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Abstract.  We describe the propositional learning system CIPF, which 
tightly couples a simple concept learner with a sophisticated constructive 
induction component. It is described in terms of a generic architecture 
for constructive induction. We focus on the problem of controlling the 
abundance of opportunities for constructively adding new attributes. In 
CIPF the so-called Minimum Description Length (MDL) principle acts 
as a powerful control heuristic. This is also confirmed in the experiments 
reported. 

1 Introduction 

In learning concept descriptions from preclassified examples, simple concept 
learners typically make strong assumptions about the way these examples are 
represented. For effectively learning a concept its examples must populate one or 
a few regions of the hypothesis space expressible in the description language. For 
example, decision trees encode axis-parallel nested hyper-rectangles. Two differ- 
ent problems may cause irregular distributions of learning examples in the origi- 
nal representation space: noise and/or an inadequate description language. Both 
phenomena lead to complex, convoluted induced concept descriptions which will 
be hard to understand and will perform poorly at predicting concept membership 
of unclassified examples. 

As a remedy for the latter problem constructive induction has been intro- 
duced, e.g. in [Dietterich &: Michalski 81] and [Mehra et al. 89]. The basic idea 
is to somehow transform the original representation space into a space where the 
learning examples exhibit (more) regularities. Usually this is done by introduc- 
ing new attributes and forgetting old ones. So constructive induction is searching 
for an adequate representation language for the learning task at hand. 

In this paper we report on CIPF, a generic constructive induction system, 
and on how search in the representation space is controlled in CIPF. Section 2 
briefly describes a generic architecture for constructive induction and discussed 
CIPF in these terms. In section 3 will focus on how the problem of control- 
ling search for useful representation changes is solved in CIPF by means of the 
powerful Minimum Description Length (MDL) Principle [Rissanen 78]. Section 
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4 reports experiments and compares results to C4.5 [Quinlan 93], a well-known 
sophisticated decision tree learner. Section 5 summarizes related work, gives 
conclusions and talks about further research directions we are pursuing within 
CIPF. 

2 A G e n e r i c  A r c h i t e c t u r e  a n d  a n  I n t r o d u c t i o n  t o  C I P F  

This section will briefly describe a generic architecture for constructive induction 
and use this architecture to introduce CIPF. We will also discuss some important 
design rationales of CIPF. 

Figure 1 depicts a possible generic architecture for describing constructive 
learners. Most implemented systems can be described in terms of this archi- 
tecture or a subset of it, if one supplies proper instantiations for the different 
processes (boxes in the model). The three different processes working together 
are: 

- The CI module: Given examples and attribute descriptions and possibly 
already some descriptions/hypotheses, this module constructs new attributes 
according to some methodology. Output of this module are new attribute 
descriptions and the augmented and transformed learning examples. 

- The Selective Learner: Any (classical) propositional learning algorithm can 
be used to induce rules from the transformed learning data. Output of this 
module is a set of rules forming a hypothesis that compresses and explains 
the learning data. 

- The Evaluator: This current hypothesis must be evaluated in some way to 
decide whether it is of good enough quality to serve as a final result, or 
if it should be input into another cycle of induction. It might also be the 
case that no good hypothesis is found, but computation nonetheless termi- 
nates due to exhausted resources like maximal number of cycles or heuris- 
tically/statistically based doubt about the possibility of finding any better 
hypothesis. 

Actual systems not only differ in their choices for the different parameters 
(e.g. which methods they select for doing CI or what algorithm lies at the heart 
of their respective learner), they may even omit modules and/or pathways at all; 
for instance, some systems do not run in cycles, but perform sequential one-shot 
learning only. 

The main goal in building CIPF is designing a practical system for construc- 
tive induction that minimizes the number of user-settable parameters. So we 
try to identify principled choices or automated ways of choosing good values for 
necessary decisions where other systems rely on user-specified parameter values. 
This was one reason for choosing the Minimum Description Length Principle as 
an evaluator. This will be described in more detail in the next section. 

CIPF borrows heavily from existing systems in that we have tried to collect 
useful features of known machine learning systems. We try to combine these in a 
synergetic fashion in CIPF. CIPF is a true instance of the generic architecture 
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Fig.  1. Constructive induction: a generic architecture 
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for constructive induction described above in that it realizes all the boxes and 
pathways. CIPF ' s  components will be detafiled in the following. 

