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A b s t r a c t .  In this article we introduce a novel model for compilation 
and compiler construction, the CoSy(COmpiler  SYstem) model. CoSy  
provides a framework for flexible combination and embedding of com- 
piler phases - -  called engines in the sequel - -  such that the construction 
of parallel and (inter-procedural) optimizing compilers is facilitated. In 
CoSY a compiler writer may program some phase in a target language 
and embed it transparently - -  without source code changes - -  into differ- 
ent compiler contexts, such as with alternative phase order, speculative 
evaluation 4 , parallel evaluation, and generate-and-test evaluation. Com- 
priers constructed with CoSY can be tuned for different host systems 
(the system the compiler runs on, not the system it produces code for) 
and are transparently scalable for (shared memory) multiprocessor host 
configurations. 
To achieve this, CoSY provides an engine description language (EDL) 
which allows to describe the control flow and interaction of compiler 
engines. A novel structure definition language (fSDL) is introduced for 
the specification of data, access side effects, and visibility control. A 
configuration description (CCL) is used to tune the embedding of the 
engines to the host system characteristics and limitations. 
In order to guarantee transparent embedding, CoSY introduces for each 
engine a logical view on the common intermediate representation. CoSY 
generates code that maps these views onto the physical representation~ 
code that helps the programmer to manipulate it, as well as code that 
schedules the interaction of the engines. 
The proposed model of compilation does not depend on source language, 
programming language, or host architecture. It is not restricted to com- 
piler construction and may have applications in a wide area of software 
engineering. 

1 Mot ivat ion  for CoSY 

One of  the  ma jo r  a ims in compiler  const ruct ion is to  improve the efficiency 
of  the generated code by extensive opt imizat ion.  While  this has become more  
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and more important since modern processors (RISC, superscalar, multi-pipeline) 
have appeared, which is the best (or even a good) strategy for optimization, is 
still unclear. 

An optimize r writer has to choose between three strategies. The first is to 
use an optimal implementation of the optimization method. This strategy is 
unrealistic because most optimizations are known to be NP-hard, and thus can be 
applied only for very small parts of code (compare the superoptimizer approach 
[GK92] or the work on peephole optimizer generation). 

Therefore, usually the second possibility is chosen, which is to use heuristics. 
An additional reason for this is that not all information may be available at 
a certain point in the compilation; we may have to make weak approximations 
about the effects of subsequent compiler phases. This may result in an algorithm 
with very unpleasant results in certain situations. Instead of making assumptions 
about effects of some phases, one would like to inspect the effects by letting those 
phases run, i.e. one would like to weaken the classical sequential phase ordering. 

The third possibility is to apply several heuristics or a heuristic with sev- 
eral settings concurrently, evaluate their results and choose the best result for 
further processing. In essence this means that competition between different al- 
gorithms or different parameterizations is performed. This becomes more and 
more applicable because shared memory multiprocessors become common, and 
one would like to make use of their parallel processing capability. However, the 
use of this technique causes a lot of implementation overhead. Not only the 
comparison and assessment of the results have to be implemented but also spe- 
cialized data structures and algorithms which take the speculative evaluations 
into account. 

The CoSY model of compilation has been developed: to weaken the sequen- 
tial phase ordering and to enable parallel competitive evaluation. Its aim is to 
facilitate the development of fast compilers generating efficient code. It pro- 
vides means to embed handwritten or generated compiler phases as black boxes 
into different compiler contexts without source code changes. It can be seen as 
a compiler construction toolbox, that gives us the possibility to test compiler 
structures and select the best one. And it will also enable us to utilize optimiza- 
tion by speculative evaluation, generate-and-test evaluation, parallel evaluation, 
and alternative orderings. 

1.1 Po ten t i a l  of  CoSy 

A lot of optimization problems benefit from the capabilities of COSY; in the 
following we will give some examples. 

