on the CDP. They can be approximated, if we are able to specify as
exactly as possible what an engine does with the CDP. fSDL includes constructs
to specify an engine's logical view. We are interested in two aspects: which data is
touched, and how is it touched. The allowed kind of access of operators and fields
can be specified by properties (read, write, new, destroy). Sets of these entities
are called domains, as mentioned above. The touched data must be reachable
from the parameters, that are given to the engine (no global variables). The
parameters of engines and fields in operators are typed with domains; therefore,
domains exactly describe which parts of the CDP are actually touched and
how they are touched. The transitive closure over all domains of an engine ' s
parameters make up the logical view of the engine.

The following example may illuminate this. Suppose the CDP includes struc-
tures of the following form. A module has a procedure list and a procedure has a
list of instruction trees. The instructions contain virtual and real register num-
bers as well as their operands and operations. Figure 3 describes the physical
layout of the operators module, procedure , and i n s t r u c t i o n in the CDP.

For a register allocator this view has to be modified slightly. A register allo-
cator may work only on one procedure, reads the virtual register number, sets
the real register number, and modifies the instruction list because it may insert
spill code. It never changes existing instruction trees and often only works on
one procedure. This set of effects" on our example CDP can be described by
the domain description from figure 4. The identifiers enclosed in [] denote the
access properties which are imposed on the fields in these domains. The logical

285

domain MODULE: {
module <

procedure: LIST(PROC)
>}

domain PROC : {

procedure <
instructions: LIST(INSTR),
loops : LIST(LOOP)

>}

domain INSTR : {
instruction <

virtual_register: INT,

real_register : INT,
operation : INT,
operands : INSTR

>}

// procedure list

// the instruction list
// list of loops, not further specified

// virtual register numbers
// real register numbers
// enum of operation
// operands

Fig. 3. Physical layout of data structures

view of the register allocator of our example is also depicted in figure 5. Fields
enclosed in the dotted region are visible and read-only while fields in the dashed
region are also writable. Other fields are not visible.

domain RegisterAlloc: {
procedure <

instructions: LIST [WRITE] (RegisterInstruction) [READONLY]
>}

domain RegisterInstruction: {

instruction <

virtual_register: INT [READONLY],
real_register : INT [WRITE],

operation : INT [READONLY],
operands : Registerlnstruction [READONLY]

>}

Fig. 4. Domains of register allocator

The fSDL-compiler (fSDC) only produces those access functions in the
DMCP whose fields and effects have been specified in an engine's logical view.
This guarantees that engines can neither modify nor read other parts of the
CDP. In our example the fSDC produces read and write functions for the fields
which implement the list internally and for r e a l _ r e g i s t e r . For the field loops
no function is generated, for the others only read functions are generated. It is

286

I

l_ ~ ~ - - virtual_register
- - - - 1

r real_register

operation

operands

Fig. 5. Domains serve to specify the logical view of an engine

clear that an engine using these domains may not write v i r t u a l _ r e g i s t e r , nor
replace the list by an other, list.

In order to facilitate the definitions of new domains from existing one, fSDL
provides a powerful calculus over domains that provides inheritance and restric-
tive operations such that each engine parameter has a related domain which
describes exactly the effect of that engine. In essence the following access meth-
ods for DMCP functions can be generated.

- Depending on whether the engine reads or writes a field, or allocates or
destroys a node, read, write, allocation and free functions are generated.

- If the access to a field does not suffer from a data dependency which may be
introduced by the interaction schemes, straight forward access is provided
(direct access).

- If there is a data dependency, an access using a serializing protocol is used
(serializing access).

- The user may weaken the kind of dependency such that only a locking pro-
tocol is used (locking access).

- If the engine is embedded into a speculative or optimistic interaction scheme,
the field is replicated (shadowed) and access to the engine's shadow is yielded
(shadowed access).

These functions have the same interface but map the engine's logical view
to a physical data access which is dependent on the engine embedding (view
mapping).