2.1 C o n s t r u c t i v e  I n d u c t i o n  in C I P F  ( t h e  CI  M o d u l e )  

Just like the multi-strategy system AQ17-MCI [Bloedorn et al. 93], C I P F  takes 
an operator-based approach to constructive induction. It supplies a (still grow- 
ing) list of generally useful CI operators plus an interface allowing for user- 
supplied special operators. For instance, these might encode possibly relevant 
background knowledge. We have currently implemented the following generally 
useful CI operators in CIPF:  

- Compare attributes of the same type: is at tr ibute A1 Equal to/Different 
f rom/Greater  than/Less than attribute 12. 

- Discretize numeric attributes into several intervals using Chi-Merge tech- 
niques [Kerber 92]. 

- Conjoin possible values of nominal attributes into sets using modified Chi- 
Merge as proposed in [Kerber 92]. 

- Count how many of a given set of boolean attributes are true (or false). 
- Conjoin two attributes occuring in a good rule [Matheus & Rendell 89]. 
- Perform intra-construction [Muggleton 87, Muggleton & Buntine 88] of 

good rules. 
- For the set of positive examples covered by a good rule: compute inter- 

vals/subsets for the respective numerical/nominal base-level attributes, so 
that  these intervMs/subsets exactly cover these positive examples. 

- Drop attributes not used by any of the good rules. 1 
- The medical 3cr-heuristic: for numerical attributes construct an attr ibute 

testing if this numerical value is in a plausible range. This healthy range 
is operationally defined in terms of mean values and standard deviations 
derived from the healthy part of a population as the interval [p - 30", # + 30"]. 
A value outside such a range is a strong indicator for pathological test results 
in medical applications 2 (see also section 4.2). 

Recursive application of these operators may yield complex new attributes like 
the number of numerical attributes being off more than 30" from the 'healthy' 
mean is zero or one . It is the user's task to choose the appropriate operators 
for any learning problem. 

2.2 C I P F ' s  Se lec t ive  L e a r n e r  

We have implemented a simple propositional FOIL-like learner 
[Quinlan L; Cameron-Jones 93], i.e. our selective learner is a simplified cousin 

1 One might argue whether droppin 9 an attribute really is a constructive induction 
operator or not. Anyway it being a very useful operator we have chosen to include 
it in the above fist. Furthermore the terminology used in [Bloedorn et al. 93] defines 
set of constructive induction operators as the union of constructors and destructors. 

2 Personal communication from a lab physician 
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of F O I L  dealing with propositional horn clauses only. So we are using ideas 
from Inductive Logic Programming and translate them back (specialize them) 
for propositional problems. We prefer direct induction of rules over decision trees 
for various reasons. The two most important  ones are: 

- Unknown values can be dealt with pragmatically: never incorporate tests for 
unknown in a rule. 

- I n d u c t i o n  focuses on one class at a time. At least in relational learning this 
approach seems to be superior to decision trees [Watanabe & Rendell 91] 
and we suspect that  the same might be true for propositional learning. 

Currently the learner is a quick-and-dirty custom implementation, as we 
want to focus on constructive induction, but  still like to have the possibility of 
working on the internals of the learner. We will of course have to address the 
serious shortcomings of this module in further research. Right now this learner 
in C I P F  uses the Laplace expected error estimate as a search heuristic, because 
[Lavrac et al. 92] shows that accuracy estimators outperform information gain 
criteria when learning rules instead of decision trees. 3 The only stopping crite- 
rion used is no improvement of the estimate. There is currently no other form 
of pruning in the learning component.  

3 Using MDL to Control Constructive Induction (the 
Evaluator Module) 

C I P F  takes a rather eager approach to constructive induction: at every step 
M1 possible new attributes are added. This over-abundance in the represen- 
tat ion space combined with the simplistic learner quickly results in unwieldy, 
overly complex induced rule sets when learning without appropriate control. 
These rule sets may be both difficult to comprehend for the user and yield 
mediocre results when classifying unseen examples. In analogy to noise filling 
[Angluin & Laird 87] this phenomenon could be called language fitting. Typi- 
cal examples of such behaviour are published in the section on AQI7-HCI in 
the Monk report [Thrun et al. 91], which describes three artificial learning prob- 
lems for evaluating and comparing different algorithms. We have made similar 
experiences with early versions of C I P F  lacking sophisticated control. 