Several problems can exploit speculative evaluation. Register allocation can 
be performed with different numbers of registers for parameter passing, global 
registers, and basic block local registers. Because register allocation and instruc- 
tion scheduling influence each other, speculative evaluation can be used to find a 
better code ordering [Bra91]. Different register allocation methods can be applied 
competitively, and a machine simulator or a performance prediction tool engine 
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can be used to select the best version (this also means that  the simulator or per- 
formance prediction engine is part of the compiler context). Currently there are 

number of different algorithms for pointer alias analysis; such analysis is the 
basis for optimization on programs with pointers. Because it is difficult to judge 
in advance which of them yields the best result they can be run competitively 
and by combining their results better information can be obtained. There are 
many more examples, but the central issue is: how can we avoid reprogramming 
engines when we embed them in a different context? How can we experiment 
with different parameterizations of the algorithms and make use of competitive 
evaluation? 

With speculative evaluation there are alternative algorithms to produce the 
competing versions. We can also use the generate-and-test method, employing 
one algorithm which generates several alternative versions, one after the other. 
Generate-and-test is applicable when the range of the parameters we want to 
manipulate is intractably large. As an example regard the register allocation 
algorithm of Chaitin [Cha82]. It has about two parameters we can tune, the 
first is which registers are deleted from the interference graph in a round and 
the second is which registers must be spilled if the graph cannot be colored. We 
can easily imagine a register allocator that  generates several of these allocations 
and have again a selector engine that  measures register life times to select the 
best version. We may stop the production of new versions if we think we have 
reached a local optimum. Generate-and-test, however, needs special prerequisites 
in the engines. Is it possible to avoid reprogramming of engines and embed them 
transparently into such a context? 

Another parameter that  influences the optimization results is how the op- 
timization engines are ordered. Because certain optimizations enable or disable 
others (see [WS90]), the optimizer writer should be given a means to embed an 
engine into several ordering contexts, e.g. into loops that  run until no optimiza- 
tion can be applied anymore (exhaustive transformation); or into loops whose 
iteration number is configured by the machine. Of course exhaustive transforma- 
tion can be implemented with support of the algorithm to indicate what changed, 
but this may slow down an engine when it is embedded in a non-loop context. 
How can we automate the detection of such changes and achieve transparent 
embedding of engines into alterable orderings? 

One method to speed up an algorithm is making a parallel version for it. It 
is often argued that  this is of no use in a compiler because there are a lot of 
dependencies among the engines. While this is true in general there are certain 
optimizations which don't have internal dependencies, e.g. when some analyses 
are done on procedures in a data  parallel way [LR92]. For these cases we would 
like to give the programmer an easy method to embed his engine into a parallel 
context. However, this normally requires rewriting of a large amount of code 
because synchronization primitives have to be inserted. How can the transparent 
embedding of an engine into a parallel context be achieved? 

Besides that  CoSY answers all these questions a further advantage is that  
it uses a clear specification methodology for interfaces between the engines to 
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enhance the modularity and the maintainability of the generated systems. We 
are able to replace engines by new releases with a small amount of time and 
system resources. Because side effects of engines are known precisely, the effects 
of such an exchange can be estimated and lead at most to a regeneration of 
the system. This also enhances reusability and interoperability between several 
compilation systems. It is easy to reuse some engine from an other system, also 
in object format. The clear specification allows to generate efficient sequential 
compilers for uni-processor systems. 

The aim of this overview article is to explain how CoSY solves flexible engine 
embedding transparently. In essence this is achieved by a separation of interac- 
tion of engines, the engines themselves, and the access of the engines to the 
common data. While engines are user-provided (hand-written or generated), in- 
teraction of engines and access of the engines to data are generated by CoSY 
and depend on the embedding of the engine. For this CoSY introduces three 
languages that work together. EDL (engine description language) describes the 
interaction of the engines and is used for generation of control flow embedding, 
i.e. supervising code. fSDL (full structure definition language) is used to describe 
the view of an engine including its side effects so that the access functions to the 
data can be generated according to the embedding as well as the data structure 
definitions. And CCL (COSY configuration language) makes it possible to adapt 
the configuration of the generated compiler to the particular characteristics and 
limitations of the host system for efficiency reasons. 

2 M e c h a n i s m s  f o r  f l e x i b l e  e n g i n e  e m b e d d i n g  

In CoSY we use the following compilation model. A set of engines work in paral- 
lel on global data (common data pool, CDP) so that exchange of information is 
easy. Engines are synchronized under the control of (generated) supervisor code. 
Access to the data is - -  and this is (programming) convention - -  done using ac- 
cess routines from a generated library and macro package, the data manipulation 
and control package (DMCP). 

