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Abstract.  The pruning of decision trees often relies on the classification 
accuracy of the decision tree. In this paper, we show how the misclassi- 
fication costs, a related criterion applied if errors vary in their costs, can 
be intregrated in several well-known pruning techniques. 

1 I n t r o d u c t i o n  

Many algorithms for the induction of decision trees from classified examples 
based on ID3 [Qui86] have been implemented in learning tools, e.g. CART 
[BFOS84], C4.5 [Qui92], and NEwID [Bosg0]. As noisy, sparse or incomplete 
data sets often cause overly complex decision trees, pruning methods are applied 
to obtain a best tree with respect to criteria as the classification accuracy, the 
complexity of the tree, or the criteria of the methods evaluated in [Min89]. 

A related criterion, the misclassification costs, applies if errors vary in their 
costs. For example, granting a credit to an unreliable applicant may be more 
expensive for a bank than refusing it to a good applicant. In this paper, we first 
show in section 2 how pruning methods can be adapted to use this criterion, and 
evaluate them in section 3. In section 4, we outline goals of further research. 

2 M i s c l a s s i f i c a t i o n  C o s t s  as  a P r u n i n g  C r i t e r i o n  

Given a set of classified examples in an attribute-value representation, the in- 
duction of decision trees results in a classifier that can be used to determine 
the class of new examples. Although the learning algorithm generally produces 
optimum trees, overly complex decision trees might result from noisy, sparse or 
incomplete data. The error rate of a tree is determined by estimating its error 
rate for all examples by an appropriate criterion, or by splitting the data set in 
disjunctive sets of training and test examples. 

A tree can be pruned during or after its construction. Postpruning approaches 
first construct a complete decision tree, which is pruned afterwards. Either par- 
ticular pruning criteria determine how to prune it best, or a series of alternative 
pruned trees is constructed among which the best one is selected. 

Given p(jlt), the probability that an object in node t is in class j with 
~ j  p(jlt) -- 1, and the costs C(il j  ) of classifying an object of class j falsely 
in class i, where C(il j  ) ~_ 0 if i ~ j and C(il j  ) = 0 otherwise, the costs of t are 

r (t) - C ( i l j ) p ( j l t ) .  

J 



384 

The class of a node is the class i minimizing these costs. Given p(t), i.e. the 
probability for selecting node t, the costs Re(t) and Re(T) for a tree T with the 
set T of leaves are 

Re(t) = rc(t)p(t), and Re(T) = Z R~(t) = B rc(t)p(t) (1) 

In minimal-cost-complexity pruning [BFOS84], both the construction of a 
series of pruned trees and the selection of the best tree depends on the error 
rate and the complexity of the tree. Replacing the error rates R(T) of the tree 
and R(t) of a node by the misclassification costs Re(T) and Rc(t) of equation 
(1) results in a new criterion taking into account the misclassification costs. 
Similarly, the best tree can be selected by evaluating the test examples, e.g by 
the test sample estimate ts or the cross validation estimate cv. Estimating the 
ratio of examples in a class j by NO)/NO ) in the test sample estimate ts, and 
by Nj /N  in the cross validation estimate cv results in 

R " ( T ) =  1 1 NO) B C(i[j)N(/)' and R~(Tk)--  -~ B C(i[j)Nij, 
tj$ 

where the test set contains N (1) examples, N (1) i j  examples of class j ,  and Nij 
examples of class j wrongly classified in i by the tree T. 

In contrast, reduced-error pruning [Qui87] is a single-stage approach, i.e. the 
construction of the series of pruned trees stops with the best tree. A subtree 5" 
with root node t,  of 5, is pruned in T if R(5") > R(G), and 5, does not include 
a subtree with the same property. The misclassification costs can be integrated 
by replacing R(5,) and R(t,) by Re(5") and Re(t,) of equation (1). 

The pessimistic pruning [Qui87] does not split the data set in training and 
test examples, but replaces subtrees 5' with L(S) leaves by their root node t, 
if the error rate E(t) is in the standard error 5,Z of E(5,)(L(5,)/2). This is 
done until no further subtrees can be pruned�9 Replacing the error rate E by the 
misclassification costs EK results in 

L( 5,) 
EK(S) - (E' + T + SE(E' + )) �9 C=.a 

where5, is a subtree, E' .- ~'~L(s)(EF(k) T �89 EF(t) = E + �89 E is the 
error rate, and Cma~(t) - max i C(j[i). The average costs are given by 

C..a(T) - B k E L ( T )  N(k) * C, na.(k) 

where N(k) is the number of examples in a node k. Obviously, this criterion 
is equal to the criterion E in [Qui87] if the misclassification costs do not vary. 

In minimum-error pruning [BK87], the misclassification costs can be included 
as in pessimistic pruning, i.e. given k classes, n examples of which n, are in class 
c, and Crna~ = maxj C(j[i), the cost-sensitive criterion is 

n - n , + k - 1  
EK(t) = n + k * C, na~. 

