
An Algorithm for Learning Hierarchical
Classifiers

Jyrki Kivinen, Heikki Mannila, Esko Ukkonen, Jaak Vilo

Department of Computer Science; P.O. Box 26 (TeoUisuuskatu 23)
FIN-00014 University of Helsinki, Finland

emall: {jkivinen,mannila,ukkonen,vilo}~cs.helsinki.fi

1 I n t r o d u c t i o n . In [4] an Occam algorithm ([1]) was introduced for PAC
learning certain kind of decision lists from classified examples. Such decision lists,
or hierarchical rules as we call them, are of the form shown in Fig.1. The purpose
of the present paper is to discuss the practical implementation of the algorithm,
to present a linguistic application (hyphenation of Finnish), and compare the
learning result with an earlier experiment in which Angluin's k-reversible au-
tomata were used.

i f x E C 1 or x E C 2 o r . . . o r x E C , ~ t h e n ~rt
e l s e i f xEC,~+I or x E C ~ + 2 o r . . . o r x E C , ~ + m t h e n ~2

e l s e
e l s e

i f x E Cn+m+...+l or x E C~+,~+...+2 or . . . o r x E Cp t hen ak
< d e f a u l t > ak+l

F ig . 1. Hierarchical rule of depth k.

The rule in Fig. 1 has k levels. Each level contains an/f -s ta tement that tests
whether or not the instance z to be classified belongs to the union of some basic
concepts Ci and if so, then gives a classification aj E {+, -) for x. There are k
such levels and after them the default level with classification gk+l which is taken
if x does not belong to any Ci appearing on the k ordinary levels. The number
of basic concepts tested on each level is not restricted and the classifications ~rj
alternates between consecutive levels.

2 A l g o r i t h m . To explain the intuition behind the algorithm, consider first
the cases k = 0 and k = 1. For k = 0, the hierarchical rule consists of the default
rule only. Such a rule can be consistent with the training examples only if all
examples are positive or all are negative. Normally this is not the case. Rather,
there are exceptions to any default rule. Our algorithm tries to classify the ex-
ceptions correctly using exception rules that are applied before the default rule.
If k = 1, each consistent basic concept forms an exception rule. From such rules
a minimal cost subset is selected such that it (exactly) covers all the exceptions.
This gives a hierarchical rule of depth 1

i f x E C 1 o r x E C 2 o r . . . o r x E C ~ t h e n al e l s e ~2,
where the exception rules are i f x E C1 t h e n ~1, i f x E C2 t h e n ~rl, . . . ,
i f x E C,~ t h e n crt. These exception rules are of depth 0. Concepts C1, C 2 , . . . , Cn
are the bases of the rules.

A hierarchical rule of depth k is formed by covering the exceptions to the
default rule by exception rules of depth k - 1. An exception rule of depth k - 1
is like a hierarchical rule of depth k - 1, with the default rule (which can be
understood as rule i f x E t r u e t h e n ~) replaced by rule i f x E C t h e n ~.

376

Concept C is the base of the exception rule. The rule has to be consistent with
the examples it covers.

To get an Occam learning algorithm, we should find a shortest hierarchical
rule that is consistent with the training sample. This is an NP-hard problem
in general, but a good enough approximation can be found in polynomial time
using the standard greedy heuristics for the set cover problem. This together with
dynamic programming allows us to construct approximately shortest exception
rules of depth 0, 1, . . . for all basic concepts until enough rules are found to form
a short consistent global rule.

Recall that a weighted set cover problem is defined by a domain D, an in-
dex set I and corresponding sets Di, i E I, with positive real costs cost(Di).
A solution to the problem is the subset J C I such that UjeJ Dj = D and
the sum Sjejcost(Dj) of costs for sets Dj is minimized. Chvatal ([2]) showed
that if the minimal solution has cost M, then the greedy method obtains in
polynomial time a solution with a cost at most M . H(IDI), where H(n) =
~-']~=1 !~ -- O(logn). Greedy algorithm builds the approximately minimal set
cover incrementally adding one set (that covers some of the remaining elements
of D by the lowest cost per element) at a time to the cover. We denote by
Weighted_Set_Cover(D,I,{Di},{cost(Di)}) a function that gives the greedy solu-
tion to the set cover problem.

