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1 I n t r o d u c t i o n .  In [4] an Occam algorithm ([1]) was introduced for PAC 
learning certain kind of decision lists from classified examples. Such decision lists, 
or hierarchical rules as we call them, are of the form shown in Fig.1. The purpose 
of the present paper is to discuss the practical implementation of the algorithm, 
to present a linguistic application (hyphenation of Finnish), and compare the 
learning result with an earlier experiment in which Angluin's k-reversible au- 
tomata  were used. 

i f  x E C 1  or x E C 2  o r . . . o r  x E C , ~  t h e n  ~rt 
e l s e  i f  xEC,~+I  or  x E C ~ + 2 o r . . . o r x E C , ~ + m  t h e n  ~2 

e l s e  
e l s e  

i f  x E Cn+m+...+l or  x E C~+,~+...+2 or . . . o r  x E Cp t hen  ak 
< d e f a u l t >  ak+l 

F ig .  1. Hierarchical rule of depth k. 

The rule in Fig. 1 has k levels. Each level contains an/f -s ta tement  that  tests 
whether or not the instance z to be classified belongs to the union of some basic 
concepts Ci and if so, then gives a classification aj  E {+, - )  for x. There are k 
such levels and after them the default level with classification gk+l which is taken 
if x does not belong to any Ci appearing on the k ordinary levels. The number 
of basic concepts tested on each level is not restricted and the classifications ~rj 
alternates between consecutive levels. 

2 A l g o r i t h m .  To explain the intuition behind the algorithm, consider first 
the cases k = 0 and k = 1. For k = 0, the hierarchical rule consists of the default 
rule only. Such a rule can be consistent with the training examples only if all 
examples are positive or all are negative. Normally this is not the case. Rather,  
there are exceptions to any default rule. Our algorithm tries to classify the ex- 
ceptions correctly using exception rules that  are applied before the default rule. 
If k = 1, each consistent basic concept forms an exception rule. From such rules 
a minimal cost subset is selected such that  it (exactly) covers all the exceptions. 
This gives a hierarchical rule of depth 1 

i f  x E C 1  o r x E C 2 o r . . . o r  x E C ~  t h e n  al  e l s e  ~2, 
where the exception rules are i f  x E C1 t h e n  ~1, i f  x E C2 t h e n  ~rl, . . . ,  
i f  x E C,~ t h e n  crt. These exception rules are of depth 0. Concepts C1, C 2 , . . . ,  Cn 
are the bases of the rules. 

A hierarchical rule of depth k is formed by covering the exceptions to the 
default rule by exception rules of depth k - 1. An exception rule of depth k - 1 
is like a hierarchical rule of depth k - 1, with the default rule (which can be 
understood as rule i f  x E t r u e  t h e n  ~) replaced by rule i f  x E C t h e n  ~. 
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Concept C is the base of the exception rule. The rule has to be consistent with 
the examples it covers. 

To get an Occam learning algorithm, we should find a shortest hierarchical 
rule that is consistent with the training sample. This is an NP-hard problem 
in general, but a good enough approximation can be found in polynomial time 
using the standard greedy heuristics for the set cover problem. This together with 
dynamic programming allows us to construct approximately shortest exception 
rules of depth 0, 1, . . .  for all basic concepts until enough rules are found to form 
a short consistent global rule. 

Recall that a weighted set cover problem is defined by a domain D, an in- 
dex set I and corresponding sets Di, i E I, with positive real costs cost(Di). 
A solution to the problem is the subset J C I such that UjeJ Dj = D and 
the sum Sjejcost(Dj) of costs for sets Dj is minimized. Chvatal ([2]) showed 
that if the minimal solution has cost M, then the greedy method obtains in 
polynomial time a solution with a cost at most M .  H(IDI), where H(n) = 
~-']~=1 !~ -- O(logn). Greedy algorithm builds the approximately minimal set 
cover incrementally adding one set (that covers some of the remaining elements 
of D by the lowest cost per element) at a time to the cover. We denote by 
Weighted_Set_Cover(D,I,{Di},{cost(Di)}) a function that gives the greedy solu- 
tion to the set cover problem. 

We use this algorithm for finding a minimum cost set of exception rules of 
depth k - 1  that covers the exceptions to the default rule. The cost of an exception 
rule is the sum of the costs of the basic concepts appearing in the rule, and the 
rule is assumed to cover the examples covered by its base. The same principle 
is also used for generating the exception rules of depths 0, 1, 2 , . . . ,  k - 1. The 
resulting algorithm is given in detail in Fig. 2. The exception rules are implicitly 
represented in table Exception_Rules. The final result is traced starting from 
entry Exception_Rules [k + 1] [ t rue  ]. 

It can be shown that T = O(k. IRI 2. ISI 2) is an upper bound for the running 
time of the algorithm in Fig. 2. Here k is the number of levels, R is the set of 
the basic concepts and S the set of the training examples. Thus we can gain 
speed by decreasing the number of basic concepts (for example, often actually 
the same concepts can have different names in R; we can eliminate all except 
one) and the number of training examples ( by standard windowing approach as 
in [6]). A memory-saving alternative is to re-compute the exception rules when 
the solution of finite cost is known to exist. 

