
Control l ing Construct ive Induct ion in CIPF: An
M D L Approach

Bernhard Pfahringer

bernhard@ai .univie. ac. at
Austrian Research Institute for Artificial Intelfigence

Schottengasse 3
A-1010 Vienna

Austria

Abstract. We describe the propositional learning system CIPF, which
tightly couples a simple concept learner with a sophisticated constructive
induction component. It is described in terms of a generic architecture
for constructive induction. We focus on the problem of controlling the
abundance of opportunities for constructively adding new attributes. In
CIPF the so-called Minimum Description Length (MDL) principle acts
as a powerful control heuristic. This is also confirmed in the experiments
reported.

1 Introduction

In learning concept descriptions from preclassified examples, simple concept
learners typically make strong assumptions about the way these examples are
represented. For effectively learning a concept its examples must populate one or
a few regions of the hypothesis space expressible in the description language. For
example, decision trees encode axis-parallel nested hyper-rectangles. Two differ-
ent problems may cause irregular distributions of learning examples in the origi-
nal representation space: noise and/or an inadequate description language. Both
phenomena lead to complex, convoluted induced concept descriptions which will
be hard to understand and will perform poorly at predicting concept membership
of unclassified examples.

As a remedy for the latter problem constructive induction has been intro-
duced, e.g. in [Dietterich &: Michalski 81] and [Mehra et al. 89]. The basic idea
is to somehow transform the original representation space into a space where the
learning examples exhibit (more) regularities. Usually this is done by introduc-
ing new attributes and forgetting old ones. So constructive induction is searching
for an adequate representation language for the learning task at hand.

In this paper we report on CIPF, a generic constructive induction system,
and on how search in the representation space is controlled in CIPF. Section 2
briefly describes a generic architecture for constructive induction and discussed
CIPF in these terms. In section 3 will focus on how the problem of control-
ling search for useful representation changes is solved in CIPF by means of the
powerful Minimum Description Length (MDL) Principle [Rissanen 78]. Section

243

4 reports experiments and compares results to C4.5 [Quinlan 93], a well-known
sophisticated decision tree learner. Section 5 summarizes related work, gives
conclusions and talks about further research directions we are pursuing within
CIPF.

2 A G e n e r i c A r c h i t e c t u r e a n d a n I n t r o d u c t i o n t o C I P F

This section will briefly describe a generic architecture for constructive induction
and use this architecture to introduce CIPF. We will also discuss some important
design rationales of CIPF.

Figure 1 depicts a possible generic architecture for describing constructive
learners. Most implemented systems can be described in terms of this archi-
tecture or a subset of it, if one supplies proper instantiations for the different
processes (boxes in the model). The three different processes working together
are:

- The CI module: Given examples and attribute descriptions and possibly
already some descriptions/hypotheses, this module constructs new attributes
according to some methodology. Output of this module are new attribute
descriptions and the augmented and transformed learning examples.

- The Selective Learner: Any (classical) propositional learning algorithm can
be used to induce rules from the transformed learning data. Output of this
module is a set of rules forming a hypothesis that compresses and explains
the learning data.

- The Evaluator: This current hypothesis must be evaluated in some way to
decide whether it is of good enough quality to serve as a final result, or
if it should be input into another cycle of induction. It might also be the
case that no good hypothesis is found, but computation nonetheless termi-
nates due to exhausted resources like maximal number of cycles or heuris-
tically/statistically based doubt about the possibility of finding any better
hypothesis.

Actual systems not only differ in their choices for the different parameters
(e.g. which methods they select for doing CI or what algorithm lies at the heart
of their respective learner), they may even omit modules and/or pathways at all;
for instance, some systems do not run in cycles, but perform sequential one-shot
learning only.

The main goal in building CIPF is designing a practical system for construc-
tive induction that minimizes the number of user-settable parameters. So we
try to identify principled choices or automated ways of choosing good values for
necessary decisions where other systems rely on user-specified parameter values.
This was one reason for choosing the Minimum Description Length Principle as
an evaluator. This will be described in more detail in the next section.