In order to achieve flexible and transparent engine embedding CoSY uses the 
following mechanisms. The interaction of engines and the embedding context of 
an engine is described by a fixed set of interaction schemes from which the su- 
pervisor code can be generated. With knowledge of the interaction definition, the 
DMCP library is generated which guarantees synchronized access. This means 
that the actual (physical) access method of an engine to its data is determined 
by the context it runs in. Engines can be clustered together to processes and this 
information can be used to optimize synchronization for these combined engines. 

This may be necessary to tailor a CoSY system to the host on which it runs, 
i.e. to adapt it to a limited number of processors, processes, semaphores or some 
amount of shared memory. The following sections will explain these mechanisms 
in more detail. 
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Fig. 1. The CoSY model, engines and the common data pool 

2.1 Con tex t  specif icat ion by in t e rac t ion  schemes 

We identified several useful interaction schemes for compilation systems: It is 
possible to embed an engine into sequence, loop, pipeline, data parallel, specu- 
lative, server and generate-and-test contexts. 

Sequence and loop inter.action model sequential evaluation and iteration over 
a set of engines. When there are no data dependencies between the activities of 
some engines, CoSY aims to set up a parallel evaluation of these. Engines in a 
loop may be reactivated for another loop incarnation if a special loop termina- 
tion engine decides to start the engine sequence again. Such repeated execution 
normally occurs in a transformation engine which depends on information it 
modifies (e.g. dead-code elimination together with constant propagation). 

Engines which are embedded in a pipeline receive an arbitrary number of 
work units one after the other and overlap their successive operations on them 
in time. For example, intraprocedural optimization can often be pipelined with 
the code generator. With data parallel interaction as many engines are created as 
there are work units. Most of the intraprocedural dataflow analysis settings can 
be mapped to this scheme. Synchronization code for accessing global information 
can be generated automatically. 

A speculative interaction scheme embeds a fixed number of engines such that 
these engines may work without disturbing each other. Each engine gets its own 
version of the data in which those parts are replicated that would cause depen- 
dencies (shadowing). After the run of these engines, a selector engine investigates 
the results and selects the best. A very interesting application is the concurrent 
execution of code selectors followed by an assessment engine that chooses the 
best result. 

A server interaction scheme allows an engine to call another engine from 
its algorithmic part, e.g. a constant propagation engine may call an interpreter 
engine for evaluating constant expressions. 

In optimistic (generate-and-test) interaction a producer is combined with an 
experimental engine in such a way, that the producer can create new versions 
arbitrarily often, arid submit them to an experimental engine which can try them 
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out for feasibility. These versions are tested in parallel, each by a new experi- 
mental engine. The results of these experiments are collected and the best one 
is chosen by a special selector engine. This means that  here an arbitrary num- 
ber of versions can be investigated. Optimistic register allocation with several 
parameters is a nice example of this. 

All interaction scheme specifications are block structured, i.e. an interaction 
scheme combines some component engines to a new one, a composite engine, 
which can be combined again. This results in a hierarchical specification of in- 
teraction schemes, the engine hierarchy. 

This also means that the generation of the supervisor code can be done in a 
hierarchical way: each interaction scheme results in an engine stub that  super- 
vises the component engines, and engine envelopes, for each component engine 
one, which provide a standard interface between the stub and the component 
engines. (See figure 2) 
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Fig. 2. What CoSY generates and how engines are embedded into the generated code 

2 . 2  D a t a  S t r u c t u r e  D e f i n i t i o n  

We developed a language (fSDL) for the specification of the data structures the 
engines work on. An engine works on typed memory pieces, called operators in 
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fSDL. Each operator has a fixed number of fields that  can be divided into two 
sets, the annotations and the structure carrying fields that  point to other op- 
erators. Sets of operators, their fields and properties (about which more below) 
are collected in so-called domains, forming the types in the system. Structural 
objects consist of operators from a domain with their internal edges. The edges 
are implicitly drawn by the structural fields. From this data  structure speci- 
fication a variety of functions can be generated, e.g. equality predicates, copy 
functions etc. The allowed types of fields may be extended by externally defined 
data  structures, called opaques; they are the black boxes in the specification. 
Their use requires that  some interfaces have to be explicitly defined such as the 
equality predicate. 