All these accesses can either be access functions which are linked-in (linked
DMCP) or they can be inlined (inlined DMCP), so that more efficient access
is provided. The former approach is more flexible because engines need not be
recompiled when they are embedded into other compilers; they just can be linked

287

with different DMCPs. The latter, an inlined DMCP, provides more efficient
access so that more efficient compilers can be built.

2.4 C o n f i g u r a t i o n

Another specification influences the generation of engine stubs (the synchro-
nization code that is generated from interaction schemes) and DMCP access
functions. This is the description in CCL, the CoSY configuration language.
Despite that logically all engines work in parallel it is possible to reduce the
number of parallel units by clustering engines. This has the effect that process
invocations to engines collapse to normal procedure calls and synchronization
can be optimized or even omitted.

Clustering even serves to achieve a totally sequential compiler if all engines
are clustered, or a compiler that consists only of few processes, if a few engines
are left non-clustered. Reasonably fast compilers on sequential machines can be
configured.

3 I n t e r a c t i o n s c h e m e s

In this section we will present some examples and show how transparent engine
embedding can be used for optimization We will assume that the CDP contains
structures as specified in figures 3 and 4. The engine parameters of the interac-
tion schemes that are used to access the physical view of the engine are typed
with domain names and with one annotations out of the set IN, INOUT, OUT.
The semantics is as follows; an IN handle can not be changed by the engine, an
INOUT may, and an OUT handle has to be changed. IN and INOUT handles
are initialized, OUT handles not.

3.1 E m b e d d i n g i n t o p a r a l l e l c o n t e x t

Suppose we have an intraprocedural register allocator which uses Chaitin's
method [Cha82]. How do we organize the process for a list of procedures in
a module? There are several possibilities, the easiest one is to run the job in
parallel on the procedural level, because there are no dependencies between the
register allocations for the procedures. In EDL this would be specified as fol-
lows. Note that the parameter of the engine is typed with a domain expression
in fSDL which we explained above. If a domains contains exactly one operator
or every operator has the same field, we may use the dot notation for referencing
the fields of that operator.

ENGINE CLASS allocate_all(IN m: MODULE) {

p{} <= m. OPERATOR procedure // decomposition into ~ork units for
DATAPARALLEL // data parallel execution

registeralloc(p) }

288

This specification declares that so for each procedure an engine r e g i s t e r a l l o c
is started in parallel. Of course some mechanism has to be provided that each
engine gets its work unit. This is done by a decomposer function which walks the
list of procedures and hands over each element (each work unit) to an instance
of the r e g i s t e r a l l o c engine. This decomposer can be generated automatically
from this specification because the mapping of a list to this set is straightforward
or in more complex cases, it can be hand-written. The {} notation denotes the
set of work units.

If we don't use clustering this may lead to an enormous amount of schedul-
ing of parallel engines. Instead the register allocator may be embedded into a
pipeline, and then only one engine is created which receives the work units one
after the other:

ENGINE CLASS allocate_all(IN m: MODULE) {
p<> <= m.0PERATOR procedure // decomposition into work units

PIPELINE // for pipelining
registeralloc (p) }

Note that this does not require the change of a single source code line in the
engine. All that is necessary, the generation of work units, the decomposition of
the procedure list, the generation of engines and the waiting for completion is
generated automatically in the engine stubs, envelopes and access methods.

Of course clustering can be used to coalesce all work into one process if
we specify additionally in CCL " CLUSTER a l l o c a t e _ a l l ". This means that
r e g i s t e r a l l o c is generated as a sequential subroutine of a l l o c a t e _ a l l , and
that the decomposition is just a simple loop over the list of all procedures.

3.2 E m b e d d i n g in to s p e c u l a t i v e c o n t e x t

In the following we show an example how engines can be embedded into a spec-
ulative context. We use as an example competitive register allocation. Suppose
the compiler writer has three register allocators working with the three methods
[Cha82] [CH84] [HGAM92]. We reuse the view specification from figure 4 for
each of these register allocators and also for the speculative composite engine.