CIPF borrows heavily from existing systems in that we have tried to collect
useful features of known machine learning systems. We try to combine these in a
synergetic fashion in CIPF. CIPF is a true instance of the generic architecture

244

Raw Input Data

CI module

I
Transformed Data

l

Selective Learner

I
Hypothesis

Evaluator * done

Fig. 1. Constructive induction: a generic architecture

245

for constructive induction described above in that it realizes all the boxes and
pathways. CIPF ' s components will be detafiled in the following.

2.1 C o n s t r u c t i v e I n d u c t i o n in C I P F (t h e CI M o d u l e)

Just like the multi-strategy system AQ17-MCI [Bloedorn et al. 93], C I P F takes
an operator-based approach to constructive induction. It supplies a (still grow-
ing) list of generally useful CI operators plus an interface allowing for user-
supplied special operators. For instance, these might encode possibly relevant
background knowledge. We have currently implemented the following generally
useful CI operators in CIPF:

- Compare attributes of the same type: is at tr ibute A1 Equal to/Different
f rom/Greater than/Less than attribute 12.

- Discretize numeric attributes into several intervals using Chi-Merge tech-
niques [Kerber 92].

- Conjoin possible values of nominal attributes into sets using modified Chi-
Merge as proposed in [Kerber 92].

- Count how many of a given set of boolean attributes are true (or false).
- Conjoin two attributes occuring in a good rule [Matheus & Rendell 89].
- Perform intra-construction [Muggleton 87, Muggleton & Buntine 88] of

good rules.
- For the set of positive examples covered by a good rule: compute inter-

vals/subsets for the respective numerical/nominal base-level attributes, so
that these intervMs/subsets exactly cover these positive examples.

- Drop attributes not used by any of the good rules. 1
- The medical 3cr-heuristic: for numerical attributes construct an attr ibute

testing if this numerical value is in a plausible range. This healthy range
is operationally defined in terms of mean values and standard deviations
derived from the healthy part of a population as the interval [p - 30", # + 30"].
A value outside such a range is a strong indicator for pathological test results
in medical applications 2 (see also section 4.2).

Recursive application of these operators may yield complex new attributes like
the number of numerical attributes being off more than 30" from the 'healthy'
mean is zero or one . It is the user's task to choose the appropriate operators
for any learning problem.

2.2 C I P F ' s Se lec t ive L e a r n e r

We have implemented a simple propositional FOIL-like learner
[Quinlan L; Cameron-Jones 93], i.e. our selective learner is a simplified cousin

1 One might argue whether droppin 9 an attribute really is a constructive induction
operator or not. Anyway it being a very useful operator we have chosen to include
it in the above fist. Furthermore the terminology used in [Bloedorn et al. 93] defines
set of constructive induction operators as the union of constructors and destructors.

2 Personal communication from a lab physician

246

of F O I L dealing with propositional horn clauses only. So we are using ideas
from Inductive Logic Programming and translate them back (specialize them)
for propositional problems. We prefer direct induction of rules over decision trees
for various reasons. The two most important ones are:

- Unknown values can be dealt with pragmatically: never incorporate tests for
unknown in a rule.

- I n d u c t i o n focuses on one class at a time. At least in relational learning this
approach seems to be superior to decision trees [Watanabe & Rendell 91]
and we suspect that the same might be true for propositional learning.

Currently the learner is a quick-and-dirty custom implementation, as we
want to focus on constructive induction, but still like to have the possibility of
working on the internals of the learner. We will of course have to address the
serious shortcomings of this module in further research. Right now this learner
in C I P F uses the Laplace expected error estimate as a search heuristic, because
[Lavrac et al. 92] shows that accuracy estimators outperform information gain
criteria when learning rules instead of decision trees. 3 The only stopping crite-
rion used is no improvement of the estimate. There is currently no other form
of pruning in the learning component.

3 Using MDL to Control Constructive Induction (the
Evaluator Module)

C I P F takes a rather eager approach to constructive induction: at every step
M1 possible new attributes are added. This over-abundance in the represen-
tat ion space combined with the simplistic learner quickly results in unwieldy,
overly complex induced rule sets when learning without appropriate control.
These rule sets may be both difficult to comprehend for the user and yield
mediocre results when classifying unseen examples. In analogy to noise filling
[Angluin & Laird 87] this phenomenon could be called language fitting. Typi-
cal examples of such behaviour are published in the section on AQI7-HCI in
the Monk report [Thrun et al. 91], which describes three artificial learning prob-
lems for evaluating and comparing different algorithms. We have made similar
experiences with early versions of C I P F lacking sophisticated control.