To prevent C I P F  from language fitting we have devised the following simple, 
yet effective control regime: 

- Every t ime the CI module is called, it is allowed to construct an unlimited 
number of new attributes. 

- These attr ibutes will be input to the next learning step. There they will 
compete with each other for being used in induced rules. 

- Only the fittest attributes will be allowed to survive. 

3 Use of the more general M-estimate also discussed in that paper instead of the 
Laplace estimate would introduce one of those parameters we are trying to avoid if 
possible. 
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So how are the fitlesl attributes determined in CIPF? We pragmatically 
equate them with the set of attributes being used by good rules. How CIPF de- 
termines the set of good rules for a class is one of its major innovations. Instead of 
using some ad-hoc measures of accuracy and quality or some user-supplied eval- 
uation functions we have identified the so-called Minimum Description Length 
Principle [Rissanen 78, Quinlan & Rivest 89] as a very well-performing evalua- 
tot. 

In a nutshell, MDL is a concept from information theory that takes into 
account both a theory's simplicity and a theory's predictive accuracy simultane- 
ously. MDL is disarmingly simple: concept membership of each training example 
is to be communicated from a sender to a receiver. Both know all examples and 
all attributes used to describe the examples. Now what is being transmitted is a 
theory (set of rules) describing the concept and, if necessary, explicitly all pos- 
itive examples not covered by the theory (the false-negative examples) and all 
negative examples erroneously covered by the theory (the false-positive exam- 
ples). Now the cost of a transmission is equivalent to the number of bits needed 
to encode a theory plus its exceptions in a sensible scheme. The MDL Princi- 
ple states that the best theory derivable from the training data will be the one 
requiring the minimum number of bits. 

So for any set of rules generated by the learner and for subsets of these rules a 
cost can be computed. The rule-set with minimum cost is the best theory for the 
training data. Only rules of this set will be called good rules and will be used as 
input for the constructive induction module. The precise formula used to apply 
the MDL Principle in C1PF is the same one as used by C4.5 [Quinlan 93] for 
simplifying rule sets: 

NC 

In this formula TheoryCost is an estimate for the number of bits needed to 
encode the theory. C is the total number of training examples covered by the 
theory, FP is the number of false-positive examples, NC is the total number of 
training examples not covered by the theory, and FN is the number of false- 
negative examples. So the second and the third term of the formula estimate the 
number of bits needed to encode all false-positive and all false-negative examples 
respectively. In summary this formula approximates the total cost in number of 
bits for transmitting a theory and its exceptions. 

A slight modification necessary for constructive induction is to take into 
account also the different complexities of constructed attributes. This can easily 
be achieved in a uniform manner by adding attribute-defining rules to the rule 
set, one for each constructed attribute used in the original rule set. Thus using a 
constructed attribute entails a kind of penalty or cost, which will be amortized 
either if this attribute offers superior compression or if it is used in more than 
one rule. 
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Furthermore, CIPF differs in the way the above MDL estimate is utilized 
algorithmicaUy. For complexity reasons it is of course impossible to evaluate 
all possible subsets of rules. [Quinlan 93] reports serious difficulties using greedy 
hill-climbing and therefore resorts to expensive simulated annealing. In contrast, 
in our setting a hill-climbing strategy seems to work quite satisfactorily in com- 
bination with a preprocessing step as follows: 

- Sort all rules induced by the learner in descending order of their estimated 
accuracy. 

- Starting with an empty theory, always add the next best rule to the current 
theory as long as the MDL estimate improves, i.e. a better compression is 
achieved. 

The output of this algorithm is a subset of all the originally induced rules 
which will be a good, if not the best theory for the training data in terms of 
the currently available attributes. Exactly this subset will be used to determine 
which attributes are to be kept and which are to be dropped for the next cycle 
of induction: exactly those (original and constructed) attributes are kept which 
appear in at least one rule of the selected theory. This subset of rules is also used 
as input for the constructive induction module. 

Globally, CIPF does a kind of hill-climbing in the representation space, com- 
puting new attributes and new sets of rules utilizing these attributes as long as 
the overall cost estimate (as measured by the above MDL formula) improves. 
This last theory is then the overall output of CIPF. Empirically this simple strat- 
egy seems to produce good results, as indicated by the experiments reported in 
the next section and it is effectively computable. Also, to repeat its two main ad- 
vantages, the strategy includes no user-settable parameters, and also it does not 
require a secondary training set (train-lest sel), like e.g. AQ17-MCI, to evaluate 
the quality of constructed attributes. 

