
Delayed Exceptions Speculative Execut ion of
Trapping Instructions

M. Anton Ertl Andreas Krall

Institut ffir Computersprachen
Technische Universits Wien

Argentinierstra~e 8, A-1040 Wien
{ ant on, andi} @mips. complang, tuwien, ac. at

Tel.: (+43-1) 58801 {4459,4462}
Fax.: (§ 505 78 38

Abst rac t . SuperscaJar processors, which execute basic blocks sequentially,
cannot use much instruction level parallelism. Speculative execution has been
proposed to execute basic blocks in parallel. A pure software approach suf-
fers from low performance, because exception-generating instructions cannot
be executed speculatively. We propose delayed exceptions, a combination of
hardware and compiler extensions that can provide high performance and
correct exception handling in compiler-based speculative execution. Delayed
exceptions exploit the fact that exceptions are rare. The compiler assumes
the typical case (no exceptions), schedules the code accordingly, and inserts
run-time checks and fix-up code that ensure correct execution when excepti-
ons do happen.

Key Words: instruction-level parallelism, superscalar, speculative execution, excep-
tion, software pipelining

1 Introduction

Computer designers and computer architects have been striving to improve uni-
processor performance since the invention of computers[JW89, CMC+91]. The next
step in this quest for higher performance is the exploitation of significant amounts
of instruction-level parallelism. To this end superscalar, superpipelined, and VLIW
processors 1 can execute several instructions in parallel. The obstacle to using these
resources is the dependences between the instructions. Scheduling (code reordering)
has been employed to reduce the impact of dependences. However, the average
instruction-level parallelism available within basic blocks is less than two simul-
taneous instruction executions [JW89].

To circumvent this barrier several methods have been developed to execute basic
blocks in parallel. They are based on speculative execution, i.e. the processor execu-
tes instructions from possible, but not certain future execution paths. This can be
implemented in hardware through backup register files, history buffers or reservation

1 For simplicity, we will use the term "superscalar" in the rest of the paper, but de-
layed exceptions can be used with any of the techniques for exploiting instruction-level
parallelism.

159

stations [Tom67, HP87, SP88, Soh90]. A less expensive approach relies on compiler
techniques for global instruction scheduling like trace scheduling, software pipelining
and percolation scheduling [RG81, Fis81, El185, Nic85].

Exceptions pose serious problems to compiler-only approaches: The compiler
must not move exception-generating instructions up across conditional branches
(unless the instruction appears in all directions that the branch can take). E.g.,
a load that is moved up across its guardian NULL pointer test will trap wrongly. In
addition, exception-generating instructions must not be reordered with respect to
other exception-generating instructions, because the order of the exceptions would
be changed. All these control dependences restrict the instruction-level parallelism to
a low level: It is hardly higher than the level possible without speculative execution.

In this paper we propose delayed ezceptions, a technique that combines low hard-
ware cost, high performance and correct exception handling by putting most of the
responsibility for exception handling on the compiler. Delayed exceptions can be
implemented as a binary compatible extension of current architectures.

2 T h e B a s i c I d e a

Delayed exceptions exploit the fact that exceptions are rare. The compiler assumes
the typical case (no exceptions), schedules the code accordingly, and inserts run-time
checks and fix-up code that ensure correct execution when exceptions do happen.

To implement this idea, every register is augmented with an exception bit; two
versions of exception-generating instructions are needed: The trapping version is
used in non-speculative execution and behaves traditionally. The trap-noting ver-
sion is used for speculative execution; it does not trap, but notes in the trap bit
of the result register whether the instruction would have trapped. This trap-noting
instruction can be moved around as freely as other non-trapping instructions. In-
structions dependent on that instruction can then also be moved up by speculating
on the outcome to the exception-checking branch.

Finally a branch instruction checks trap-notes and branches to the fix-up code if
necessary. The fix-up code triggers the trap and recalculates registers that received
wrong values. The fix-up code is subject to the same control dependences that the
exception-generating instruction was originally.

3 A M o t i v a t i n g E x a m p l e

We will introduce the concept of delayed exceptions by a small example. Figure 1
shows the C function s t r l e n which computes the length of a zero-terminated string.
Figure 2 shows the assembly language output of a compiler for the MIPS R3000. We
have changed the register names to make the program more readable.