To prevent C I P F from language fitting we have devised the following simple,
yet effective control regime:

- Every t ime the CI module is called, it is allowed to construct an unlimited
number of new attributes.

- These attr ibutes will be input to the next learning step. There they will
compete with each other for being used in induced rules.

- Only the fittest attributes will be allowed to survive.

3 Use of the more general M-estimate also discussed in that paper instead of the
Laplace estimate would introduce one of those parameters we are trying to avoid if
possible.

247

So how are the fitlesl attributes determined in CIPF? We pragmatically
equate them with the set of attributes being used by good rules. How CIPF de-
termines the set of good rules for a class is one of its major innovations. Instead of
using some ad-hoc measures of accuracy and quality or some user-supplied eval-
uation functions we have identified the so-called Minimum Description Length
Principle [Rissanen 78, Quinlan & Rivest 89] as a very well-performing evalua-
tot.

In a nutshell, MDL is a concept from information theory that takes into
account both a theory's simplicity and a theory's predictive accuracy simultane-
ously. MDL is disarmingly simple: concept membership of each training example
is to be communicated from a sender to a receiver. Both know all examples and
all attributes used to describe the examples. Now what is being transmitted is a
theory (set of rules) describing the concept and, if necessary, explicitly all pos-
itive examples not covered by the theory (the false-negative examples) and all
negative examples erroneously covered by the theory (the false-positive exam-
ples). Now the cost of a transmission is equivalent to the number of bits needed
to encode a theory plus its exceptions in a sensible scheme. The MDL Princi-
ple states that the best theory derivable from the training data will be the one
requiring the minimum number of bits.

So for any set of rules generated by the learner and for subsets of these rules a
cost can be computed. The rule-set with minimum cost is the best theory for the
training data. Only rules of this set will be called good rules and will be used as
input for the constructive induction module. The precise formula used to apply
the MDL Principle in C1PF is the same one as used by C4.5 [Quinlan 93] for
simplifying rule sets:

NC

In this formula TheoryCost is an estimate for the number of bits needed to
encode the theory. C is the total number of training examples covered by the
theory, FP is the number of false-positive examples, NC is the total number of
training examples not covered by the theory, and FN is the number of false-
negative examples. So the second and the third term of the formula estimate the
number of bits needed to encode all false-positive and all false-negative examples
respectively. In summary this formula approximates the total cost in number of
bits for transmitting a theory and its exceptions.

A slight modification necessary for constructive induction is to take into
account also the different complexities of constructed attributes. This can easily
be achieved in a uniform manner by adding attribute-defining rules to the rule
set, one for each constructed attribute used in the original rule set. Thus using a
constructed attribute entails a kind of penalty or cost, which will be amortized
either if this attribute offers superior compression or if it is used in more than
one rule.

248

Furthermore, CIPF differs in the way the above MDL estimate is utilized
algorithmicaUy. For complexity reasons it is of course impossible to evaluate
all possible subsets of rules. [Quinlan 93] reports serious difficulties using greedy
hill-climbing and therefore resorts to expensive simulated annealing. In contrast,
in our setting a hill-climbing strategy seems to work quite satisfactorily in com-
bination with a preprocessing step as follows:

- Sort all rules induced by the learner in descending order of their estimated
accuracy.

- Starting with an empty theory, always add the next best rule to the current
theory as long as the MDL estimate improves, i.e. a better compression is
achieved.

The output of this algorithm is a subset of all the originally induced rules
which will be a good, if not the best theory for the training data in terms of
the currently available attributes. Exactly this subset will be used to determine
which attributes are to be kept and which are to be dropped for the next cycle
of induction: exactly those (original and constructed) attributes are kept which
appear in at least one rule of the selected theory. This subset of rules is also used
as input for the constructive induction module.