4 E x p e r i m e n t s  

In the experiments reported here, CIPF's performance was compared to C4.5 on 
the same training and test sets. C4.5 is a very sophisticated, production quality 
selective learner. It was run with default settings and the results reported are 
for pruned decision trees 4 on the test set. 

4.1 Monk ' s  P rob lems  

The Monk's problems [Thrun et al. 91] are three artificially constructed prob- 
lems in a space formed by six nominal attributes having from two to four possi- 
ble values. These three problems are abbreviated to Monk1, Monk2, and Monk3 
in the following. CIPF in its current status gives mixed results for the Monk's 

4 Typically pruned trees yielded better accuracy than both unpruned trees and rule 
sets generated from the tree. 
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problems. From table 1 we see that Monkl was solved without problems. CIPF 
finds the correct theory: 

true <= (jacket_color = red) 

true <= (head_shape = body_shape) 

This is no surprise as this example is simple and CIPF has the necessary 
constructive operator compare atlributes of the same type at its disposal. C4.5 
achieves only 72.4% accuracy for the pruned decision tree, but is able to reach 
the full 100% for the rules extracted from this tree. 

Performance on Monk2 is far from optimal, though. Comparison with C4.5, 
which is better, but also far from optimal, seems to indicate missing constructive 
operators. We believe that full negation and disjunction (currently not available 
in CIPF) may solve Monk2. Alternatively a student at our department is cur- 
rently finishing work [Kramer 93] on an interesting general constructive operator 
computing extensional products of nominal attributes. This operator seems to 
be able to solve Monk2 very well. 

Results for Monk3 are quite good, but seem to indicate that CIPF has a 
problem with noise. Potential answers to noise in CIPF will be briefly discussed 
in the next major section. For C4.5 the unpruned tree is slightly better than 
the pruned tree, which is not what we expected knowing that the training set 
exhibits 5% class noise. 

To give an impression of both the inferiority of the simple learner currently 
used in CIPF and the strong abilities of the CI component we have included into 
table 1 accuracies of the theories induced in the first step (just before the first 
constructive induction step is taking place). Typically these values are signifi- 
cantly worse than those of C4.5, but with the help of the strong CI component 
CIPF is able to reach and sometimes even outperform C4.5's predictive perfor- 
mance! 

Additionally we would like to mention that some learning system exhibit a 
much better performance than C4.5 on the Monk's problems, e.g. AQ17-HCI 
achieves 100%, 93.1%, and 100% on Monk1, Monk2, and Monk3 respectively, 
and a specialized form of Backpropagation yields 100%, 100%, and 97.2% re- 
spectively. As already mentioned above we interpret this as an indication for 
missing constructive operators appropriate for especially the Monk2 problem. 5 

4.2 Two Medical  Datase ts  

For another set of experiments we used two medical datasets, one being the 
hepatitis data available from the Machine Learning Archive at Irvine, the sec- 
ond being numerical descriptions extracted from cardiac thallium scintigrams 
recorded at the University of Vienna Medical School [Prem et a]. 93]. The first 

5 AQ17-HCI has at its disposal a very special CI operator which perfectly fits the 
Monk2 problem, thus explaining its impressive performance on this problem. 
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Table 1. Monk's Problems: accuracies (percentages) for CIPF after the first and the 
final cycle of induction and for C4.5. 

II II c PF firstlC'PF finallC4"511 
MONK1 70.78 100 72.4 
MONK2 66,92 80.7 83.3 
MONK3 92.36 97.2 97.2 

set exhibits a good mixture  of numerical and boolean at t r ibutes  with a few 
values missing. The  second set is of comparable  size (159 examples total),  but  
uses 45 numerical at tr ibutes,  which we strongly believe to be redundant.  The 
classification task for both  datasets is to separate ill from heallhy patients.  Ex- 
per iments  were performed with the examples split randomly into equally sized 
training and test sets for ten runs. Tables 2 and 3 show the respective results of 
these experiments.  

Tab le  2. Hepatitis data: average number of errors and average accuracy for ten test 
runs for CIPF and C4.5. 