The problem in software pipelining this loop is the lb (load byte) instruction,
which can trap on illegal memory access. Assuming a two-cycle load latency and
a one-cycle branch latency, each iteration needs three cycles even on a superscalar
processor, unless delayed exceptions are used to enable speculative execution of the
lb.

160

i n t s t r l e n (c h a r ~s) {
c h a r *t = s;

while (*s != ' \ 0 ')
s++;

return s-t;
)

Fig. I. The C function strlen

I

strlen:

2

3

loop:

#4

end:
5

i n t s t r l e n (c h a r *s) {

char *t = s;
move t , s # t=s

while (*s != '\0')

lb tO,O(s) # t0=*s
beqz tO,end # while (tO != ' \ 0 ')

s++;
addu s,s,l # s++
ib t0,0(s) # t0=*s
bnez t0,1oop # while (tO != '\0')

return s-t;
subu v0,s,t # return_value = s-t

j ra # return

Fig. 2. MIPS R3000 assembly language source of function s t r l e n

move t , s
lbxo tO,O(s) adduo s , s , 1
lbxl t lpO(s) addul s , s , 1

loopO: lbxn t 2 , 0 (s) addun s , s , 1 bxn-2 tO,xceptO beqzn-2 tO,retO
loopl : lbxn+l tO,O(s) addun+l s , s , l b x n _ l t l , x c e p t l b e q z n _ a t l , re tO
loop2: Ibx.+2 tl,0(s) addun+2 s,s,lbxn t2,xcept2
retO: subu s,s,3
r e t l : subu vO,s , t
xceptO:lbn_2 tO, -3(s)

subu S,S,3

x c e p t l : l b n - 1 t l , - 3 (s)

subu s , s , 3
xcept2: lb. t2,-3(s)

subu s,s,3

bnezn t2,1oop0

j ra

bnezn_2 t0,1oopl
b r e t l

bnezn-1 tl,loop2

b retl

bnezn t2,1oop0
b retl

Fig. 3. Software pipelined version of Fig. 2 with delayed exceptions

161

We software pipelined this code using delayed exceptions (see Fig. 3). We un-
rolled the loop thrice and renamed registers to eliminate write-after-read (WAR)
dependencies. The loop now executes in one cycle/iteration on a hypothetical su-
perscalar processor 2, unless an exception occurs. We assume that the processor has
enough resources to execute one line (of Fig. 3) per cycle.

A few words of explanation are necessary, lbx (load byte and note exception)
is the trap-noting version of lb; It sets the exception bit of the result register if an
exception occurs and clears it otherwise. If one of the earlier bytes was zero, the
function will return without ever seeing the bx belonging to the lbx. I.e., exceptions
caused by wrong speculations are ignored. However, if the speculation was right,
the bx will be executed; If the exception bit is set, the bx (branch on exception bit)
instruction branches to the fix-up code. In the present case, the fix-up code consists
of a lb that accesses the same address as the lbx and thereby calls the trap handler.

The indices of the instructions indicate the iteration the instructions belong to.
The addu is executed speculatively, too. We could have renamed registers to save
the old value of s for the off-loop execution paths and for the fix-up code. Instead,
our code repairs s by subtracting 3.

4 T h e C o m p i l e r T e c h n i q u e

4.1 The Percolat ion Schedul ing F ramework

Percolation scheduling is a general framework for global instruction scheduling [Nic85].
It contains a few core transformations for moving instructions. Enabling $ransforrna-
tions (e.g. register renaming) give the core transformations greater freedom to move
the code. Guidance rules decide when and where to apply the transformations.

In this framework, the exception delaying transformation described below is an
enabling transformation.

Delayed exceptions can also be fitted into other global scheduling models. E.g.,
in the context of trace scheduling [Fis81, Ell85], exception-generating instructions
would be moved around freely; the fix-up code is inserted by the book-keeping pro-
cess.

4.2 The Except ion Delaying Transformation

The basic transformation used in delayed exceptions is shown in Fig. 4. The trapping
instruction is split into a trap-noting instruction and the exception-checking branch
bx to the fix-up code.

