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A b s t r a c t .  The feasibility of using machine-learning techniques to screen 
dyspeptic patients for those at high risk of gastric cancer was demonstrated 
in this study. Data on 1401 dyspeptic patients over the age of 40, consisted 
o f  85 epidemiologicai and clinical variables and a gold-standard diagnosis, 
made by upper gastrointestinal endoscopy. The diagnoses were grouped into 
two classes - -  those at high risk of having (or developing) gastric cancer 
and those at low risk. A machine-learning approach was used to generate 
a cross-validated sensitivity-specificity curve in order to assess the power of 
the discrimination between the two groups. 
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1 I n t r o d u c t i o n  

Gastric cancer is an extremely serious condition and those unfortunate  enough to 
suffer from it stand little chance of survival unless a diagnosis is made and an oper- 
ation performed at an early stage in the development of the disease. The problem is 
that,  in the early stages of the condition, the patient suffers from a variety of dys- 
peptic symptoms which could easily indicate the presence of any of about  a dozen 
different gastric complaints. The only way to be sure of the diagnosis is to make 
use of an endoscope to carry out an internal examination of the patient. Unfor- 
tunately, endoscopic examination of all dyspeptic patients is too expensive for the 
National Health Service to support.  Therefore, the goal was to use machine learning 
techniques to identify a subset of dyspeptic patients at high risk of having gastric 
cancer, so that  they could undergo endoscopic examination. The immediate objec- 
tive was t o  generate a cross-validated sensitivity-specificity curve in order to assess 
the discriminative power of the technique. 

2 V a r i a b l e  C l a s s i f i c a t i o n  T h r e s h o l d s  

Typically, machine learning software produces estimated posterior probabilities of 
class membership of new cases undergoing classification. These are obtained from 
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Table 1: Frequency table for the classification outcomes in a two-class discrimination 
task. FP represents false positive and CR represents correct rejection. 

the frequency counts of the cases in the training set found at the terminal nodes. In 
the field of medical diagnosis, it is often the case that a test for a particular disease 
does not operate with perfect accuracy. This leads to the possibility of two different 
types of error - -  false positive error in which the disease is predicted when it is 
actually absent and false negative error (or 'miss') where the test result is negative 
when the disease is present. It is clear that, in this application, the second type of 
error is more serious than the first. Consequently, the usual approach of classify- 
ing according to the largest posterior probability found at the terminal node is not 
satisfactory in such a situation. A more flexible approach to such situations is to 
adopt classification threshold probabilities. With the diagnosis of serious medical 
conditions, the classification threshold would typically be set at a lower value for 
predicting the presence of the disease, than for predicting its absence. Of course, 
the ability to vary the classification threshold means that, as the error rate for false 
negatives is decreased, the error rate for false positives increases. 'Hits '  and correct 
rejections are similarly inversely related. Table 1 displays the four possible outcomes 
for a two-class discrimination task. From this table, some important quan~tities can 
be defined. In the terminology of medical diagnosis, sensitivity and specificity are 
defined as follows. Sensitivity is the conditional probability of correct classification, 
given that  the disease is present and specificity is the conditional probability of 
correct classification, given that  the disease is absent. Algebraically, from Table 1, 
sensitivity is given by a/(a + b) and specificity is defined as d/(c + d). As the classi- 
fication threshold for the disease is reduced, sensitivity will increase and specificity 
will decrease, i.e. there is a trade-off between the two. If the classification threshold 
probability is varied from 0 to 1, values for sensitivity and specificity are generated 
as a series of number-pairs, which can be plotted on a graph. Another quantity 
of interest for two-class discrimination tasks is the odds ratio. From the foregoing 
table, this is defined as ad/bc. It  is a measure of the magnitude of association in a 
2 • 2 table. In the current context, it is useful because it can be used as a measure 
of discrimination power. 