Globally, CIPF does a kind of hill-climbing in the representation space, com-
puting new attributes and new sets of rules utilizing these attributes as long as
the overall cost estimate (as measured by the above MDL formula) improves.
This last theory is then the overall output of CIPF. Empirically this simple strat-
egy seems to produce good results, as indicated by the experiments reported in
the next section and it is effectively computable. Also, to repeat its two main ad-
vantages, the strategy includes no user-settable parameters, and also it does not
require a secondary training set (train-lest sel), like e.g. AQ17-MCI, to evaluate
the quality of constructed attributes.

4 E x p e r i m e n t s

In the experiments reported here, CIPF's performance was compared to C4.5 on
the same training and test sets. C4.5 is a very sophisticated, production quality
selective learner. It was run with default settings and the results reported are
for pruned decision trees 4 on the test set.

4.1 Monk ' s P rob lems

The Monk's problems [Thrun et al. 91] are three artificially constructed prob-
lems in a space formed by six nominal attributes having from two to four possi-
ble values. These three problems are abbreviated to Monk1, Monk2, and Monk3
in the following. CIPF in its current status gives mixed results for the Monk's

4 Typically pruned trees yielded better accuracy than both unpruned trees and rule
sets generated from the tree.

249

problems. From table 1 we see that Monkl was solved without problems. CIPF
finds the correct theory:

true <= (jacket_color = red)

true <= (head_shape = body_shape)

This is no surprise as this example is simple and CIPF has the necessary
constructive operator compare atlributes of the same type at its disposal. C4.5
achieves only 72.4% accuracy for the pruned decision tree, but is able to reach
the full 100% for the rules extracted from this tree.

Performance on Monk2 is far from optimal, though. Comparison with C4.5,
which is better, but also far from optimal, seems to indicate missing constructive
operators. We believe that full negation and disjunction (currently not available
in CIPF) may solve Monk2. Alternatively a student at our department is cur-
rently finishing work [Kramer 93] on an interesting general constructive operator
computing extensional products of nominal attributes. This operator seems to
be able to solve Monk2 very well.

Results for Monk3 are quite good, but seem to indicate that CIPF has a
problem with noise. Potential answers to noise in CIPF will be briefly discussed
in the next major section. For C4.5 the unpruned tree is slightly better than
the pruned tree, which is not what we expected knowing that the training set
exhibits 5% class noise.

To give an impression of both the inferiority of the simple learner currently
used in CIPF and the strong abilities of the CI component we have included into
table 1 accuracies of the theories induced in the first step (just before the first
constructive induction step is taking place). Typically these values are signifi-
cantly worse than those of C4.5, but with the help of the strong CI component
CIPF is able to reach and sometimes even outperform C4.5's predictive perfor-
mance!

Additionally we would like to mention that some learning system exhibit a
much better performance than C4.5 on the Monk's problems, e.g. AQ17-HCI
achieves 100%, 93.1%, and 100% on Monk1, Monk2, and Monk3 respectively,
and a specialized form of Backpropagation yields 100%, 100%, and 97.2% re-
spectively. As already mentioned above we interpret this as an indication for
missing constructive operators appropriate for especially the Monk2 problem. 5

4.2 Two Medical Datase ts

For another set of experiments we used two medical datasets, one being the
hepatitis data available from the Machine Learning Archive at Irvine, the sec-
ond being numerical descriptions extracted from cardiac thallium scintigrams
recorded at the University of Vienna Medical School [Prem et a]. 93]. The first

5 AQ17-HCI has at its disposal a very special CI operator which perfectly fits the
Monk2 problem, thus explaining its impressive performance on this problem.

250

Table 1. Monk's Problems: accuracies (percentages) for CIPF after the first and the
final cycle of induction and for C4.5.

II II c PF firstlC'PF finallC4"511
MONK1 70.78 100 72.4
MONK2 66,92 80.7 83.3
MONK3 92.36 97.2 97.2

set exhibits a good mixture of numerical and boolean at t r ibutes with a few
values missing. The second set is of comparable size (159 examples total), but
uses 45 numerical at tr ibutes, which we strongly believe to be redundant. The
classification task for both datasets is to separate ill from heallhy patients. Ex-
per iments were performed with the examples split randomly into equally sized
training and test sets for ten runs. Tables 2 and 3 show the respective results of
these experiments.