ENGINE CLASS registeralloc (IN p:RegisterAlloc) {
SPECULATIVE

chaitin(p)
chow_henessy (p)
hendren (p)

SELECT registeralloc_selector(p) }

At runtime the speculative interaction scheme behaves as follows: First the
values of the original fields which are to be modified as well as all objects that
are reachable from them are copied into shadows (special memory, not accessible
from every engine). This means {n our case that the field r e a l _ r e g i s t e r is
copied into its shadows as well as that the whole instruction list is replicated
twice. The replication for any engine-parameter pair can be done in parallel.

289

Each register allocator works in parallel on its private copy because its gen-
erated access functions provide shadow access. When all engines are finished the
selector determines the best version and copies it back to the original fields, i.e.
an unique instruction list is determined again. Then the interaction scheme ends
and all other engines can run as if no speculative interaction had taken place.

Of course the selector engine r e g i s t e r a l l o c _ s e l e c t o r needs special access
functions which give access to all data shadows. If the selection process can be
expressed by a mapping of the shadowed structure to the natural numbers and
a cost function then the selection can be generated automatically.

Note that r e g i s t e r a l l o c can be substituted in any context by each of the
three register allocators without source code change. It is no problem to embed
this speculative interaction in the pipelined or data parallel interaction schemes
above; the engine hierarchy allows us to do this orthogonally.

3.3 E m b e d d i n g into a l terable engine order ings

In this section we leave the field of register allocation and turn to complex op-
timization orderings. We show how a simple linear optimization engine can be
reconfigured into a complex one with a sophisticated ordering. This is exempli-
fied by the proposal [WS90] which takes several dependencies between the used
optimizations into account. First we show how a simple optimizer may be speci-
fied in EDL just by concatenating some simple engines. For simplicity we ignore
the side effect description here.

ENGINE CLASS optimizer (IN p:PROC) {
SEQUENCE

constant propagation(p.instructions)
dead_code_elimination(p.instructions)
invariant_codemotion(p)
loop_interchange(p)
loop_unrolling(p.loops)
loop_fusion(p.loops)
strip_mining(p.loops) }

In this simple optimizer we perform one optimization after the other. We do
not care about a good ordering, i.e, about repetition of engines that are mutually
recursively dependent. Such a simple optimizer may be advantageous when we
have a sequential machine or when we need quick compilation.

However it is possible to embed the engines in a much more sophisticated
way. This followingscheme is coded after the engine dependency graph of figure
6 [WS90].

ENGINE CLASS optimizer (IN p:PROC) {
SEQUENCE

constant propagation(p.instructions)
complex_opt(p)
strip_mining(p.loops) }

290

_o.Et~i~e L
c~176 I
propagation]

co~oleL~L. I
I 9 0 dead code ' l
I elimination I I
I i i I "~-- --~lic big_loop • J
IT --]1 I
I I invariant ~ ~ .~ I I

tcode C L . ,) ~ m = = = ~ U ~ l o o p i n t e r c , hange 11
III motion "l %~ I I

0 ioo.u,inn :I

II loop unrolling I I

I
I

0 strip mining [

_ J

Fig. 6. Dependency graph of optimizations after Whitfield

At the beginning of the optimizer a constant propagator and in the end a
strip miner runs. The complex optimizations in the middle are modeled in a
sequence interaction scheme:

ENGINE CLASS complex_opt (IN p:PROC) {
SEQUENCE

dead_code_eliminat ion_loop (p. instructions)
big_loop(p)
loop_fusion(p, loops)
loop_unrolling(p, loops) }

We only show the complex loop of code motion and loop interchange. This
engine is a loop which runs until no further changes occur. Its components are
loops over invariant_code_motion and loop_interchange, respectively.

