
A Sui te of A n a l y s i s Tools B a s e d on a G e n e r a l
P u r p o s e A b s t r a c t In te r p r e te r

Thomas Cheatham, Haiming Gao, Dan Stefanescu

1 Harvard University ~*
2 Software Options, Inc.
Cambridge, Mass. 02138

1 Introduction

This paper reports on one aspect of an ongoing project that is developing and
experimenting with new compiling technology. The overall system is called the
Kernel Based Compiler System, reflecting the fact that the representation of a
program used in much of the processing is that of kernel terms, essentially the
Lambda Calculus augmented with constants.

While the compiling technology is applicable to a wide spectrum of program-
ming languages as well as a wide spectrum of target machine architectures, we
expect High Performance FORTRAN (HPF) and its extensions to be program-
ming languages of particular concern because of their anticipated importance to
the High Performance Computing Community.

The compiler being developed is "unbundled" in the sense that it consists
of several components, C 1 , ' . . , CN, and compilation consists of applying com-
ponent C1 to program text and applying Cj, for j = 2 , . . . ,N to the result
computed by component Cj-1.

One of the issues that we are using the compiler system to study is the
suitability of various new linguistic constructs for particular application areas
and techniques for the efficient realization of these constructs on a variety of
High Performance Computers. Thus, we want it to be as straightforward as
possible to extend each Cj, to deal with the new constructs. Ideally, we want
each component to have a firm mathematical basis so that, for example, we can
prove appropriate correctness results.

No compiler for a non-trivial language or target is ever really simple in one
sense because it is inevitably a large program. However, we have strived to make
each component, Cj, simple in the sense that it offers general purpose mecha-
nisms that can be specialized to a particular tasks, so that we can separate the
concerns regarding the mechanisms and those regarding the particular special-
izations in order to achieve simplicity.

This paper is concerned with a suite of Analysis components of the system
that annotate a program with static estimates of certain aspects of the behavior

*** Work suppor'ted by ARPA Contract Nr. F19628-92-C-0113. Authors current address:
Aiken Computation Laboratory, Harvard University, 33 Oxford St, Cambrige, MA
02138. E-ma~l: cheatham, gao, dan@das.harvard.edu

189

of that program. The point of this annotation is to prepare for annotation-
enabled transformations that produce a more efficient program. Our approach
is to develop a general purpose Abstract Interpreter that does the control flow
analysis that is required by all analysis tasks and constructs a data structure
called the behavior graph that relates the behaviors of various terms - herein
called the flows of those terms - - in such a way that doing a wide variety of
analysis tasks is quite straightforwardand inexpensive.

In the next section we discuss some related work. We then define the kernel
terms that are used and present an overview of the abstract interpreter that
is followed by several examples of particular analysis tasks. Following this, we
discuss the details of the abstract interpreter and close with a discussion of the
current status of the project, and some future plans.

2 R e l a t e d Work

Our method falls into the category of data-flow analyses based on abstract in-
terpretations (see [4]). A seminal work by Cousot in this area is [3] which sets a
rigorous framework for such analyses for the case of flowchart languages. It is not
straightforward to extend Cousot's work to languages that permit higher order
functions where there is no explicit "flowchart" available, that is, to situations
where one aspect of the abstract interpretation is to determine the control flow.
Any solution to this problem has to deal with the issue of abstracting functions.
Basically, there are two approaches in this area.

A function can be abstracted denotationally, i.e. its concrete graph has to
be transformed into an abstract graph. In general, this approach may encounter
problems due to the size of the abstract graph even if one considers only the
program imposed inputs as in [4].

The other option is to use a syntactic based' approximation which computes
only an approximation of the abstract graph of a function, but it does it using
some fixed resources. Typically, (see [11], [9], [6] and [5]) one uses resources
proportional with the number of different entities in the program.

A more elaborate solution to this problem was given by Shivers (see [7] and
[8]) who introduced a technique for computing approximations to the control-
flow graph at compile time. His method defines abstract semantic functions for
CPS (continuation passing style) Scheme which are then used to implement an
instrumented interpreter which returns the result of the required analysis. Two
analyses (0CFA and 1CFA) are used to illustrate the approach.