The language has a mechanism for specifying data structures with generic or 
non-standard functionality, the functor. It is a parametrized specification, the 
parameters are domains on which the new structure is based. The result of the 
instantiation is a data structure (a domain in fSDL) with the added functionality. 
We will see in the examples through the paper that  we import the integer of the 
machine with its usual operations as opaque and the functionality of a list by 
applying a functor. 

2.3 Access specification by views and side effects 

If we specify engine interactions (control flow) we can not yet guarantee that  
the system runs correctly, because of the side effects and data dependencies of 
the engines on the CDP. They can be approximated, if we are able to specify as 
exactly as possible what an engine does with the CDP. fSDL includes constructs 
to specify an engine's logical view. We are interested in two aspects: which data  is 
touched, and how is it touched. The allowed kind of access of operators and fields 
can be specified by properties (read, write, new, destroy). Sets of these entities 
are called domains, as mentioned above. The touched data must be reachable 
from the parameters, that  are given to the engine (no global variables). The 
parameters of engines and fields in operators are typed with domains; therefore, 
domains exactly describe which parts of the CDP are actually touched and 
how they are touched. The transitive closure over all domains of an engine ' s  
parameters make up the logical view of the engine. 

The following example may illuminate this. Suppose the CDP includes struc- 
tures of the following form. A module has a procedure list and a procedure has a 
list of instruction trees. The instructions contain virtual and real register num- 
bers as well as their operands and operations. Figure 3 describes the physical 
layout of the operators module, procedure ,  and i n s t r u c t i o n  in the CDP. 

For a register allocator this view has to be modified slightly. A register allo- 
cator may work only on one procedure, reads the virtual register number, sets 
the real register number, and modifies the instruction list because it may insert 
spill code. It never changes existing instruction trees and often only works on 
one procedure. This set of effects" on our example CDP can be described by 
the domain description from figure 4. The identifiers enclosed in [] denote the 
access properties which are imposed on the fields in these domains. The logical 
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domain MODULE: { 
module < 

procedure: LIST(PROC) 
>} 

domain PROC : { 

procedure < 
instructions: LIST(INSTR), 
loops : LIST(LOOP) 

>} 

domain INSTR : { 
instruction < 

virtual_register: INT, 

real_register : INT, 
operation : INT, 
operands : INSTR 

>} 

// procedure list 

// the instruction list 
// list of loops, not further specified 

// virtual register numbers 
// real register numbers 
// enum of operation 
// operands 

Fig. 3. Physical layout of data structures 

view of the register allocator of our example is also depicted in figure 5. Fields 
enclosed in the dotted region are visible and read-only while fields in the dashed 
region are also writable. Other fields are not visible. 

domain RegisterAlloc: { 
procedure < 

instructions: LIST [WRITE] (RegisterInstruction) [READONLY] 
>} 

domain RegisterInstruction: { 

instruction < 

virtual_register: INT [READONLY], 
real_register : INT [WRITE], 

operation : INT [READONLY], 
operands : Registerlnstruction [READONLY] 

>} 

Fig. 4. Domains of register allocator 

The fSDL-compiler (fSDC) only produces those access functions in the 
DMCP whose fields and effects have been specified in an engine's logical view. 
This guarantees that engines can neither modify nor read other parts of the 
CDP. In our example the fSDC produces read and write functions for the fields 
which implement the list internally and for r e a l _ r e g i s t e r .  For the field loops 
no function is generated, for the others only read functions are generated. It is 
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Fig. 5. Domains serve to specify the logical view of an engine 

clear that  an engine using these domains may not write v i r t u a l _ r e g i s t e r ,  nor 
replace the list by an other, list. 

In order to facilitate the definitions of new domains from existing one, fSDL 
provides a powerful calculus over domains that  provides inheritance and restric- 
tive operations such that  each engine parameter  has a related domain which 
describes exactly the effect of that  engine. In essence the following access meth- 
ods for DMCP functions can be generated. 