The fix-up code must trigger the trap and set the registers to the correct values.
Before applying other transformations, the only register to be recomputed is the
result register of the instruction. These functions are performed by the trapping
version of the instruction 3.

2 We did not exploit more parallelism (e.g. by combining[NE89] the addus or by speculating
in both directions) in order to keep the example simple.

3 Of course, the transformation should not be reapplied to the trapping instruction in the
fix-up code.

162

[trapping instruction I

L
f . . . I

l
f

1
trap-noting instruction [

bx [

~m . f i x - u p c o d e

struction [

" ' ' I

Fig. 4. The exception delaying transformation

The trapping version of the instruction in the fix-up code is still subject to the
old control-dependences, i.e. it must not be moved across other trapping instructions
(this preserves the order of exceptions) or up across branches.

This transformation may appear to be a bad deal, because it increases the num-
ber of executed instructions. However, on superscalar processors the execution time
is determined mainly by dependences between instructions. Due to the dependences
there are often idle resources (instruction bandwidth, functional units); these re-
sources can be utilized for executing independent instructions without increasing
execution time. Therefore, replacing dependences with 'additional instructions is of-
ten a win.

4.3 E n a b l e d transformations

The exception delaying transformation is an enabling transformation. First of all,
it enables the compiler to move the trap-noting version of the instruction up across
branches (i.e. speculative execution of the instruction). More importantly, it also
makes speculation on the outcome of the trap-check possible. I.e., instructions that
depend on the exception-generating instruction can be moved up across the exception-
checking branch and other branches.

How is this done? When moving the instructions up into the branches of the
exception-checking conditional, both branches get a copy of the instruction. The copy
in the fix-up code stays there, bound by the dependence on the trapping instruction,
while the other copy can move further up until it reaches the trap-noting instruction.
The code motions have to take the data dependences into account, so the source
registers of the operations in the fix-up code are preserved, since they are live until
the fix-up code. Transformations like register renaming or repairing [EK92] can be
used to remove these dependences and enable further moves. The trap-notes have to
be treated like normal registers, i.e. the trap-noting instruction is a definition and
the trap-check is a use (see Section 5.3).

163

if (p != NULL) {

i = j + p->info;
p = q ;

�9 ~ .

)

Fig . 5. A common C fragment

F 1' t0,info(p) I i,t0 dead ' ""

[addui,j,tO]

, read after write
r move p,q I

. ~ write after read

Fig . 6. Assembly version of Fig. 5

I lxtO,info(p) I

I beqz p,endif I

I . . bx tO,xcept I i,tO dead

nfo(p)

l , addu i,j,tO]

1
I movep,q I

|

read after write

. ,~ write after read

.- write after write

Fig . 7. Figure 6 after the exception delaying transformation

164

] lxtO,info(p)]

I addui,j, I

] beqzp,endif]

bx tO,xcept] i,tO dead

move p,q]

] ltO,info(p)]

* read after write
12 addu i,j,tO I

f ,- write after read

. . . . ,- write after write

Fig. 8. Figure 7 after another code motion

As an example, we transform a typical C idiom (see Fig. 5). Figure 6 shows
its assembly language version and the data dependence graph. Let us assume that
there is a need to move the operations up in order to reduce the impact of later
dependences. First we apply the exception delaying transformation (see Fig. 7). Then
we try to move the other instructions (see Fig. 8). This is possible with the addu, but
the move cannot be moved above the bx, since it would destroy the source register of
the 1 (this is represented as a write-after-read dependence in the data dependence
graph).

4.4 Cont ro l l ing the Code Expansion

The example also shows a possible problem with delayed exceptions: code explosion.
The two remedies used in the context of run-time disambiguation [Nic89] should work
well for delayed exceptions, too: applying delayed exceptions only to frequently used
program parts; and using one piece of fix-up code for several trapping instructions.
Finally, the cache and paging behaviour can be improved by moving the fix-up code
out-of-line into extra pages. An upper bound for the size of the recovery code is
the original code size times the average depth of speculation, if there is one piece of
recovery code per (non-bx) branch.