The function abstraction methodology is clarified and generalized in [10]
which presents a theory for general flow analysis which approximates values
(both basic and functional) computed within a functional program according
to a syntactic notion of equivalence. The analysis is presented in an equational
setting in the style of Cousots' original paper (see [3]).

While in the spirit of [10], the method presented in this paper uses a different,
but equivalent, system of constraints chosen to expose optimization opportunities

190

which avoid the unnecessary fixpoint iterations inherent in Shivers approach and
therefore its large running costs ([12]).

Finally, our work is similar to that reported in [13]. We differ by dealing with
higher order functions and employing a call context mechanism that permits a
finer grained analysis of behavioral differences that arise at different call sites.

3 K e r n e l T e r m s

The kernel terms that we consider are, essentially, terms in the Lambda Calculus
that is augmented with constants (both data and function constants).

We assume there are disjoint sets C, A/', and jr, where C is a set of data
constants (like integers and reals), A/" is a set of parameter names, and j r is a set of
function constants, or p r i m i t i v e f u n c t i o n s , like those for arithmetic operations on
integers and reals or those for communicating data between different processors.

A kernel term, t, is:

- t ,,~ c - - a constant, c E C, or
- t ,-~ p - - a primitive, p E jr , or

- t ,,~ x - - a parameter, x EAf, or
- t ,,, A x l . . . x k . B - - an abstraction, where k _> 0, the xj are distinct param-

eter names, x j EAf, for j = 1 , . . . , k, and B is a term, or
- t ,,~ i (t l . . . t v) - - an application, where i is a label identifying that appli-

cation, p _> 1, and the t j are terms, for j = 1 , . . . , p .

We assume that the parameters of each abstraction are distinct, that the
parameters of distinct abstractions are distinct, and that the labels of distinct
applications are distinct. We also assume that the set j r contains the primitive
c o n d that takes three arguments - - a predicate and two values - - and returns
the first value if the predicate is true and the second if it is false.

While the use of kernel terms as an "intermediate language" is not unusual
in compilers for languages like ML and other functional languages, it may seem
somewhat surprising when considering as a major application a language such
as FORTRAN. The reason for choosing kernel terms is fourfold. First they pro-
vide the functionality necessary for any non-trivial programming language such
as binding names and applying functions. The second reason is that they are
sufficient in the sense that given an appropriate set of primitives, any program-
ming language construct can be modeled as kernel terms. Thirdly, they are very
simple - - there are only five basic constructs - - and this simplicity induces a
corresponding simplicity in many of the compiler components and makes the
task of proving various properties of these components tractable. Finally, the
ability to deal with higher order functions makes the compiler applicable to
all programming languages and permits higher order extensions to HPF to be
considered.

W i t h e a c h kernel term, t, we associate ~ , the f l o w of t, an estimate of some
aspect of the behavior of t. If t is an application, t ~ i (t l " " t v) , we use r

191

as shorthand for ~(~1-.-tp) and that is the reason for introducing labels for
applications. The purpose of the abstract interpreter is to determine, for each
term t, its flow, ~t-

4 A n O v e r v i e w o f t h e A b s t r a c t I n t e r p r e t e r

An abstract interpreter seeks to determine certain aspects of the behavior of
the terms of a program. One aspect of the behavior that is always of interest is
the control flow of the program, that is, the set of functions that can be called
from the operator position of each application. We follow [8] and define n C F A
analysis to produce estimates of the inputs to and results of each function that
depend on the call site and up to m a x (n - 1, 0) previous call sites. In particular
0CFA is the analysis determining a single estimate of the inputs to and results
of each function independent of its call sites.

In this paper we actually use a slight variant of 0CFA that might be de-
noted 0 + I C F A which combines 0CFA estimates for h-expressions with 1CFA
estimates for primitive functions.

Some of the analysis tasks, other than control flow analysis, that might be
of interest are the following:

- What is the type of the value associated with each term, so that when the
type can be determined statically we can eliminate certain run-time checks
and/or dispatches.