- Depending on whether the engine reads or writes a field, or allocates or 
destroys a node, read, write, allocation and free functions are generated. 

- If the access to a field does not suffer from a data  dependency which may be 
introduced by the interaction schemes, straight forward access is provided 
(direct access). 

- If there is a data  dependency, an access using a serializing protocol is used 
(serializing access). 

- The user may weaken the kind of dependency such that  only a locking pro- 
tocol is used (locking access). 

- If the engine is embedded into a speculative or optimistic interaction scheme, 
the field is replicated (shadowed) and access to the engine's shadow is yielded 
(shadowed access). 

These functions have the same interface but map the engine's logical view 
to a physical data  access which is dependent on the engine embedding (view 
mapping). 

All these accesses can either be access functions which are linked-in (linked 
DMCP) or they can be inlined (inlined DMCP),  so that  more efficient access 
is provided. The former approach is more flexible because engines need not be 
recompiled when they are embedded into other compilers; they just can be linked 
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with different DMCPs. The latter, an inlined DMCP, provides more efficient 
access so that  more efficient compilers can be built. 

2.4 C o n f i g u r a t i o n  

Another specification influences the generation of engine stubs (the synchro- 
nization code that  is generated from interaction schemes) and DMCP access 
functions. This is the description in CCL, the CoSY configuration language. 
Despite that logically all engines work in parallel it is possible to reduce the 
number of parallel units by clustering engines. This has the effect that  process 
invocations to engines collapse to normal procedure calls and synchronization 
can be optimized or even omitted. 

Clustering even serves to achieve a totally sequential compiler if all engines 
are clustered, or a compiler that  consists only of few processes, if a few engines 
are left non-clustered. Reasonably fast compilers on sequential machines can be 
configured. 

3 I n t e r a c t i o n  s c h e m e s  

In this section we will present some examples and show how transparent engine 
embedding can be used for optimization We will assume that  the CDP contains 
structures as specified in figures 3 and 4. The engine parameters of the interac- 
tion schemes that are used to access the physical view of the engine are typed 
with domain names and with one annotations out of the set IN, INOUT, OUT. 
The semantics is as follows; an IN handle can not be changed by the engine, an 
INOUT may, and an OUT handle has to be changed. IN and INOUT handles 
are initialized, OUT handles not. 

3.1 E m b e d d i n g  i n t o  p a r a l l e l  c o n t e x t  

Suppose we have an intraprocedural register allocator which uses Chaitin's 
method [Cha82]. How do we organize the process for a list of procedures in 
a module? There are several possibilities, the easiest one is to run the job in 
parallel on the procedural level, because there are no dependencies between the 
register allocations for the procedures. In EDL this would be specified as fol- 
lows. Note that  the parameter of the engine is typed with a domain expression 
in fSDL which we explained above. If a domains contains exactly one operator 
or every operator has the same field, we may use the dot notation for referencing 
the fields of that  operator. 

ENGINE CLASS allocate_all(IN m: MODULE) { 

p{} <= m. OPERATOR procedure // decomposition into ~ork units for 
DATAPARALLEL // data parallel execution 

registeralloc(p) } 
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This specification declares that  so for each procedure an engine r e g i s t e r a l l o c  
is started in parallel. Of course some mechanism has to be provided that  each 
engine gets its work unit. This is done by a decomposer function which walks the 
list of procedures and hands over each element (each work unit) to an instance 
of the r e g i s t e r a l l o c  engine. This decomposer can be generated automatically 
from this specification because the mapping of a list to this set is straightforward 
or in more complex cases, it can be hand-written. The {} notation denotes the 
set of work units. 

If we don't  use clustering this may lead to an enormous amount of schedul- 
ing of parallel engines. Instead the register allocator may be embedded into a 
pipeline, and then only one engine is created which receives the work units one 
after the other: 

ENGINE CLASS allocate_all(IN m: MODULE) { 
p<> <= m.0PERATOR procedure // decomposition into work units 

PIPELINE // for pipelining 
registeralloc (p) } 

Note that  this does not require the change of a single source code line in the 
engine. All that  is necessary, the generation of work units, the decomposition of 
the procedure list, the generation of engines and the waiting for completion is 
generated automatically in the engine stubs, envelopes and access methods. 