Tab le 2. Hepatitis data: average number of errors and average accuracy for ten test
runs for CIPF and C4.5.

[[JJ Etr~
CIPF[14.6 181.29
C4.5 1 3 . 3 82.95

Tab le 3. Scan data: absolute number of errors and their average for ten test runs for
CIPF and C4.5.

l] gu. IIl1213141516171819 laollAverage #Errors[[
CIPF I 19 15 20 22 16 14 20 20 19 18 18.3 [
C4.5[23 22 25 22 20 21 29 30 19 22 23.3 I

The absolute number of errors translate into an average error of 18.71% and
17.05% for C I P F and C4.5 for the hepatit is data, and into 22.87% and 29.13%
average error respectively for the scan data. So C I P F performs slightly worse
than C4.5 on the first set, but significantly bet ter on the second set. We at t r ibute
C4.5 ' s bet ter performance on the hepatit is data to both C4.5 ' s sophisticated
handling of noise and to the fact that C I P F ' s general medical heuristic is not

251

applicable here. 6 For the scan data, in almost all cases CIPF is significantly
better than C4.5. This is a direct consequence of CIPF's constructive abilities.
In all these test runs CIPF either constructs an attribute at most one atLribuie
value is "out of the healthy range" (see above description of the 3a-heuristic),
which is a good way of characterizing healthy people. Or CIPF constructs the
opposite attribute more than a certain number of attribute values (typically 5)
are "out of the healthy range", which is well-suited for characterizing people
exhibiting serious health problems.

4.3 I n d u c t i v e Logic P r o g r a m m i n g Exercises

Encouraged by the original INDUCE system [Dietterich & Michalski 81], which
was able to learn slruclural descriptions from examples, and by the current suc-
cess of LINUS [Dzeroski & Lavrac 91], which essentially translates I LP problems
into an attribute-value representation for efficient induction, we started to exam-
ine two classical ILP exercises: illegal king-rook-king (KRK) chess endgame posi-
tions [Fuernkranz 93] and finite element mesh design [Dolsak & Muggleton 92],
[Dzeroski & Bratko 92].

KRK is very easily represented in CIPF. The example tupels of the relation
i l l e g a l / 6 are transformed into six basic attributes encoding rank and file of all
three pieces. Background knowledge in the original formulation consists of defini-
tions for =/2, l ess_ than/2 and ad jacen t /2 . Only the last predicate a d j a c e n t / 2
had to be encoded as a CI operator, as both Equal-To and Less-Than are pre-
supplied CI operators in CIPF. Induced theories usually resemble the approxi-
mate theories given in [Fuernkranz 93]. A sample theory derived by C tPF from
100 training examples looks as follows:

[I] illegal <= (BLACK-KING-FILE = WHITE-ROOK-FILE)

[2] illegal <= (BLACK-KING-RANK = WHITE-ROOK-RANK)

[3] illegal <= (adjacent BLACK-KING-FILE WHITE-KING-FILE) and
(adjacent BLACK-KING-RANK WHITE-KING-RANK)

[4] illegal <= (adjacent BLACK-KING-FILE WHITE-KING-FILE) and
(BLACK-KING-RANK = WHITE-KING-RANK)

This approximate theory was tested with 5000 test examples yielding an
accuracy of 98.4%. This is consistent with [Fuernkranz 93] which proves a theory
consisting of the first three clauses 1,2,3 to be 98.451% correct.

For the mesh design domain we did a manual translation along the lines
implicitly suggested in [Dolsak & Muggleton 92]. All the one-argument predi-
cates were translated into three nominal attributes with the appropriate sets

6 Still CIPF discovers regularities missed by C4.5, like that all female patients are
healthy. This can be attributed to directly learning rules instead of decision trees.