We use this algorithm for finding a minimum cost set of exception rules of
depth k - 1 that covers the exceptions to the default rule. The cost of an exception
rule is the sum of the costs of the basic concepts appearing in the rule, and the
rule is assumed to cover the examples covered by its base. The same principle
is also used for generating the exception rules of depths 0, 1, 2 , . . . , k - 1. The
resulting algorithm is given in detail in Fig. 2. The exception rules are implicitly
represented in table Exception_Rules. The final result is traced starting from
entry Exception_Rules [k + 1] [t rue].

It can be shown that T = O(k. IRI 2. ISI 2) is an upper bound for the running
time of the algorithm in Fig. 2. Here k is the number of levels, R is the set of
the basic concepts and S the set of the training examples. Thus we can gain
speed by decreasing the number of basic concepts (for example, often actually
the same concepts can have different names in R; we can eliminate all except
one) and the number of training examples (by standard windowing approach as
in [6]). A memory-saving alternative is to re-compute the exception rules when
the solution of finite cost is known to exist.

3 E m p i r i c a l r e s u l t s . We have implemented and tested our algorithm for
learning the hyphenation rules for a natural language. In this application the
substrings of the training examples define basic concepts C as follows. Let w be
any substring occurring in some training example. Then the concept with name
w covers all strings t ha t are representable as xwy, where x and y are arbitrary
strings. In the hyphenation problem we are given a totally hyphenated word, as
'hy-phen-a-tion', for example. This word defines actually 10 classified examples:

h-yphenation - hyph-enation - hyphena-tion + hyphenatio-n -

hy-phenation + hyphe-nation - hyphenat-ion -

hyp-hena~ion - hyphen.ation + hyphenati-on -

377

I N P U T : S = S+ U s_ / / A sample: positive and negative examples
in teger k / / D e p t h of the hierarchical rule to be constructed

O U T P U T : Consistent, near minimal hierarchical rule of depth at most k

R := set of basic concepts U {true } / /Concepts that cover a nonempty subset of S
Rule_Cost: a r r a y [1..k+l][R] of real / / C o m p u t e d costs for rules
Exception_Rules:array [2..k+l][R] of set of concepts
D+, D- : array[R] of set of examples
for r E R compute:

D+[r] := S+ f3 r; D_[r] := S_ n r; Cost(r) := the cost of r

for T E {+, --} / / Choose the type of the highest level
a := r / / I n the following: ~'--- if (a = +) then - else +
for r E R / /Ini t ial ize the first level. It can't have exception rules

if (D~[r] =0) t h e n Rule_Cost[lilt] := Cost(r)
e lse Rule_Cost[lilt] := cr / / Inconsistent rule

for level :---- 2 to k + l
a := ~ / /Alternate the classification of the level
if (l eve l=k+ l) then H:={true} else H:=-R
for r E H

J := Weighted_Set_Cover(D~-~[r], R, D-~, Rule_Cost[level-l])
Exception_Rules[level][r] := J
if no finite cover J exists t h e n Rule_Cost[level][r] := oo
else Rule_Cost[level]It] := ~ j e J Rule_Cost[level-1][j] + Cost(r)

if (Rule_Cost[k+l][true] < oo) / / O u t p u t the rule
t h e n

Concepts_at_Level[k+l] := { t r ue }; Class_at_Level[k+l] := cr
for q := k downto 1

Concepts_at_Level[q] := UTec pts_~t-Level[q+l] Exception_Rules[q+l][r]
Class_at_Level[q] := ~; a :=

else F a i l / / N o consistent rule of depth k and first level labeled by ~" exists

Fig. 2. Algorithm that constructs a consistent, near-minimal hierarchical rule.