- Which parameters are useless, in the sense that no result depends upon
them, so that they can be removed from the program.

- What are the sets of basic induction parameters, that is, the sets Trj =
{Xj l , . . . , x j~ j} , for j -- 1 , . . . , k , such that xji is bound only to a constant
or to xjq plus or minus a constant for one or more q, 1 __ q _< nj, that
may permit certain strength reduction transformations, like replacing array
subscript computations with pointer incrementing operations.

- Which parameters of a function are strict and which are lazy, where a pa-
rameter that is strict is always used and one that is lazy may or may not be
used, and thus its computation might be deferred until it is determined that
it is actually used.

For each analysis task, we require an appropriate set of abstract values to
describe the behaviors of terms for that analysis task. For control flow analysis,
the appropriate set of abstract values is the set of all subsets of the primitives
and abstractions that occur in a program term. For type analysis, it is the set
of all subsets of the types of the terms in a program. We discuss several other
sets when we introduce the examples later.

Whatever set of abstract values is appropriate for some analysis task, they
form a lattice, s If we have two estimates, say ~1 and ~2, of the flow of some
term, @~, then the least upper bound, ~1 U ~2, where U is the join defined on
the lattice E, is also an estimate of ~ . We sometimes denote "~1 is an estimate
of e t" by r _> ~1, treating >_ as the partial order operator in the lattice ~.

192

One novel aspect of our treatment of the various lattices appropriate for var-
ious analyses is that we do not represent the lattice elements directly, instead
introducing a data structure that we call the behavior graph. The nodes of a
behavior graph, ~, are flows of program terms and surrogates for various ab-
stract values. The (directed) arcs of the behavior graph define the relationships
between the flows of terms and the surrogates for abstract values. Given some
particular analysis task, finding the abstract values that comprise the estimate
of the behavior of some term, t, that is, Or, with respect to that analysis task
is done by tracing all non-cyclic paths in ~ from the node for ~t, mapping from
nodes that represent surrogates to the particular abstract value appropriate for
the analysis task at hand. We presently explore several examples.

Our method of abstract interpretation of some program term, p, involves two
phases:

Phase I: Construct the behavior graph for p, where the nodes of the behavior
graph are flows of program terms and surrogates for abstract values and the arcs
of the behavior graph define the relationships between the flows of terms and the
surrogates for abstract values. Phase I is independent of the particular analysis
task(s) to be considered.

Phase II: Given the behavior graph, the behavior of some term with respect to
some particular analysis task is determined by tracing the behavior graph in
a way that depends on the analysis task and interpreting the surrogates in a
fashion that also depends on that task.

We now consider several examples (for more examples see [1]).

5 Some Examples of Abstract Interpretation For Various
Analysis Tasks

We here consider several examples of abstract interpretation for various analysis
tasks.

5.1 Type Annotat ion

Consider the program (where the term p is ignored):

P1 = l(Af.2(f 1) 3(eondp)~x.4(-[- X 1) Ay.5(* y 2)))[

Here, P1 binds f to one of two abstractions and then applies f to 1.
The first phase of abstract interpretation results in the behavior graph shown

in Figure 1.
Some comments:

- The interpretation of the node/3(~5!) is the set of flows of the bodies of those
abstractions that f can be bound to. A fl node has no arcs emanating and
is dealt with in a manner discussed below.

r

~f

r

~p

193

:* Fcona r --~ F, ~

4
~2

Fig. 1. Behavior Graph for P1

- The interpretation of the fragment r r fl(~]) is that the flow of

application 1(" ") is at least the flow of application 2(" ") and that is at least
the flow of the body of whatever abstractions f can be bound to.