252

of possible values. Ignoring all two-argument attributes encoding structure
(n e i g h b o r / 2 , o p p o s i t e / 2 and same~2) C I P F achieves the surprising results
shown in table 4 (results for FOIL,MFOIL,and G O L E M were taken from
[Dzeroski & Bratko 92]). One sample rule induced covering 22 positive and no

II IIFOILIMFOILIGOLEMICIPFII
A 17 22 17 21
B 5 12 9 13
C 7 9 5 10
D 0 6 l l 23
E 5 10 10 26

I[S~ll 34 I 59 54 93

Table 4. Mesh Design: Number of Correctly Classified Examples.

negative example looks like the following:

N=I <= (LOAD = 0NE_SIDE_LOADED or NOT_LOADED) and
(EDGE-TYPE = NOT_IMPORTANT)

The ability to form appropriate subsets of possible values of an at t r ibute
(called internal value disjunction in AQ17-derived systems) seems to provide
useful contructed attributes for this learning task. So C I P F without any struc-
tural information performs almost twice as well as FOIL, MFOIL, or G O L E M .
Still even 93 correctly classified examples translate to only 33.5% accuracy. So
there probably is a good chance of achieving much better results by means of a
more careful analysis of the mesh design problem itself.

For translating and using the complete original specification automatically
we will have to encode constructive operators capable of recursively inspect-
ing objects linked to the object in focus and of summarizing properties of these
objects. We are currently designing such operators. These would allow construct-
ing attr ibutes like this node has a neighbor node with the property (e d g e - t y p e
= f i x e d) or this node has at least two o p p o s i t e nodes. Naturally the property
to be learned - number of finite elements for this node in the mesh d o m a i n -
could also be represented as an at tr ibute of the example available for inspection
by constructive operators. Thus for the mesh domain attributes like number of
finite elements of my same neighbor could be constructed which effectively rep-
resent a kind of recursive definition. Once such recursive definitions are allowed,
additional control will be needed, e.g. to prevent the construction of cyclic at-
tributes useless for effective prediction. For instance an at tr ibute the number of
finite elements of my same neighbor's same neighbor would not make sense for
prediction, as it references the node in question itself. Pitfalls of recursion in ILP
are dealt with at length in [Cameron-Jones & Quinlan 93].

253

A constructive induction system equipped with such operators might offer an
alternative perspective 7 on ILP, possibly providing a more natural fit for data
in object-oriented representations or databases.

5 C o n c l u s i o n s , R e l a t e d W o r k , a n d F u r t h e r R e s e a r c h

Incorporating the MDL Principle into CIPF as the single, uniform heuristic for
evaluating theories and thereby implicitly guiding constructive induction proved
valuable. The MDL Principle combines both accuracy and complexity of a theory
into a single uniform measure. Thus CIPF does not require any ad-hoe measure-
ments or user-defined evaluation functions of possibly questionable quality and
can nonetheless use all of the available training data for induction. Other ap-
proaches (e.g. AQ17-MCI) have to resort to splitting the training data into two
or more sub-parts performing some sort of cross-validation on these sub-parts.
Such an approach may be more expensive computationally and may miss reg-
ularities in the data. Nonetheless, on a systems level, CIPF certainly is most
closely related to and influenced by the multi-strategy system AQ17-MCI. The
main difference is the way control is imposed on constructive induction. CIPF
eagerly tries to use every opportunity for constructive induction until the MDL
principle stops this cycling process. AQ17-MCI takes a different approach: re-
lying on a set of meta-rules [Aha 92], it tries to identify the need (when) and
the directions (how) for a change in the representation space. On the operator
side AQ17-MCI seems to be more mature especially regarding so-called deeon-
structors. It would certainly be interesting to compare both systems on some
tasks using the same set of operators in both systems. A further difference is our
aiming at emulating and extending ILP in a constructive induction framework.

Principled Construclive Induction is an interesting concept introduced in
[Mehra et al. 89]. Geometric interpretation of the various constructors and the
notion of linear separability is used to guide the selection of appropriate con-
structors. These ideas might have interesting implications for CIPF, too.

The problem of language fitting is also mentioned and discussed in
[Matheus 90] in the context of the CITRE system and a framework for con-
structive induction. This approach uses additional background knowledge in two
different ways when constructing attributes. Domain-knowledge constraints are
used to eliminate less desirable new attributes beforehand and domain-dependent
transformations generalize newly constructed attributes even further in ways
meaningful to the current problem. Though these ideas do not currently fit di-
rectly into CIPF's schema for constructive induction, they might still point to
valuable further improvements possible for CIPF.