Sensitivity-specificity curves run from coordinates (0, 1) to (1, 0). A straight line 
corresponds to an odds ratio of one (i.e. absence of any effective discrimination). In 
general, a sensitivity-specificity curve will 'bulge' into the upper-right quadrant of 
the graph. The more extreme the curve, the larger the corresponding odds ratio (i.e. 
the better  the discrimination). Sensitivity-specificity curves are useful because they 
show the relationship between these two quantities throughout the range of threshold 
values and, with the use of odds ratio contours, indicate the discrimination power 
at different threshold settings. 
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3 M e t h o d  

Part  of the database of dyspeptic patients described by Hallissey et al. (1990) was 
used for the study. Briefly, this consisted of records on 1401 patients over the age of 
40 who were referred to dyspepsia clinics because of symptoms of dyspepsia. 

The data on each patient comprised a gold-standard diagnosis (made by upper 
gastrointestinal endoscopy) and a total of 85 epidemiological and clinical variables. 
The diagnoses were grouped into two classes. Class 1 (the high risk group) consisted 
of those patients diagnosed as either having gastric cancer, or belonging to any of  
three other diagnostic categories regarded as being at risk for developing the disease 
because of the mucosal changes typically associated with these conditions. These 
were gastric ulcer, atrophic gastritis and gastric polyp. A total of 370 cases fell into 
the high risk group. Class 2 (the low risk group) comprised the remaining cases. 

Classification was performed by Predictor. Various aspects of Predictor have 
been described elsewhere by White & Liu (1993), Liu (1993) and Liu 8z White (to 
appear) and will not be described here in detail. Briefly, Predictor operates by a 
recursive binary partitioning of the data space, under a form of statistical control 
which branches preferentially on the more important variables. A stopping rule 
based on significance testing principles (White & Liu, to appear) guards against 
excessive branching and the specification of a minimum terminal node frequency 
provides additional control against overfitting. Missing values are dealt with by 
dynamic path generation, as described in the references just cited. Cross-validation 
is provided as an option. This is a well-established statistical technique, whose 
purpose is to provide a fair assessment of the performance of a predictive system. It 
involves testing each case separately, using a model derived from the other cases. 

In order to produce the cross-validated sensitivity-specificity curve, the signifi- 
cance level in Predictor was se t  at 0.5 and the minimum terminal node frequency 
at 5. Cross-validation mode was used. Another option in Predictor produces the 
posterior probabilities of class membership for each case classified. This feature was 
employed and the resulting probabilities were post-processed by separate software 
to produce the data required for the sensitivity-specificity graph. 

4 R e s u l t s  a n d  D i s c u s s i o n  

Part  of the cross-validated sensitivity-specificity curve is displayed in Figure 1. It 
should be noted that a large proportion of spurious missing values was discovered 
on some of the variables, due to problems encountered in the data before they were 
transferred to the computer used for running Predictor. Nevertheless, the machine 
learning algorithm was able to perform competently in spite of this difficulty. �9 

Some idea of the power of the discrimination may be gained by looking closely at 
the graph in Figure 1. Most of the curve corresponds to criterion settings giving odds 
ratios (for the cross-validated classification matrix) of 5 or more. Better discrimina- 
tion is apparent at the high-sensitivity end of the curve, which is beneficial because 
of the greater interest in performing discrimination with a high-sensitivity criterion 
because of the seriousness of gastric cancer if diagnosis is missed in the early stages. 
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Figure 1: Part  of the cross-validated sensitivity-specificity curve for detection of 
those at high risk for gastric cancer. The smooth curve represents a contour line for 
an odds ratio of 5. See text for further explanation. 

For example, one particular point on this curve (obtained by classifying cases as 
high-risk if the cross-validated estimated posterior probability of membership of this 
class is greater than or equal to 0.2) gives a sensitivity of 0.768 and a specificity of 
0.664, with an odds ratio of 6.54 for the cross-validated classification matrix. With 
this criterion setting, 45.0% of the sample are classified as high-risk. 
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