One possible rule tha t is consistent with these examples,

i f - p h o r n - a or a - t t h e n + else < d e f a u l t > - ,

says, for example, tha t there is a correct hyphenation point between n and a.
We have experimented with the hyphenation of Finnish, The training data ,

correctly hyphenated words from a lecture containing computer science oriented
technical language (1706 words), has been used earlier also to learn the hyphen-
ation rule by Angluin's synthesis algorithm for k-reversible finite-state au toma ta
(see [3]). The hyphenation au t om a t a had ve ry high accuracy for proposed hy-
phenat ion points (about 98%), though they might miss some of the possible
hyphens. Unfortunately the au toma ta were large: in average 100 states and 250
transit ions for 3-reversible language. Tha t is too much for easy understanding
by humans.

In our experiments to learn the hyphenation by hierarchical rules, each ex-
ample contained one hyphen and was classified as either positive or negative

378

depending from whether the hyphen was allowable in that position or not. As
the basic concepts we used the substrings found from the examples as well as
the same substrings transformed so that all original characters were mapped to
consonants (K) and vowels (E). Then, for example, concept '-ICE' covers all the
possible strings where consonant-vowel pair is preceded by a hyphen. We used
the windowing approach and started from 0.1 fraction of all the 14880 exam-
ples. The algorithm constructed the rule that was consistent with that window.
Then the window was enlarged by the examples from remaining part of examples
that were misclassified by constructed rule. After 5 such iterations the method
resulted 1, 2 and 3-level hyphenation rules that were consistent with all 14880
examples. The final sample consisted of 1378 positive examples and 2397 neg-
ative ones. Our algorithm produced an easy to read and understand rule that
contained 100 patterns with average length of 4 characters:
i f

- e n e , - e n i , - e s t , - h a s , -nomai, - n o t t a , - s a l g . - s e t s , - s o s , - t i ik , - x ,
-yd , area-, e -no , e ru - , g - , i - s a t , i t - r , i t e - o . • l a - u , mu-s, p - r ,
tu-s, vyy-, yvi-

then -
else if

me-, 5-ym, -alg, -arvo, -d, -ets, -g, -j, -lex, -ma, -omai, -ong, -osa,

-po, -pr, -re/, -spi, -ti, -to, -v, a-aske, a-e, a-ilm, a-o, a-uks, a-us,

ais-a, bs-, e-m, e-a, e-o, e-uks, e-us, e-utt, e-y, ea-as, en-o, i - L , i-a,

i-en, i-es, i-o, i-tr, intS-, k-k, k-t, kom-, mus-, n-as, n-kr, n-otta,

n-st, o-a, o-e, rus-, s-s, t-~k, t-t, ta-aj, ~tS-~, tu-it, tus-, u-a,
u-e, umo-, y-L, y-e, E-EEKE, E-KE, E-KEE, EK-KE, KE-KEKK, KEEK-KE, KEK-KE

then +

else default -

T h e hyphenation algorithm (for English) of TEX [5] is a 5-level hierarchical
classifier that in some respects is similar to our rules. The synthesis algorithm of
[5] for finding the classifier counts probabilities for patterns that allow or prohibit
the hyphens, and the resulting rule doesn't have to be totally consistent with
the data.

References

1. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam's razor. In-
formation Processing Letters, 24:377-380, April 1987.

2. V. Chv~tal. A greedy heuristic for the set-covering problem. Mathematics of the
Operation Research, 4(3):233-235, August t979.

3. R. Kankkunen, H. Mannila, M. RantamLki, and E. Ukkonen. Experience in induc-
tive inference of a hyphenation algorithm for Finnish. In Proceedings o] the Finnish
Artificial Intelligence Symposium (STEP'90), pages 183-193. Oulu, Finland, 1990.

4. J. Kivinen, H. Mannila, and E. Ukkonen. Learning hierarchical rule sets. In Proc. of
the 5th Annual A CM Workshop on Computational Learning Theory., pages 37-44.
Pittsburgh~ Pennsylvania~ July 27-29 1992.

5. M. F. Liang. Word Hy-phen-a-tion by Com-put-er. PhD thesis, Stanford University,
1983.

6. J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