Of course clustering can be used to coalesce all work into one process if 
we specify additionally in CCL " CLUSTER a l l o c a t e _ a l l  ". This means that  
r e g i s t e r a l l o c  is generated as a sequential subroutine of a l l o c a t e _ a l l ,  and 
that  the decomposition is just a simple loop over the list of all procedures. 

3.2 E m b e d d i n g  in to  s p e c u l a t i v e  c o n t e x t  

In the following we show an example how engines can be embedded into a spec- 
ulative context. We use as an example competitive register allocation. Suppose 
the compiler writer has three register allocators working with the three methods 
[Cha82] [CH84] [HGAM92]. We reuse the view specification from figure 4 for 
each of these register allocators and also for the speculative composite engine. 

ENGINE CLASS registeralloc (IN p:RegisterAlloc) { 
SPECULATIVE 

chaitin(p) 
chow_henessy (p) 
hendren (p) 

SELECT registeralloc_selector(p) } 

At runtime the speculative interaction scheme behaves as follows: First the 
values of the original fields which are to be modified as well as all objects that  
are reachable from them are copied into shadows (special memory, not accessible 
from every engine). This means {n our case that  the field r e a l _ r e g i s t e r  is 
copied into its shadows as well as that  the whole instruction list is replicated 
twice. The replication for any engine-parameter pair can be done in parallel. 
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Each register allocator works in parallel on its private copy because its gen- 
erated access functions provide shadow access. When all engines are finished the 
selector determines the best version and copies it back to the original fields, i.e. 
an unique instruction list is determined again. Then the interaction scheme ends 
and all other engines can run as if no speculative interaction had taken place. 

Of course the selector engine r e g i s t e r a l l o c _ s e l e c t o r  needs special access 
functions which give access to all data shadows. If the selection process can be 
expressed by a mapping of the shadowed structure to the natural numbers and 
a cost function then the selection can be generated automatically. 

Note that r e g i s t e r a l l o c  can be substituted in any context by each of the 
three register allocators without source code change. It is no problem to embed 
this speculative interaction in the pipelined or data parallel interaction schemes 
above; the engine hierarchy allows us to do this orthogonally. 

3.3 E m b e d d i n g  into a l terable  engine order ings  

In this section we leave the field of register allocation and turn to complex op- 
timization orderings. We show how a simple linear optimization engine can be 
reconfigured into a complex one with a sophisticated ordering. This is exempli- 
fied by the proposal [WS90] which takes several dependencies between the used 
optimizations into account. First we show how a simple optimizer may be speci- 
fied in EDL just by concatenating some simple engines. For simplicity we ignore 
the side effect description here. 

ENGINE CLASS optimizer (IN p:PROC) { 
SEQUENCE 

constant propagation(p.instructions) 
dead_code_elimination(p.instructions) 
invariant_codemotion(p) 
loop_interchange(p) 
loop_unrolling(p.loops) 
loop_fusion(p.loops) 
strip_mining(p.loops) } 

In this simple optimizer we perform one optimization after the other. We do 
not care about a good ordering, i.e, about repetition of engines that are mutually 
recursively dependent. Such a simple optimizer may be advantageous when we 
have a sequential machine or when we need quick compilation. 

However it is possible to embed the engines in a much more sophisticated 
way. This followingscheme is coded after the engine dependency graph of figure 
6 [WS90]. 

ENGINE CLASS optimizer (IN p:PROC) { 
SEQUENCE 

constant propagation(p.instructions) 
complex_opt(p) 
strip_mining(p.loops) } 
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Fig. 6. Dependency graph of optimizations after Whitfield 

At the beginning of the optimizer a constant propagator and in the end a 
strip miner runs. The complex optimizations in the middle are modeled in a 
sequence interaction scheme: 

ENGINE CLASS complex_opt (IN p:PROC) { 
SEQUENCE 

dead_code_eliminat ion_loop (p. instructions) 
big_loop(p) 
loop_fusion(p, loops) 
loop_unrolling(p, loops) } 

We only show the complex loop of code motion and loop interchange. This 
engine is a loop which runs until no further changes occur. Its components are 
loops over invariant_code_motion and loop_interchange,  respectively. 