- The interpretation of the fragment ~ -~ ~1 is that the flow ~ is at least
~1 and arises from the fact that x is a parameter of one of the abstractions
bound to f and is thus bound to the constant 1.

r ----~ F+ 1--~ ~Sx
- The interpretation of the fragment ~2 is that the flow of 4(' ' ')

is at least the surrogate, F + (~ , OJ, that represents the flow resulting from
applying the primitive + to x and 1. Note that this surrogate is represented
in the behavior graph using three nodes with ordered arcs (as indicated by
the numbers on the arcs) from the node for F+ to the flows of the two
arguments that + is applied to.

Given the above behavior graph, consider the particular task of determining
the types of the several terms of P1. The abstract values appropriate for this
task might be thought of as comprising the very simple lattice:

{int, bool} = 3 -

{}=•
{bool}

Here, int and bool are intended to suggest the types of integer and boolean values.
In order to do the analysis, we have to specify how to treat each of the

surrogates, O1, F+(~=, ~1), and so on for this analysis task. For each primitive,
p, we assume that there is a function F~ yP~ that, applied to the arguments of
the surrogate node Fp, returns the type of that node. Additionally, we assume
that for each constant surrogate, ~c, there is a map, V typ~ (~i) that provides the
type of that constant.

For this application, we assume'that F~ yP~ and F~. yP~ return int (independent
of their arguments) and that the map V type for ~c returns inl for c an integer.

~type [~ ~N2, ~N3) ~N2 U ~N3" We further assume that .CcondlU,,N1 , =

194

We define the iterator TracetYVe(~) that traces all non-cyclic paths from
some node, ~, and does the following:

- For each Fp node with k (ordered) argument arcs to nodes ~ l , ' " , ~ k it
returns F~YP~(~I,. .. , ~k), as discussed above.

- For ~5r it returns VtYPe(~c).
- For a Axl . . ' z k . B node it returns

~ x l X - - �9 X ~:i~xk - -~ ~i~ B

- For t3!~) it returns the flows of the bodies of all abstractions in the flow ~.

We then use Trace t~pe on the nodes of the value graph to find:

r : r : ~ (~ /) : r : r : ~ x : ~ y : int

~ / = r = int ---+ int

5.2 Bas ic I n d u c t i o n Parameter Detection

The sets of basic induction parameters are the sets 7rj = { x j l , . . . , x j , ~ r for
j = 1 , . - . , k , such that zj i , for i = 1 , . . . , n j , is bound only to a constant or to
Zjq plus or minus a constant for one or more q, 1 _< q < nj.

Consider the following example:

where f and g are bound(via some mechanism akin to LETREC) , respectively,
to the following lambdas:

An.~(cond p 3(f 4(g

and p is ignored.

n)) 5(Am.6(f 7(+ m 2)) s (+ n 3)))

x 1))

Here f is a function of n that either calls itself with the result of applying g
to n or introduces m bound to n + 3 and calls itself with m + 2. The function g
simply adds one to its argument. The behavior graph for P~ is shown in Figure 2.

The first question that must be addressed is that of the appropriate set of
abstract values to employ for this analysis task. Since we are interested only
in parameters that are bound to integers or other parameters plus or minus
integers, a natural lattice might be J- U T U 2 {(~='~~ U 2 {~~ where ~ ranges
over all parameter flows and r ranges over all the flows of integer constants
that occur in P2. Here, (~ , ~c) is interpreted to mean the parameter x plus the
constant c and q~c is interpreted to mean the constant c.

Now consider the following interpretation for F.~ iv, that is, F+ for the task
of basic induction variable detection. If F~ iv has as arguments the flow of a
parameter, say ~ , and the flow of an integer constant, say ~c, its flow is (~ , ~r

195

�9 f - ~ . . : (. . .) ~ -*~ .~(. . .)

op r �9 06 r

t
J N

~i r

, Z(~)

Fig. 2. Behavior Graph for P2

and otherwise its flow is T, and similarly for other primitives that can increment
an argument.

The interpretation of pbi~ is that it returns the union of its second and third cond
arguments, and for the remaining primitives, p, F~ iv returns T.