The NEwID pruning method is similar to pessimistic pruning except that it 
allows to prune a subtree 5' of a node t even if its classification accuracy exceeds 
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the accuracy of the node without the subtree by tr percent. Replacing the error 
rates R(S) and R(t) by the cost-sensitive error rates Re(S) and Re(t) leads to 
the cost-sensitive NswID-method, i.e. 

Re(t) < (1 + t r  in percent  
- 100 ) * Re(S )  

The variable-threshold NswlD-method  replaces the fixed threshold by a vari- 
able one computed by _ / Re(t) 

tr > 100.  ' R - ~ )  1). 

3 E m p i r i c a l  R e s u l t s  

In contrast to the studies in [Qui87] and [Min89], we focus on the evaluation of 
the pruning methods that  rely on the misclassification costs, and compare the 
results of each method evaluated on the same data  sets [Kno93]. 

The evaluated data  sets are part of the applications analysed in the Esprit- 
Project StatLog [STA93]. The default costs are given by the users, i.e. 

1. Credit: prediction of the creditability of bank clients. It consists of 1000 
examples with 20 attributes and 2 classes, and the default costs are 87.5. 

2. Diabetes: prediction whether a patient is a diabetic. It includes 768 examples 
with 6 attributes and 2 classes, and the default costs are 125, 

3. Heart Disease: prediction of heart diseases. It includes 270 examples with 12 
attributes, and 2 classes, and the default costs are 18.8. 

Using eight-fold cross validation, each data  set is split randomly in a training, 
a pruning and a testing set with a share of 65%, 22% and 13%, respectively. If 
no pruning data  set is needed, pruning and training sets are combined, i.e. the 
share of the training data  is 87%. The cost matrices including a column nc with 
costs of unclassified examples are provided by the users as shown in table 1. 

Credit {no risk risk nc Diabeteslneg pos nc Heart Diseaselyes no nc 
no risk[ 0 1 1 neg { 0 2 2 yes { 0 1 1 

risk { 13.29 0 13.29 pos [ 5 0 5" no { 5 0 5 

Table 1. Default costs of the data sets 

The average results of a 8-fold cross validation of N E W l D ,  C4.5 [Qui92], and 
the misclassification costs and the accuracy rates of the cost-sensitive pruning 
methods evaluated on the three data  sets are shown in table 2. 

There are several observations holding for all data  sets. First, using misclas- 
sification cost as pruning criterion improves the results in comparison to the 
methods N E W l D  and C4.5. The reduction of the costs of pruning approaches 
without a pruning data  set exceeds t h a t  of the other approaches. The reason 
may be that  the set of examples in the training is larger in the former methods. 

Concerning the credit data, the cost matrix is strongly asymmetric. As a 
consequence, the pruning methods tried to classify almost all test examples as 
"risk", i.e. granting no credit a t  all. Obviously, such a classifier is useless in 
practice. This data  set shows the importance of a precise cost matrix,  i.e. em- 
phasizing the costs of particular classes might give unacceptable results. As the 
cost matr ix of the diabetes data  set is too symmtric, the changes of the costs and 
accuracy rates are very small. In contrast, evaluating the cost-sensitive pruning 
methods on the heart disease data  results in cost reductions of 33% to 43%. 
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Credit 
Costs 
Accuracy 
Diabetes 
Costs 
Accuracy 
Heart Disease 
Costs 
Accuracy 

498.5 
70% 

105.4 
72.8% 

117.5 
46.8% 

75.1 
69.8% 

133.6 
52.1% 

Cost 
Complex. 

Pruning 

92.5 
34.8% 

79.8 75.6 
70.4% 70.4% 

20.6 
67.1% 

121.9 87.5 
51.9% 30% 

77.1 74 
71.I~, 74.0% 

Table 2. Results of pruning with misdassification costs 

IMinimum C4.5 
Error 

Pruning 

97.5 320.5 
50.4% 71% 

70.9 74.1 
70.9% 71.1% 

22.6 27.9 
70.3% 72.3% 

4 C o n c l u s i o n s  

As shown by the empirical evalution, cost-sensitive pruning methods result in 
improved decision trees with respect to the costs. However, the improvement 
strongly depends on the cost matrix provided. On the one hand, asymmetry in 
the matrix is necessary to achieve lower costs, on the other hand, the results 
might be not useful if the asymmetry is too strong. Thus, studying the influence 
of the matrices and determining suitable matrices is subject of further research. 
Current work is concerned with the integration of misclassification costs in other 
pruning methods, e.g. critical value pruning [Min87], or minimum-error prun- 
ing using m-estimate [CB91], and with the adaption of algorithms constructing 
decition trees in order to take into account misclassification costs in this stage. 
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