ENGINE CLASS big_loop(IN p:PROC) { 
LOOP 
EXIT change_detect or (p) 

invariant_code_mot ion_loop (p. instructions) 
loop_int erchange_loop (p. loops) } 

We now embed the engines from the simple optimizer in the complex ordering 
without source code change. We have to detect transparently whether an engine 
changes something. Within CoSY the exit engine of a loop can be used for this. 
Initially the change_detector  engine makes a copy of the data; when it is called 
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after a loop incarnation, it compares the copy with the new data and, if nothing 
has changed, terminates the loop. 

All used data of the engines is known from the specification of their logical 
views, so the copying and comparison in the exit engine can be generated au- 
tomatically from the domain specifications (state tracking). Thus even the exit 
engine need not be programmed by the user. 

3.4 Embedding into generate-and-test context 

In this section we show an embedding of the engines s 
and loop_interchange from the previous example in a generate-and-test (opti- 
mistic) context. This means that we let a selector decide between an arbitrary 
number of versions. 

Actually in optimistic interaction two selection strategies are combined. First 
it is decided whether a version is worthwhile by investigating the version alone. 
Then all versions which have survived are compared and the best one is selected. 
The semantics of the optimistic interaction scheme can be described by the 
following pseudo code. 

do { PRODUCE() ; 
if (PRESELECT()) TRY(); 

} while (PRODUCEMORE()) ; 
FINALSELECT () ; 

This means that a producer engine (PRODUCE) produces new versions of 
certain optimizations, one after the other, each on separate copies. A second 
engine (PRESELECT) decides whether the version is worthwhile (pre-seleetion). 
TRY is given the version as a shadow and forked off so that it may experiment 
with the version. In the meanwhile, it is checked by PRODUCEMORE whether 
PRODUCE should be given another try to produce a version. If so, a next version 
will be generated and the whole process is repeated. Note that PRESELECT 
and PRODUCEMORE can run in parallel because they only look at versions 
and do not modify them. Otherwise, the production stops. The results of the 
experiment on each version are collected by FINALSELECT which performs 
the final global selection. This scheme seems to be rather complicated; however, 
some of these engines may do nothing, in fact. For example, if no pre-selection 
method is known, there need not be a PRESELECT engine. 

ENGINE CLASS code_motion_and_loop_interchange (IN p:PROC) { 
OPTIMISTIC 

PRODUCE invariant_c ode_mot ion (p) 
PRESELECT estimate_register_lifetimes(p) 
PRODUCEMORE threshold(p) 
TRY 1 o op_ interchange (p) 
FINALSELECT static code_analysis(p) } 

Our example performs as follows. First invariant code motion is done in the 
PRODUCE engine.' As pre-selection criterion we take the amount of register 
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lifetimes which results from the code motion. Thus we may withdraw already 
in estimate_register_lifetimes some useless versions. Then the TRY engine 
loop_interchange needs to work only on "better" versions. To decide whether 
the production should be stopped, engine t h re sho ld  could just contain a counter 
which is increased and compared to a threshold number. In the end, engine 
s t a t i c _ c o d e a n a l y s i s  evaluates the information of a frequency analysis and 
estimates the cost of the resulting code versions. 

Again the embedding of the engines does not require to change them. Because 
the side effects are known precisely a lot of work can be done in parallel. 

4 R e l a t e d  w o r k  

The attempts to parallelize compilers can be divided into two main directions. 
One tries to parallelize algorithms like scanning or parsing and is language inde- 
pendent. The other others parallelize existing compilers and are therefore source- 
and target language dependent. In contrast, CoSY will give a very general mech- 
anism (programming languages) for compiler construction. 

There have not been many attempts to design languages neither for module 
re-embedding nor for side effect descriptions. FX []G90] and JADE [LR91] con- 
tain basic principles for side effect description but fSDL goes further because it 
allows the convenient combination of these descriptions via its domain calculus. 
JADE also provides a mechanism to synchronize tasks over a shared memory, 
however its side effect descriptions are mixed with source code so that the re- 
embedding of a part of the system may not be as easy as with COSY. CoSY also 
allows much more kinds of embedding than JADE, and allows flexible configu- 
ration and non-deterministic execution. 