The interpretation of VbiV(~c) is ~5~ for integers and T for anything else.
Let Trace bi~ be an iterator that returns the result of tracing some node and
returning all the abstract values it encounters, evaluating F~ iv on its arguments

if Fp nodes are encountered and Vc bi€ if constants are encountered. Then for each
parameter flow, ~ , , we do the following:

1. Let d ~biv be {}, the empty set. - - X

2. For each T in Tracebi ' (~,) , if ~ = T then set _,d ~bi" = T and otherwise set

27 - - ~

For the above example we obtain:

Vr~

Thus, n, x, and m constitute a set of basic induction variables.

6 P h a s e I o f A b s t r a c t I n t e r p r e t a t i o n - - E s t a b l i s h i n g t h e
B e h a v i o r G r a p h

The construction of the behavior graph for some program term takes place in
two phases:

196

Phase IA: Let p be some program term and ~ the behavior graph for p, initially
the empty graph. The first phase in constructing G is carried out by the function
7 that, starting with p, recursively considers the terms in p, constructing pieces
of ~ and determining a set of constraints that are used in Phase IB to complete
the behavior graph.

Phase IB: In this phase, we "discharge" the constraints accumulated in Phase
IA to complete the behavior graph.

6.1 T h e F u n c t i o n */(t) fo r P h a s e IA o f C o n s t r u c t i n g t h e B e h a v i o r
G r a p h

7(t) for term t is as follows:

Install 4~c in G

] t = ~xi �9 �9 �9 xk.B I Call 7(xi) , �9 �9 7(xk), 7 (S) and install)~xi �9 �9 x~.S in g

Install #= in

It = i (M N i . . . N~) I Call 7 (i) , 7 (N i) , ' " , 7 (N k) , and dispatch on M as fol-

lows:

IM = ~ x l ' " x k . B : I Install in ~:

#=j - -~ #N~, for j = 1 , . . . , k and

r) #B

M = p,p E ~r: Install in ~: ~k

r

M = r or M = # / : Call

Unknown-operator(i, ~ M , (~)N1 ," " "~Nk))

The non-trivial case for 7 is that for dealing with an operator that is an appli-
cation or a parameter and this is the case that establishes the constraints alluded
to above. Consider the application term t --~ i (f tl . . . tk), where f is a param-
eter and the tj are arbitrary terms. When we know what set of abstractions f
can be bound to we can, for the j - th parameter, 4~y~ of each of these abstrac-

tions, establish the arc ~yj) ' ~ N j �9 However, as we traverse the program
term using 7, we may encounter an application of f before we have determined
the set of all the abstractions and primitives that f can be bound to and thus
we need some sort of mechanism to defer construction of parts of the behavior
graph until these sets can be determined. Such a mechanism is discussed in the
next section.

197

6.2 a Se ts , a C o n s t r a i n t s , a n d f~ Flows

As noted above, we require some sort of mechanism to defer dealing with the
flows of operators that are not explicit abstractions or primitives until such time
as we can determine which abstractions might be contained in those flows. For
this purpose, we introduce the set aj(C~M) that is a set of parameter flows that
will, ultimately, contain the flow of the j - th explicit parameter of each abstraction
that can be in the operator flow, ~M.

Additionally, we introduce the constraints cU(~M) _ ~ that specify, for each
parameter flow, ~x E olj(qSM), that the fragment ~ - - -) - ~ belongs in 6. Thus,
a constraints package fragments of 6 that have yet to be installed and will be
installed when we determine the contents of the corresponding a sets.

In addition to the a sets and a constraints on flows, we introduce the/3 flows,
where, if ~M is the flow of an operator, /3(~M) denotes the set of all the flows
of the bodies of the abstractions that can be in eM.

Now we can describe the effects of calling

Unknown-operator (i, ~)M, (qbN~, " " " ~Nk))

a call which is made when the flow variable q5 M is in the operator position of
application i and the flows of the arguments to eM are ~Yl, " ' ', ~2Vk. The result
of such a call is to establish a constraints for ~b M and to establish the flow r as
at least the/3 flow of ~M, that is, we establish the constraint ~j(~)M) ~ ~g j for

j = 1 , . . . , k and add the arc r) /3(qSM) to 6.