165

5 A r c h i t e c t u r a l C o n s i d e r a t i o n s

5.1 W h i c h I n s t r u c t i o n s a re Affec ted

A program can trap on memory access exceptions, arithmetic exceptions (overflow
and divide by zero) and explicit trap instructions.

Memory access exceptions can be generated by loads and stores. Loads can be
easily executed speculatively using delayed exceptions. Stores alter memory, so they
can hardly be undone. Therefore exceptions are not the only obstacle to speculative
execution of stores. Fortunately there is no need to execute stores speculatively, since
dependences on the store can be eliminated by run-time disambiguation [Nic89] and
register renaming. Therefore a trap-noting store is neither necessary nor sensible.

Arithmetic exceptions can be generated by many floating-point and integer in-
structions. Trap-noting versions of these instructions are needed. Instructions that
also have a non-trapping version (e.g. add (trapping) and addu (non-trapping)) are
a special case. Instead of producing a third version, the non-trapping instruction
could be changed into a trap-noting instruction in this case. However, this can affect
register allocation, as explained in Section 5.3. The architect has to balance opeode
waste against a (probably tiny), performance loss due to possible spilling.

Trap instructions are usually used for system calls, emulation of non-implemented
hardware or bounds checks. Noting a trap early by speculation offers no advantages.
Therefore trap-noting versions of trap instructions do not make sense.

5.2 Access ing t h e E x c e p t i o n b i t s

The exception bits have to be conserved across context switches. Therefore they can
be read and written through (a) special control register(s). Before reading them they
must be up-to-date. This can be achieved by waiting until all pipelines have run dry.

This possibility of access can prove useful for other situations, too: Interrupt
handlers can use delayed exceptions, if they save and restore the exception bits. It
could even be used for saving and restoring around procedure calls, enabling better
scheduling across calls. Of course this would require user-level access to the exception
bits and a faster method than letting the processor run dry.

5.3 Noting the E x c e p t i o n

In the examples above, the exception is noted by a bit associated with the result
register of the trap-noting instruction. This provides for simple adressing, but re-
stricts register allocation: The register may not be used as the result register of a
trap-noting instruction until the note is dead, i.e. until it is checked or an execution
path is chosen that does not contain the check (i.e. an execution path that would
not have contained the trapping instruction in the first place).

As an alternative, the notes could be addressed explicitly and" allocated separa-
tely. This would make register allocation easier, but trap-noting instructions would
need extra bits in the instructions for addressing the note.

166

5.4 P r e c i s e E x c e p t i o n s

Some instructions (e.g. memory access and floating point on the MC88100) can cause
exceptions late in the pipeline, when other, later instructions have already modified
the processor state. Therefore, the processor cannot be simply restarted from the
faulting instructions. These imprecise exceptions have several disadvantages, e.g.
they make exception handlers implementation-dependent. In order to implement
precise interrupts, many expensive hardware schemes for restoring the processor
state have been proposed [SP88, HP87].

Delayed exceptions open the road to precise exceptions without any backup hard-
ware: The exception delaying transformation must be applied to every instruction
in the program that can cause imprecise exceptions. In the fix-up code, a special
instruction tx (trigger exception) is prepended to the trapping instruction, tx traps
early and therefore precisely.

There's just one problem: The trap does not occur at the instruction that origi-
nally caused the exception, but at the tx. However, the compiler makes sure that the
input registers have the right values for rerunning the exception-causing instruction. 4
In addition to the values of the registers, the exception handler usually wants to know
the exception-causing instruction and the type of the exception. The latter can be
stored in the exception note. (which has to be extended for this purpose), while the
instruction resides just after the tx.

5.5 P a g e Fau l t s

Like on any other processor, instruction fetch page faults are handled immediately.
Data access page faults caused by a trap-noting instruction are noted like other
exceptions and later handled in the fix-up code, if the processor executes the ap-
propriate path. If a different path is executed, the note has no effect. This is an
advantage over the approach proposed for general percolation [CMC+91], where
speculative page faults are always serviced, even if they are not needed.