Our further research directions for CIPF include:

- Replacing all other heuristics currently employed by CIPF (e.g. the Laplace
estimate as a search heuristic guiding the selective learner) by the MDL prin-
ciple [Tangkitvanich &5 Shimura 93]. We have already implemented a simple

7 at least at the level of implementation

254

selective learner guided by MDL instead of some accuracy est imator plus
stopping criterion. Preliminary experiences seem to suggest robustness re-
garding noise but a bias towards over-general theories.

- Identifying and implementing additional generally useful constructive oper-
ators.

- Improving the selective learner: for instance, the stopping criterion could be
modified to take into account the results of the evaluator. From the worst
rule still included in the current rule set according to the MDL principle a
stronger stopping criterion (like minimal accuracy) could be estimated.

An additional endeavour is the search for learning problems at the right level of
difficulty. Unfortunately, most of the public machine learning databases at Irvine
seem to be easy [!tolte 93]. Therefore the best one can hope for for a system like
C I P F (and other constructive learners) is to be on a par with sophisticated se-
lective learners (e.g. C4.5) for such databases. We are looking for more difficult
and complex learning tasks (tasks where it is hard to define an adequate repre-
sentation language beforehand), which will allow constructive induction systems
to really show their abilities.

A c k n o w l e d g e m e n t s

This research is sponsored by the Austrian Fonds zur FSrderung der Wissenschaftlichen
Forschung (FWF) under grant number P8756-TEC. Financial support for the Austrian
Research Institute for Artificial Intelligence is provided by the Austrian Federal Min-
istry of Science and Research. I would like to thank Gerhard Widmer for constructive
discussion and help with this paper.

References

[Aha 92] Aha D.W.: Generahzing from Case Studies: A Case Study, in Sleeman D.
and Edwards P.(eds.), Machine Learning: Proceedings of the Ninth International
Workshop (ML92), Morgan Kaufmann, San Mateo, CA, pp.l-10, 1992.

[Angluin & Laird 87] Angluin D., Laird P.: Learning from Noisy Examples, Machine
Learning, 2(4), 343-370, 1987.

[Bloedorn et al. 93] Bloedorn E., Wnek J., MichMski R.S.: Multistrategy Construc-
tive Induction: AQ17-MCI, in Michalski R.S. and Tecuci G.(eds.), Proceedings of
the Second International Workshop on Multistrategy Learning (MSL-93), Harpers
Ferry, W.VA., pp.188-206, 1993.

[Cameron-Jones & Quinlan 93] Cameron-Jones R.M., Quinlan J.R.: Avoiding Pitfalls
When Learning Recursive Theories, in Bajcsy R.(ed.), Proceedings of the Thir-
teenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann,
San Mateo, CA, pp.1050 -1057, 1993.

[Dietterich & Michalski 81] Dietterich T.G., Michalski R.S.: Inductive Learning of
Structural Descriptions: Evaluation Criteria and Comparative Review of Selected
Methods, Artificial Intelligence, 16(3), 257-294, 1981.

[Dolsak & Muggleton 92] Dolsak B., Muggleton S.: The Application of Inductive Logic
Programming to Finite-Element Mesh Design, in Muggleton S., Inductive Logic
Programming, Academic Press, London, U.K., 1992.

255

[Dzeroski & Lavrac 91] Dzeroski S., Lavrac N.: Learning Relations from Noisy Exam-
pies: An Empirical Comparison of LINUS and FOIL, in Birnbaum L.A. and Collins
G.C.(eds.), Machine Learning: Proceedings of the Eighth International Workshop
(ML91), Morgan Kaufmann, San Mateo, CA, pp.399-402, 1991.

[Dzeroski & Bratko 92] Dzeroski S., Bratko I.: Handling Noise in Inductive Logic Pro-
gramming, Proceedings of the 2nd International Workshop on Inductive Logic
Programming, 1992.

[Fuernkranz 93] Fuernkranz J.: A numerical analysis of the KRK domain. Working
Note, 1993. Available upon request.