3 E m p i r i c a l  r e s u l t s .  We have implemented and tested our algorithm for 
learning the hyphenation rules for a natural language. In this application the 
substrings of the training examples define basic concepts C as follows. Let w be 
any substring occurring in some training example. Then the concept with name 
w covers all strings t ha t  are representable as xwy, where x and y are arbitrary 
strings. In the hyphenation problem we are given a totally hyphenated word, as 
'hy-phen-a-tion',  for example. This word defines actually 10 classified examples: 

h-yphenation - hyph-enation - hyphena-tion + hyphenatio-n - 

hy-phenation + hyphe-nation - hyphenat-ion - 

hyp-hena~ion - hyphen.ation + hyphenati-on - 
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I N P U T :  S = S+ U s_  / / A  sample: positive and negative examples 
in teger  k / / D e p t h  of the hierarchical rule to be constructed 

O U T P U T :  Consistent, near minimal hierarchical rule of depth at most k 

R := set of basic concepts U {true } / /Concepts  that cover a nonempty subset of S 
Rule_Cost: a r r a y  [1..k+l][R] of  real  / / C o m p u t e d  costs for rules 
Exception_Rules:array [2..k+l][R] of  set  of  concepts 
D+, D- :  array[R] of  set  of  examples 
for r E R compute: 

D+[r] := S+ f3 r; D_[r] := S_ n r; Cost(r) := the cost of r 

for T E {+, --} / /  Choose the type of the highest level 
a := r / / I n  the following: ~'--- if (a = +) then - else + 
for r E R / /Ini t ial ize the first level. It can't have exception rules 

if (D~[r] =0) t h e n  Rule_Cost[lilt] := Cost(r) 
e lse  Rule_Cost[lilt] := cr / / Inconsistent  rule 

for level :---- 2 to k + l  
a := ~ / /Alternate the classification of the level 
if  ( l eve l=k+ l ) then  H:={true} else H:=-R 
for r E H  

J := Weighted_Set_Cover( D~-~[r], R, D-~, Rule_Cost[level-l] ) 
Exception_Rules[level][r] := J 
if no finite cover J exists t h e n  Rule_Cost[level][r] := oo 
else Rule_Cost[level]It] := ~ j e J  Rule_Cost[level-1][j] + Cost(r ) 

if ( Rule_Cost[k+l][true] < oo ) / / O u t p u t  the rule 
t h e n  

Concepts_at_Level[k+l] := { t r ue  }; Class_at_Level[k+l] := cr 
for q := k downto  1 

Concepts_at_Level[q] := UTec . . . .  pts_~t-Level[q+l] Exception_Rules[q+l][r] 
Class_at_Level[q] := ~; a := 

else F a i l / / N o  consistent rule of depth k and first level labeled by ~" exists 

Fig. 2. Algorithm that constructs a consistent, near-minimal hierarchical rule. 

One possible rule tha t  is consistent with these examples, 

i f - p h  o r  n - a  or  a - t  t h e n  + else < d e f a u l t > - ,  

says, for example,  tha t  there is a correct hyphenation point between n and a. 
We have experimented with the hyphenation of Finnish, The  training data ,  

correctly hyphenated words from a lecture containing computer  science oriented 
technical language (1706 words), has been used earlier also to learn the hyphen- 
ation rule by Angluin's synthesis algorithm for k-reversible finite-state au toma ta  
(see [3]). The hyphenation au t om a t a  had ve ry  high accuracy for proposed hy- 
phenat ion points (about  98%), though they might miss some of the possible 
hyphens. Unfortunately the au toma ta  were large: in average 100 states and 250 
transit ions for 3-reversible language. Tha t  is too much for easy understanding 
by humans. 

In our experiments  to learn the hyphenation by hierarchical rules, each ex- 
ample contained one hyphen and was classified as either positive or negative 
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depending from whether the hyphen was allowable in that position or not. As 
the basic concepts we used the substrings found from the examples as well as 
the same substrings transformed so that all original characters were mapped to 
consonants (K) and vowels (E). Then, for example, concept '-ICE' covers all the 
possible strings where consonant-vowel pair is preceded by a hyphen. We used 
the windowing approach and started from 0.1 fraction of all the 14880 exam- 
ples. The algorithm constructed the rule that was consistent with that window. 
Then the window was enlarged by the examples from remaining part of examples 
that were misclassified by constructed rule. After 5 such iterations the method 
resulted 1, 2 and 3-level hyphenation rules that were consistent with all 14880 
examples. The final sample consisted of 1378 positive examples and 2397 neg- 
ative ones. Our algorithm produced an easy to read and understand rule that 
contained 100 patterns with average length of 4 characters: 
i f  

- e n e ,  - e n i ,  - e s t ,  - h a s ,  -nomai,  - n o t t a ,  - s a l g .  - s e t  s ,  - s o s ,  - t i ik ,  - x ,  
-yd ,  area-, e -no ,  e ru - ,  g - ,  i - s a t ,  i t - r ,  i t e - o .  •  l a - u ,  mu-s,  p - r ,  
tu-s,  vyy-, yvi- 

then - 
else if 

me-, 5-ym, -alg, -arvo, -d, -ets, -g, -j, -lex, -ma, -omai, -ong, -osa, 

-po, -pr, -re/, -spi, -ti, -to, -v, a-aske, a-e, a-ilm, a-o, a-uks, a-us, 

ais-a, bs-, e-m, e-a, e-o, e-uks, e-us, e-utt, e-y, ea-as, en-o, i - L ,  i-a, 

i-en, i-es, i-o, i-tr, intS-, k-k, k-t, kom-, mus-, n-as, n-kr, n-otta, 

n-st, o-a, o-e, rus-, s-s, t-~k, t-t, ta-aj, ~tS-~, tu-it, tus-, u-a, 
u-e, umo-, y-L, y-e, E-EEKE, E-KE, E-KEE, EK-KE, KE-KEKK, KEEK-KE, KEK-KE 

then + 

else default - 

T h e  hyphenation algorithm (for English) of TEX [5] is a 5-level hierarchical 
classifier that in some respects is similar to our rules. The synthesis algorithm of 
[5] for finding the classifier counts probabilities for patterns that allow or prohibit 
the hyphens, and the resulting rule doesn't have to be totally consistent with 
the data. 
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