5.6 I n s t r u c t i o n I s sue B a n d w i d t h

In the programs we measured (see Section 6) 16%-24% of the dynamically executed
instructions can generate exceptions. Since this is nonnumerical code, most of these
instructions wilt be executed speculatively on a high-degree superscMar machine.
Each of these speculatively executed instructions would add a bx instruction to
the instruction stream. Delayed exceptions increase the needed instruction issue
bandwidth by up to 24% and need additional functional units for executing the bx
instructions. These needs can be reduced by having bx instructions that test several
notes and branch to a combined piece of fix-up code.

4 These are the same compiler techniques that ensure correct processing of delayed excep-
tions (see Section 4.3).

167

6 Potential Speedup

To evaluate the potential benefit of delayed exceptions, we performed a trace-driven
simulation [BYP+91, Wa191, LW92]. To get an upper bound, we assumed infinite
resources (instruction bandwidth, functional units), perfect register renaming, per-
fect alias detection, and perfect branch prediction. To have a few machine models
between the extremes, we restricted perfect branch prediction, to predict only the
next n branches. Note that 0 predicted branches prevents speculative execution, but
some global scheduling is still possible: instructions can be moved down.

In other words, for our perfect model, we considered only read-after-write (RAW)
dependences, through both registers and memory, and dependences from branches
to all later stores. For limited branch-prediction we added dependences between
branches and all instructions that are more than n branches later in the trace.
Without delayed exceptions, we also added dependences between branch instructions
and all later exception-generating instructions. 5

Throughout the simulations, we used the latencies of the R3000 processor (e.g.
2-cycle loads). The instruction level parallelism is computed by dividing the number
of instructions by the critical path length of the dependence graph.

The benchmark programs used are: an abstract Prolog machine interpreter (Pro-
log), an instruction scheduler (sched), and compress 4.1 (compress). They were com-
piled on a DecStation 5000 with the manufacturer's C compiler and then run with
typical input to produce traces. Due to limitations of our tracer we produced and
analysed only short traces (~ 500,000 instructions).

The results are shown in Fig. 9. Without delayed exceptions, even perfect branch
prediction gives only speedups of 1.08-1.31 over having no speculation. This clearly
shows that speculative execution is hardly worth bothering, if it cannot be applied to
exception-generating instructions (another variation of Amdahl's Law). Even with
only one-deep speculation delayed exceptions beat the perfect model without delayed
exceptions. In other words: Every machine that has enough resources to profit from
speculative execution will profit from delayed exceptions. The perfect models differ
by a factor of 3.8 (sched), 7.4 (compress) and 9.5 (Prolog).

The improvement on a realistic machine with a real scheduling algorithm is of
course somewhat lower, but still impressive: Mahlke et al. report a speedup of 18%-
135% (average 57%) for sentinel scheduling (see Section 7) on non-numeric programs
for a superscalar processor of degree 8 [MCH+92]. They report an average speedup
of 32% for numeric benchmarks. Delayed exceptions should give similar results.

7 Related Work

Ignoring exceptions by using non-trapping instructions has been proposed for cir-
cumventing the problem [CMC+91]. Instead of trapping on e.g. an illegal memory

5 A compiler could use control-dependence analysis to move instructions up across branches
in a non-speculative way. If our simulation took this into account (i.e. did not count those
branches), it would result in a somewhat higher instruction-level parallelism for all models
but the perfect model. Due to the data given in [LW92] and Amdahl's Law we believe
that the effect of this optimization would not be very large and would not change our
conclusions.

168

instructions/cycle
32,

16

/ /

,s /

/

/ s J
J /

I s s ~ / �9
/ a i

." s CJ ~*

j J s~"
" s.~ ~"

s s J

s" ~

/ "rt - - , ~ " .

~ . - . -

Prolog
compress

sched

I ' �9 predicted branches
0 i �89 ,~ 8 1'6 3'2 6'4 1�89 256 penect

without with
delayed exceptions

Fig. 9. Instruction-level parallelism with and without delayed exceptions

access, a garbage value is returned. The justification for this behaviour is that correct
programs do not trap. Unfortunately this justification is wrong. Exceptions are used
in many applications. [AL91] lists several applications of memory access exceptions.
Besides, in our opinion the assumption of completely correct programs is unrealistic.
Delayed exceptions solve the problem instead of ignoring it.

Speculative loads [RL92] note the exception in a bit associated with the result
register. The first instruction that uses the result triggers the trap. This means
that the load can be executed speculatively, but not its use. In contrast, delayed
exceptions permit arbitrary chains of speculative operations.