ENGINE CLASS big_loop(IN p:PROC) {
LOOP
EXIT change_detect or (p)

invariant_code_mot ion_loop (p. instructions)
loop_int erchange_loop (p. loops) }

We now embed the engines from the simple optimizer in the complex ordering
without source code change. We have to detect transparently whether an engine
changes something. Within CoSY the exit engine of a loop can be used for this.
Initially the change_detector engine makes a copy of the data; when it is called

291

after a loop incarnation, it compares the copy with the new data and, if nothing
has changed, terminates the loop.

All used data of the engines is known from the specification of their logical
views, so the copying and comparison in the exit engine can be generated au-
tomatically from the domain specifications (state tracking). Thus even the exit
engine need not be programmed by the user.

3.4 Embedding into generate-and-test context

In this section we show an embedding of the engines s
and loop_interchange from the previous example in a generate-and-test (opti-
mistic) context. This means that we let a selector decide between an arbitrary
number of versions.

Actually in optimistic interaction two selection strategies are combined. First
it is decided whether a version is worthwhile by investigating the version alone.
Then all versions which have survived are compared and the best one is selected.
The semantics of the optimistic interaction scheme can be described by the
following pseudo code.

do { PRODUCE() ;
if (PRESELECT()) TRY();

} while (PRODUCEMORE()) ;
FINALSELECT () ;

This means that a producer engine (PRODUCE) produces new versions of
certain optimizations, one after the other, each on separate copies. A second
engine (PRESELECT) decides whether the version is worthwhile (pre-seleetion).
TRY is given the version as a shadow and forked off so that it may experiment
with the version. In the meanwhile, it is checked by PRODUCEMORE whether
PRODUCE should be given another try to produce a version. If so, a next version
will be generated and the whole process is repeated. Note that PRESELECT
and PRODUCEMORE can run in parallel because they only look at versions
and do not modify them. Otherwise, the production stops. The results of the
experiment on each version are collected by FINALSELECT which performs
the final global selection. This scheme seems to be rather complicated; however,
some of these engines may do nothing, in fact. For example, if no pre-selection
method is known, there need not be a PRESELECT engine.

ENGINE CLASS code_motion_and_loop_interchange (IN p:PROC) {
OPTIMISTIC

PRODUCE invariant_c ode_mot ion (p)
PRESELECT estimate_register_lifetimes(p)
PRODUCEMORE threshold(p)
TRY 1 o op_ interchange (p)
FINALSELECT static code_analysis(p) }

Our example performs as follows. First invariant code motion is done in the
PRODUCE engine.' As pre-selection criterion we take the amount of register

292

lifetimes which results from the code motion. Thus we may withdraw already
in estimate_register_lifetimes some useless versions. Then the TRY engine
loop_interchange needs to work only on "better" versions. To decide whether
the production should be stopped, engine t h re sho ld could just contain a counter
which is increased and compared to a threshold number. In the end, engine
s t a t i c _ c o d e a n a l y s i s evaluates the information of a frequency analysis and
estimates the cost of the resulting code versions.

Again the embedding of the engines does not require to change them. Because
the side effects are known precisely a lot of work can be done in parallel.

4 R e l a t e d w o r k

The attempts to parallelize compilers can be divided into two main directions.
One tries to parallelize algorithms like scanning or parsing and is language inde-
pendent. The other others parallelize existing compilers and are therefore source-
and target language dependent. In contrast, CoSY will give a very general mech-
anism (programming languages) for compiler construction.

There have not been many attempts to design languages neither for module
re-embedding nor for side effect descriptions. FX []G90] and JADE [LR91] con-
tain basic principles for side effect description but fSDL goes further because it
allows the convenient combination of these descriptions via its domain calculus.
JADE also provides a mechanism to synchronize tasks over a shared memory,
however its side effect descriptions are mixed with source code so that the re-
embedding of a part of the system may not be as easy as with COSY. CoSY also
allows much more kinds of embedding than JADE, and allows flexible configu-
ration and non-deterministic execution.