In early works of [Tic79] and [DK76], they define the concepts of a Module 
Interconnection Language. This specification language consists of simple input- 
output specification but is dependent on the implementation language of the 
modules, because it includes its type concept. 

In many aspects CoSY has inherited from IDL [NNGS89]. However, IDL has 
a somewhat different compilation model: processes communicate via channels 
and not via a shared common data pool. Therefore IDL requires processes to 
communicate via external instances like files. Also processes execute sequentially. 
CoSY allows for much faster communication among engines and still allows 
correct, also parallel evaluation, because of its powerful data and side effect 
description mechanism. Furthermore, CoSY allows speculative and optimistic 
interaction. Therefore the CoSY model will be a major step forward in the reuse 
of compiler engines and flexible compiler construction. 

5 C o n c l u s i o n  

We have shown how the CoSY compiler model can be used to embed compiler 
engines flexibly into a lot of different compilation and optimization contexts. 



293 

CoSY enables the compiler writer to reuse engines, write scalable, parallel, 
and portable compilers, and tune the performance of his system by exchang- 
ing interaction schemes or manipulating the configuration of the system. This 
all is possible because CoSY provides novel description mechanisms for data 
structures, side effect descriptions, as well as engine interactions. 

For the first t ime speculative, optimistic, parallel evaluation as well as al- 
terable engines orderings are provided in an orthogonal and unified way for 
compiler construction. CoSY enables cosy engine embedding: this will facilitate 
construction of parallel and (inter-procedural) optimizing compilers. 

References  

[Bra91] 

[CHS4] 

[Cha82] 

[DK76] 

[OK,2] 

[HGAM92] 

[JG90] 

[LR91] 

[LR92] 

[NNGS89] 

[Tic79] 

[WS90] 

D. G. Bradlee. Retargetable Instruction Scheduling for Pipelined Proces- 
sors. PhD thesis, University of Washington, 1991. 
F.C. Chow and 3.L. Hennessy. Register allocation by priority based color- 
ing. In Proceedings of the ACM SIGPLAN Syrup. on Compiler Construc- 
tion, June 1984. 
G.J. Chaitin. Register allocation and spilling via graph coloring. In SIG- 
PLAN Conference on Programming Language Design and Implementation, 
June 1982. 
Frank DeRemer and Hans Kron. Programming-in-the-large versus 
Programming-in-the-small. 1EEE, Nov 1976. 
T. Granlund and R. Kenner. Eliminating branches using a superoptimizer 
and the GNU C compiler. In ACM SIGPLAN Conference on Programming 
Language Design and Implementation, pages 341-352. ACM, June 1992. 
L. J. Hendren, G. R. Gao, E. R. Altman, and C. Mukerji. A register allo- 

cation framework based on hierrchical cychc interval graphs. In U. Kastens 
and P. Pfahler, editors, CC 9s 4th International Conference on Compiler 
Construction, LNCS 641 , pages 176-191, 1992. 
Pierre 3ouvelot and David K. Gifford. Algebraic reconstruction of types 
and effects. In ACM Conference on Principles of Programming Languages 
(POPL), 199o. 
M. S. Lam and M. C. Rinard. Coarse-grain parallel programming in Jade. 
In ACM Conference on Principles and Practice o/ Parallel Processing 
(PPOPP}, pages 94-105. Computer Systems Laboratory, Stanford Univer- 
sity, 1991. 
Y-f. Lee and B. Ryder. A comprehensive approach to parallel data flow 
analysis. In H. Zima, editor, Workshop on compilers for parallel computers. 
Austrian Center for Parallel Computation, 1992. 
J.R. Nestor, 3.M. Newcomer, P. Giannini, and D.L. Stone. IDL:The Lan- 
guage and its Implementation. Prentice Hall, Englewood Cliffs, 1989. 
Walter F. Tichy. Software Development Control Based on Module Inter- 
connection. In Proc. of the 4th International Conference on Software En- 
gineering, Sep 1979. 
D. Whitfield and M. L. Sofia. An approach to ordering optimizing trans- 
formations. In ACM Conference on Principles and Practice o/Parallel 
Programming (PPOPP}, 1990. 