The TORCH architecture [SLH90, SHL92, Smi92] uses programmer-visible sha-
dow register files for compiler-based speculative execution. TORCH as described in
[SLH90] can handle exceptions using a reexecution scheme implemented in hardware.
In the meantime they have switched to using compiler-generated recovery code. In
contrast to delayed exceptions, TORCH uses hardware to restore the state before
the exception and then executes the recovery code. TORCHs recovery code contains
all speculative instructions since the exception, while our fix-up code contains only
instructions that dependent on the trap-noting instruction.

Sentinel scheduling [MCH+92] uses a bit in every instruction that says whether
the instruction is executed speculatively. Speculative instructions set and propagate

169

exception bits; the first non-speculative instruction triggers the trap (if the bit is
set). Recovery is~performed by reexecuting the whole code starting from the in-
struction that caused the exception. The bottom-line differences between delayed
exceptions and sentinel scheduling are: Sentinel scheduling does not preserve the
order of the exceptions; It doubles the number of opcodes, whereas delayed excep-
tions only double the exception-generating instructions. Sentinel scheduling needs
special hardware for propagating the exception bits and the address of the exception-
generating instruction; and it produces more register pressure (the source registers
for all instructions between speculative instruction and sentinel have to be preserved,
while our fix-up code needs only the source registers for instructions that depend
on the trap-noting instruction); it cannot move exception-generating instructions
beyond irreversible instructions like stores. Delayed exceptions use more instruction
bandwidth (for exception-checking branches) and they produce more code (fix-up
code).

Write-back suppression [BMH+93] is specific to superblock 6 scheduling. It uses
hardware to suppress the register file updates by the excepting instruction and all
subsequent instructions that have the same or higher speculation distance. If exe-
cution reaches the home basic block of the excepting instruction, these instructions
are reexecuted by hardware with write-back and trapping enabled. This mechanism
produces less register pressure than delayed exceptions, because the hardware en-
sures that instructions that will be reexecuted later will not write over registers
needed during reexecution. The main disadvantage of write-back suppression is its
restriction to superblock scheduling and unidirectional speculation.

8 C o n c l u s i o n

Speculative execution is the key to making optimal use of superscalar processors.
However, in a pure compiler-based approach exception-generating instructions must
not be executed speculatively. This restriction virtually eliminates speculative exe:
cution and its advantages.

In the spirit of RISC technology, delayed exceptions combine a simple hardware
extension with sophisticated compiler techniques to solve this problem. Speculative
exception-generating instructions just note the exception in a bit associated with the
result register. If the speculation was right, the bit is checked by a special branch
instruction. If the bit is set (i.e. there was an exception), it branches to compiler-
generated fix-up code. This code triggers the trap and ensures correct recovery.
Delayed exceptions permit the compiler to move exception-generating instructions
as freely as non-trapping instructions.

Trace-driven simulation shows that every processor that profits from speculative
execution (e.g. most superscalar processors) would profit from delayed exceptions.
The upper bound for speedups achievable by delayed exceptions for the studied
traces is 3.8-9.4.

s A superblock can be entered only from the top, but can be left at several points.

170

Acknowledgements

The referees, Thomas Pietsch and Franz Punt igam provided valuable comments on
earlier versions of this paper. Section 5.2 was inspired by the "Trapping speculative
ops" discussion on the Usenet news group comp.arch, especially by Stanley Chow
and Cliff Click.

References

[AL91] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs.
In ASPLOS-IV [ASP91], pages 96-107.

[ASP91] Architectural Support]or Programming Languages and Operating Systems
(ASPLOS.IV), 1991.

[ASP92] Architectural Support]or Programming Languages and Operating Systems
(ASPLOS- V), 1992.

[BMH+93] Roger A. Bringman, Scott A. Mahlke, Richard E.]3ank, John C. Gyllenhaal,
and Wen-mei W.]3wu. Speculative execution exception recovery using write-
back suppression. In 26th Annual International Symposium on Microarchitec-
ture (MICRO-26), pages 214-223, 1993.