In early works of [Tic79] and [DK76], they define the concepts of a Module
Interconnection Language. This specification language consists of simple input-
output specification but is dependent on the implementation language of the
modules, because it includes its type concept.

In many aspects CoSY has inherited from IDL [NNGS89]. However, IDL has
a somewhat different compilation model: processes communicate via channels
and not via a shared common data pool. Therefore IDL requires processes to
communicate via external instances like files. Also processes execute sequentially.
CoSY allows for much faster communication among engines and still allows
correct, also parallel evaluation, because of its powerful data and side effect
description mechanism. Furthermore, CoSY allows speculative and optimistic
interaction. Therefore the CoSY model will be a major step forward in the reuse
of compiler engines and flexible compiler construction.

5 C o n c l u s i o n

We have shown how the CoSY compiler model can be used to embed compiler
engines flexibly into a lot of different compilation and optimization contexts.

293

CoSY enables the compiler writer to reuse engines, write scalable, parallel,
and portable compilers, and tune the performance of his system by exchang-
ing interaction schemes or manipulating the configuration of the system. This
all is possible because CoSY provides novel description mechanisms for data
structures, side effect descriptions, as well as engine interactions.

For the first t ime speculative, optimistic, parallel evaluation as well as al-
terable engines orderings are provided in an orthogonal and unified way for
compiler construction. CoSY enables cosy engine embedding: this will facilitate
construction of parallel and (inter-procedural) optimizing compilers.

References

[Bra91]

[CHS4]

[Cha82]

[DK76]

[OK,2]

[HGAM92]

[JG90]

[LR91]

[LR92]

[NNGS89]

[Tic79]

[WS90]

D. G. Bradlee. Retargetable Instruction Scheduling for Pipelined Proces-
sors. PhD thesis, University of Washington, 1991.
F.C. Chow and 3.L. Hennessy. Register allocation by priority based color-
ing. In Proceedings of the ACM SIGPLAN Syrup. on Compiler Construc-
tion, June 1984.
G.J. Chaitin. Register allocation and spilling via graph coloring. In SIG-
PLAN Conference on Programming Language Design and Implementation,
June 1982.
Frank DeRemer and Hans Kron. Programming-in-the-large versus
Programming-in-the-small. 1EEE, Nov 1976.
T. Granlund and R. Kenner. Eliminating branches using a superoptimizer
and the GNU C compiler. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 341-352. ACM, June 1992.
L. J. Hendren, G. R. Gao, E. R. Altman, and C. Mukerji. A register allo-

cation framework based on hierrchical cychc interval graphs. In U. Kastens
and P. Pfahler, editors, CC 9s 4th International Conference on Compiler
Construction, LNCS 641 , pages 176-191, 1992.
Pierre 3ouvelot and David K. Gifford. Algebraic reconstruction of types
and effects. In ACM Conference on Principles of Programming Languages
(POPL), 199o.
M. S. Lam and M. C. Rinard. Coarse-grain parallel programming in Jade.
In ACM Conference on Principles and Practice o/ Parallel Processing
(PPOPP}, pages 94-105. Computer Systems Laboratory, Stanford Univer-
sity, 1991.
Y-f. Lee and B. Ryder. A comprehensive approach to parallel data flow
analysis. In H. Zima, editor, Workshop on compilers for parallel computers.
Austrian Center for Parallel Computation, 1992.
J.R. Nestor, 3.M. Newcomer, P. Giannini, and D.L. Stone. IDL:The Lan-
guage and its Implementation. Prentice Hall, Englewood Cliffs, 1989.
Walter F. Tichy. Software Development Control Based on Module Inter-
connection. In Proc. of the 4th International Conference on Software En-
gineering, Sep 1979.
D. Whitfield and M. L. Sofia. An approach to ordering optimizing trans-
formations. In ACM Conference on Principles and Practice o/Parallel
Programming (PPOPP}, 1990.