7 P h a s e I B - C o m p l e t i n g t h e B e h a v i o r G r a p h

When an explicit abstraction appears in the operator position of an application,
the inequalities on the flows of its parameters are established directly by 7.
However, when a flow variable (a parameter flow or application flow) appears in
the operator position, constraints on the flows of its parameters are established
indirectly via the constraints cej (~M) ~_ ~)Nj that "package" what will eventually
lead to arcs in the behavior graph, effectively deferring installing them until the
members of the O~j(~M) sets are known. These members are discovered whenever
there is some flow variable, ~SM, that can be the flow of an operator and there
is a abstraction,)~xl." .xk .B in the estimate of ~M, which implies that the j-
th explicit parameter of that abstraction, O~j, is in aj(~M), for j = 1 , . . . , k.
The constraints on some parameter flow, ~y, are revealed when we realize that
Oy is a member of some o~j set, ~)y E Olj(q~M), and thus for each constraint

O~j(~M) ~'__ q~gj, we "unpackage" that ~- constraint by adding ~y "'>'~)Nj to 6.
An algorithm for revealing constraints and completing the behavior graph 6

is:

1. For each flow ~M that has a constraints and each ~ in TraceCfa(OM), if
= AYl "" .y~.B then add ~yj to the set oLj(~M) , for j = 1 , - - - ,k .

198

2. For each j,q~M,~Sy, and p such that ~y E o~j(~M) and Olj(~)M) ~-_ p, install

~u --~ P in ~ to unpackage a constraint.
3. If step 2 resulted in an increase in the estimate of any parameter flow, return

to step 1 and otherwise terminate.

The iterator Tracer has the job of delivering all the abstractions in
the (current) estimate of (~M and is discussed in the following section.

7.1 T h e T r a c e c]a I t e r a t o r

The iterator, TraceC]a(~)M), has the task of delivering all the abstractions in
the current estimate of some flow, ~M, tha t is the flow of an operator of some
application that has (~ constraints. There are a couple of issues that must be
dealt with. First, the behavior graph can have cycles that arise when ~= >_ ~y
and ~y > ~= for two parameter flows, ~ and ~y, or when there are mutually
recursive functions. The second issue is that of efficiency - - we would like the
cost of constructing the graph to be peoportional to the number of edges it
contains. The "environment" global parameter, v, is used to deal with breaking
cycles in the behavior graph and is initially the empty environment, c. In general,
u is a stack of frames wher~ a frame is a set of flows that are being traced and
it permits the detection of cycles.

The definition of TraceC/a(~M) is to initialize v = c and then for each node
p on each path from #M, to dispatch per case as follows:

I p ,,~)~xl, . . . , xk .B I Deliver(JkXl, . . . ,x~.B)

I P "~ ~x fo r a p a r a m e t e r , x I Proceed as follows:

1. If ~5= E Top(u), where Top(v) is the topmost frame in u then this pa-
rameter flow has already been traced and nothing is done.

2. Otherwise, add ~= to Top(u) and trace the parameter flow.

�9 19 ~ Fcond(~N1,4)N2, ~N3)[Proceed as follows:

1. For each p in TraceC/a(~N~), Deliver(p).
2. For each p in TraceC/a(~N3), Deliver(p).
3. Continue the outer iteration.

[p = ~3(~') [Proceed as follows:

1. If/~(p~) E u, then this node has already been traced and we simply
continue the iteration.

2. Otherwise, proceed as follows:

(a) Push a new frame containing/3(p ') to u.
(b) For each ~ in TraceC/~i~o') such that ~ = Axl-. .xk.B, deliver Trace~/~(B).
(c) Pop u and continue the outer iteration.

[Otherwise I Continue the iteration.

Here, "Deliver(p)" means that ~ is one of the values delivered by the iterator.
Some comments:

199

1. If an abstraction is encountered, it is delivered.
2. If an application of the primitive cond is encountered, we recursively call

T r a c e */a on its second and third arguments and then continue the original
iteration. This is, of course, paradigmatic, and each other primitive that
might return an abstraction must also be traced in the appropriate fashion.