[BYP+91] Michael Butler, Tse-Yu Yeh, Yale Patt, Mitch Alsup, Hunter Scales, and Michael
Shebanow. Single instruction stream parallelism is greater than two. In ISCA-
18 [ISC91], pages 276-286.

[CMC+91] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, Nancy J. Warter, and
Wen-mei W. Hwu. IMPACT: An architectural framework for multiple-
instruction-issue processors. In ISCA-18 [ISC91], pages 266-275.

[EK92] M. Anton Ertl and Andreas Krall. Removing antidependences by repairing.
Bericht TR 1851-1992-9, Institut ffir Computersl~rachen, Technische Universits
Wien, 1992.

[El185] John R. Ellis. Bulldog: A Compiler]or VLIW Architectures. MIT Press, 1985.
[FisS1] Joseph A. Fisher. Trace scheduling: A technique for global microcode compac-

tion. IEEE Transactions on Computers, 30(7):478-490, July 1981.
[]3P87] Wen-mei Hwu and Yale N. Part. Checkpoint repair for high-performance out-of-

order execution machines. 1EEE Transactions on Computers, 36(12):1496-1514,
December 1987.

[ISC91] The 18 th Annual International Symposium on Computer Architecture (ISCA),
Toronto, 1991.

[JW89] Norman P. Jouppi and David W. Wall. Available instruction-level parallehsm
for superscalar and superpipelined machines. In Architectural Support]or Pro-
gramming Languages and Operating Systems (ASPLOS-1II), pages 272-282,
1989.

[LW92] Monica S. Lam and Robert P. Wilson. Limits of control flow on parallelism. In
The 19 th Annual International Symposium on Computer Architecture (ISCA),
pages 46-57, 1992.

[MCH+92] Scott A. Mahlke, William Y. Chen, Wen-mei W.]3wu,]3. Ramakrishna Rau,
and Michael S. Schlansker. Sentinel scheduling for VLIW and superscalar pro-
cessors. In ASPLOS-V [ASP92], pages 238-247.

[NE89] Toshio Nakatani and Kemal Ebcio~lu. "Combining" as a compilation technique
for VLIW architectures. In 22 nd Annual International Workshop on Micropro-
gramming and Microarchitecture (MICRO-22), pages 43-55, 1989.

171

[Nic85]

[Nic89]

[RG81]

[RL92]

[SHL92]

[SLHg0]

[Smi92]

[Soh90]

[SP88]

[Tom67]

[Wal91]

Alexandru Nicolau. Uniform parallelism exploitation in ordinary programs. In
1985 International Conference on Parallel Processing, pages 614-618, 1985.
Alexandru Nicolau. Run-time disambiguation: Coping with statically unpre-
dictable dependencies. IEEE Transactions on Computers, 38(5):663-678, May
1989.
B. R. Rau and C. D. Glaeser. Some scheduling techgniques and an easily sche-
dulable horizontal architecture for high performance scientific computing. In
l~th Annual Microprogramming Workshop (MICRO-I~), pages 183-198, 1981.
Anne Rogers and Kai Li. Software support for speculative loads. In ASPLOS-V
[ASP92], pages 38-50.
Michael D. Smith, Mark Horowitz, and Monica S. Lam. Efficient superscalar
performance through boosting. In ASPLOS-V [ASP92], pages 248-259.
Michael D. Smith, Monica S. Lam, and Mark A. Horowitz. Boosting beyond
static scheduling in a superscalar processor. In The 17 th Annual International
Symposium on Computer Architecture (ISCA), pages 344-354, 1990.
Michael David Smith. Support for Speculative Execution in High-Performance
Processors. PhD thesis, Stanford University, 1992.
Gurindar S. Sohi. Instruction issue logic for high-performance, interruptable,
multiple functional unit, pipelined processors. 1EEE Transactions on Compu-
ters, 39(3):349-359, March 1990.
James E. Smith and Andrew R. Pleszkun. Implementing precise interrupts in
pipelined processors. IEEE Transactions on Computers, 37(5):562-573, May
1988.
R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.
IBM Journal of Research and Development, 11(1):25-33, 1967.
David W. Wall. Limits of instruction-level parallelism. In ASPLOS-IV [ASP91],
pages 176-188.