[Holte 93] Holte R.C.: Very Simple Classification Rules Perform Well on Most Com-
monly Used Datasets, Machine Learning, 11(1), 1993.

[Kerber 92] Kerber R.: ChiMerge: Discretization of Numeric Attributes, in Proceedings
of the Tenth National Conference on Artificial Intelhgence, AAAI Press/MIT Press,
Menlo Park, pp.123-128, 1992.

[Kramer 93] Kramer S.: CN2-MCI: Ein zweistufiges Verfahren ffir konstruktive Induk-
tion, Master's thesis in preparation, Vienna, 1993.

[Lavrac et ai. 92] Lavrac N., Cestnik B., Dzeroski S.: Search heuristics in empirical
Inductive Logic Programming, in Workshop W18, Logical Approaches to Machine
Learning, ECAI-92, Vienna, 1992

[Matheus & Rendell 89] Matheus C.J., Rendell L.A.: Constructive Induction On De-
cision Trees, in Proceedings of the Eleventh International Joint Conference on Ar-
tificial Intelligence (IJCAI-89), Morgan Kaufmann, Los Altos, CA, 645-650, 1989.

[Matheus 90] Matheus C.J.: Adding Domain Knowledge to SBL Through Feature Con-
struction, in Proceedings of the Eighth National Conference on Artificial Intelli-
gence (AAAI -90), AAAI Press/MIT Press, Menlo Park, CA, pp.803-808, 1990.

[Mehra et ai. 89] Mehra P., Rendell L.A., Wah B.W.: Principled Constructive Induc-
tion, in Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence (IJCAI-89), Morgan Kaufmann, Los Altos, CA, 651-656, 1989.

[Muggleton 87] Muggleton S.: Duce, An Oracle-based Approach to Constructive In-
duction, in Proceedings of the 10th International Joint Conference on Artificial
Intelligence (IJCAI-87), Morgan Kaufmann, Los Altos, CA, p.287-292, 1987.

[Muggleton & Buntine 88] Muggleton S., Buntine W.: Machine Invention of First Or-
der Predicates by Inverting Resolution, in Laird J.(ed.), Proceedings of the Fifth
International Conference on Machine Learning, Univ.of Michigan, Ann Arbor, June
12-14, Morgan Kaufmann, San Mateo, CA, pp.339-352, 1988.

[Prem et ai. 93] Prem E., Mackinger M., Dorffner G., Porenta G., Sochor H.: Concept
Support as a Method for Programming Neural Networks with Symbolic Knowl-
edge, in Ohlbach H.J.(ed.), GWAI-92: Advances in Artificial Intelligence,. Springer,
Berlin, Lecture Notes in AI, Vol.671, 1993.

[Quinlan & Rivest 89] Quinlan J.R, Rivest R.L.: Inferring Decision Trees using the
Minimum Description Length Principle, in Information and Computation, 80:227-
248, 1989.

[Quinlan & Cameron-Jones 93] Quinlan J.R., Cameron-Jones R.M.: FOIL: A Midterm
Report, in Brazdil P.B.(ed.), Machine Learning: ECML-93, Springer, Berlin, pp.3-
20, 1993.

[Quinlan 93] Quinlan J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, CA, 1993.

[Rissanen 78] Rissanen J.: Modeling by Shortest Data Description, in Automatica,
14:465-471, 1978.

256

[Tangkitvanich & Shimura 93] Tangkitvanich S., Shimura M.: Learning from an Ap-
proximate Theory and Noisy Examples, in Proceedings of the Eleventh National
Conference on Artificial Intelligence (AAAI -93), AAAI Press/MIT Press, Menlo
Park, CA, pp.466-471, 1993.

[Thrun et al. 91] Thrun S.B., et.al.: The MONK's Problems: A Performance Compar-
ison of Different Learning Algorithms, CMU Tech Report, CMU-CS-91-197, 1991.

[Watanabe & Rendell 91] Watanabe L., Rendell L.: Learning Structural Decision Trees
from Examples, in Proceedings of the 12th International Conference on Artificial
Intelligence, Morgan Kaufmann, San Mateo, CA, pp.770-776, 1991.