3. The node ~ = fl(~l) has no arcs emanating from it and denotes the set of
bodies of all the abstractions that are in the estimate of ~1.

4. If the node encountered is anything else (like a surrogate for a constant
other than an abstraction, an application, and so on), we deliver nothing
and continue following the path we are on.

Ef f i c i ency C o n s i d e r a t i o n s The issue of the efficiency of Trace cSa is to avoid
tracing parts of the behavior graph that have already been traced. To deal with
this we introduce, for each flow that has c~ constraints, a set of flows containing
each flow that has already been traced. We then consult this set and stop tracing
whenever we encounter a node already traced. As a result, the construction of
the behavior graph involves traversing its edges only once. Once the behavior
graph is constructed, computing the flows takes at most the t ime taken by the
local transitive closure algorithm.

7.2 C o r r e c t n e s s

The minimal solution to the system of immediate, c~ and/3 constraints described
in section 6.2 corresponds to the least fixed of the following system of equations4:

- For each constant term t = k, include the equation

=

where k is the abstraction of constant k E C.
- For each lambda expression t = ~z.B include the equation

= { t} ;

- For each function parameter x of f = ~ x . B include the equation

r = U{Cb I f e Ca};

where ~(a b) is some application.
- For each application ~(a b) include the equation:

= I Ay .qB �9 r

4 For simplicity, we consider only one argument lambda expressions

200

The first two equation sets implement the immediate constraints. The last two
equation sets have to do with the flow across function boundary. The third
equation set corresponds to the c~ and shows that the flow of a parameter x is
the collection of the arguments at all call sites of its function f . Finally, the
last equation corresponds to the beta constraints and computes the flow of an
application as the collection of all results returned by all functions applied there.
The soundness of this system with respect to an operational semantics is proven
in [10].

8 S t a t u s

We have developed a prototype implementation of the Abstract Interpreter de-
scribed in this paper in Common Lisp and are in the process of experimenting
with this prototype by applying it to various analyses, including approximative
type recovery, strength reduction, basic induction parameters, and strictness
analysis. Preliminary results are encouraging in that they show the efficiency of
our approach to be much superior to that reported in [12]. With most practical
programs the cost of constructing the behavior graph is linear in the number of
terms in a program, becoming slightly non-linear only when some abstraction
can be returned from many applications.

The abstract interpreter actually implemented deals with a number of com-
plications that were omitted from this paper in the interests of readability and
employs algorithms that are very incremental, doing, we believe, the minimum
work required. The full details are presented in [1]. One difference is that the
actual implementation deals with multiple values in the sense that it assumes
that there is a primitive called block that returns whatever values are fed to it
as arguments. Thus, (block 1 2) returns the two values 1 and 2 and the inter-
pretation of (f (g x) y) is that f is fed whatever values g returns plus that
bound to y, and so on. The complication that this introduces is that when the 7
function is traversing program terms and encounters the application i(tl " - tp)
it must determine the operator and the operands of the application. That is, it
is possible that tl and t2 produce no values and that the operator is the first
value produced by t3. To deal with this case the lattice used for control flow
analysis is augmented with the two abstract values value and void indicating,
respectively, a single value and no value. If, when 7 is traversing the program
terms, it cannot determine the operator and/or the operands of an application,
that application is deferred until Phase IA when sufficient information has been
developed that the operator and operands can be determined.

Another feature of the implementation is that it deals with "exit fuctions".
We introduce another parameter name space, .~" and generalize abstractions to
have the form ~] x l . . . xk.B where the interpretation of] E .)~ is, in the body B
when that abstraction is being applied, an exit function that will, when called,
exit that application of the abstraction with whatever values are fed to] as
results. Thus exit functions are similar to catch and throw in most LISPs. The
complication introduced are minor and discussed in detail in [1].

201

Our implementation has also been extended to produce finer estimates in
order to cater to what we believe is an important type of optimization, partic-
ularly when dealing with a variety of high performance computers as targets.
Suppose that there is a library of functions for dealing with, for example, lin-
ear algebra computations. Then one sort of optimization we might want is to
specialize the library functions when certain arguments are known at compile
time by doing partial evaluation in order save run time costs. We believe that
this application requires call site specific analysis. Using the theory described
in [10] we have extended the abstract interpreter described here to handle flows
of the form ~ ' , where t is a term and ~ E S is an abstract call conc~ext with
the result that tracing in the behavior graph will become sensitive to the call
context component of nodes.

9 C o n c l u s i o n s a n d F u t u r e W o r k

This paper presented an approach for constructing a suite of optimizers based on
a general purpose abstract interpreter coupled with an optimization task specific
analyzer followed by transformations enabled by annotations.

We believe that the work reported here has great potential for providing
a sound basis for and an efficient implementation of a number of optimizers,
ranging from such standards as strength reduction and common sub-expression
elimination to such novel applications as static determination of data mapping
for languages designed for massively parallel computing.

However, much remains to be done. One important concern is to prove the
soundness of the proposed approach and the correctness of the algorithms pre-
sented and to develop complexity measures of those algorithms and [10] provides
partial answers.

Another is the development of tools that support the customization of the
general framework to particular optimization problems, that is the implementa-
tion of the functions F / and operations on the lattice over which they operate.

Finally, we are concerned with implementing a large inventory of optimizers
for HPF and other parallel languages like BSP-L([2]), an intermediate parallel
language for the BSP model of computation([14]) and gathering experimental
data that will let us judge the efficacy of our approach.

R e f e r e n c e s

1. Thomas Cheatham, Haiming Gao, and Dan Stefanescu The Harvard Abstract In-
terpreter Technical Report, Harvard University, April 1993.

2. Thomas Cheatham, Jr., Amr Fahmy and Dan Stefanescu BSP-L -- A Program-
ming Language]or the Bulk Synchronou s Processing Model, Center for Research
in Computing Technology, Harvard University, December 1993

3. Patrick Cousot and Radhia Cousot Abstract interpretation: a unified lattice model
]or static analysis of programs by construction o/ approximate fixpoints~ Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
pages 238-252, 1977.

202

4. Neil Jones and Alan Mycroft Data Flow Analysis of Applicative Programs Using
Minimal Functions Graphs: Abridged Version, Conference Record of the Thirteenth
ACM Symposium on Principles of Programming Languages, pages 296-306, 1986.

5. Mike Karr and Steve Rosen Dynamic Crossreference Analysis, lecture notes, 1992.
6. Jens Palsberg and Michael I. Schwartzbach Safety Analysis versus Type Inference,

Information and Computation, to appear.
7. Olin Shivers Control Flow Analysis in Scheme ACM SIGPLAN '88 Conference

on Programming Language Design and Implementation, Atlanta GA, June 22-24,
1988.

8. Olin Shivers Control-Flow Analysis o] Higher Order Languages or Taming Lambda,
Technical Report CMU-CS-91-145, Carnegie Mellon University, May 1991.

9. Peter Sestoft Replacing Function Parameters by Global Variables, FPCA'89, pages
39-53, 1989.

10. Dan Stefanescu and Yuli Zhou An Equational Framework]or the Abstract Analysis
o] Functional Programs, Proceedings of ACM Conference on Lisp and Functional
Programming, Orlando, 1994.

11. Mitchell Wand and Paul Steckler Selective and Lightweight Closure Conversion,
ACM Symposium on Principles of Programming Languages, Portland, 1994.

12. Atty Kanamori and Daniel Weise An Empirical Study o] an Abstract Interpreta-
tion of Scheme Programs Technical Report CSL-TR-92-521, Computer Systems
Laboratory, Stanford University, April 1992.

13. Mary Hall and Ken Kennedy, Efficient Call Graph Analysis, ACM Letters on Pro-
gramming Languages and Systems, Vol. 1, No. 3, Sept. 1992, pp 227-242.

14. L. G. Valiant A Bridging Model]or Parallel Computation Communications of the
ACM, 33(8):103-111, 1990