[[ JJ Etr~ 
CIPF[ 14.6 181.29 
C4.5 1 3 . 3  82.95 

Tab le  3. Scan data: absolute number of errors and their average for ten test runs for 
CIPF and C4.5. 

l] gu.  IIl1213141516171819 laollAverage #Errors[[ 
CIPF I 19 15 20 22 16 14 20 20 19 18 18.3 [ 
C4.5[ 23 22 25 22 20 21 29 30 19 22 23.3 I 

The absolute number  of errors translate into an average error of 18.71% and 
17.05% for C I P F  and C4.5 for the hepatit is data,  and into 22.87% and 29.13% 
average error respectively for the scan data.  So C I P F  performs slightly worse 
than  C4.5 on the first set, but  significantly bet ter  on the second set. We at t r ibute  
C4.5 ' s  bet ter  performance on the hepatit is data  to both C4.5 ' s  sophisticated 
handling of noise and to the fact that  C I P F ' s  general medical heuristic is not 
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applicable here. 6 For the scan data, in almost all cases CIPF is significantly 
better than C4.5. This is a direct consequence of CIPF's  constructive abilities. 
In all these test runs CIPF either constructs an attribute at most one atLribuie 
value is "out of the healthy range" (see above description of the 3a-heuristic), 
which is a good way of characterizing healthy people. Or CIPF constructs the 
opposite attribute more than a certain number of attribute values (typically 5) 
are "out of the healthy range", which is well-suited for characterizing people 
exhibiting serious health problems. 

4.3 I n d u c t i v e  Logic P r o g r a m m i n g  Exercises  

Encouraged by the original INDUCE system [Dietterich & Michalski 81], which 
was able to learn slruclural descriptions from examples, and by the current suc- 
cess of LINUS [Dzeroski & Lavrac 91], which essentially translates I LP problems 
into an attribute-value representation for efficient induction, we started to exam- 
ine two classical ILP exercises: illegal king-rook-king (KRK) chess endgame posi- 
tions [Fuernkranz 93] and finite element mesh design [Dolsak & Muggleton 92], 
[Dzeroski & Bratko 92]. 

KRK is very easily represented in CIPF. The example tupels of the relation 
i l l e g a l / 6  are transformed into six basic attributes encoding rank and file of all 
three pieces. Background knowledge in the original formulation consists of defini- 
tions for =/2, l ess_ than/2  and ad jacen t /2 .  Only the last predicate a d j a c e n t / 2  
had to be encoded as a CI operator, as both Equal-To and Less-Than are pre- 
supplied CI operators in CIPF. Induced theories usually resemble the approxi- 
mate theories given in [Fuernkranz 93]. A sample theory derived by C tPF  from 
100 training examples looks as follows: 

[I] illegal <= (BLACK-KING-FILE = WHITE-ROOK-FILE) 

[2] illegal <= (BLACK-KING-RANK = WHITE-ROOK-RANK) 

[3] illegal <= (adjacent BLACK-KING-FILE WHITE-KING-FILE) and 
(adjacent BLACK-KING-RANK WHITE-KING-RANK) 

[4] illegal <= (adjacent BLACK-KING-FILE WHITE-KING-FILE) and 
(BLACK-KING-RANK = WHITE-KING-RANK) 

This approximate theory was tested with 5000 test examples yielding an 
accuracy of 98.4%. This is consistent with [Fuernkranz 93] which proves a theory 
consisting of the first three clauses 1,2,3 to be 98.451% correct. 

For the mesh design domain we did a manual translation along the lines 
implicitly suggested in [Dolsak & Muggleton 92]. All the one-argument predi- 
cates were translated into three nominal attributes with the appropriate sets 

6 Still CIPF discovers regularities missed by C4.5, like that all female patients are 
healthy. This can be attributed to directly learning rules instead of decision trees. 
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of possible values. Ignoring all two-argument attributes encoding structure 
( n e i g h b o r / 2 ,  o p p o s i t e / 2  and same~2) C I P F  achieves the surprising results 
shown in table 4 (results for FOIL,MFOIL,and  G O L E M  were taken from 
[Dzeroski & Bratko 92]). One sample rule induced covering 22 positive and no 

II IIFOILIMFOILIGOLEMICIPFII 
A 17 22 17 21 
B 5 12 9 13 
C 7 9 5 10 
D 0 6 l l  23 
E 5 10 10 26 

I[S~ll 34 I 59 54 93 

Table  4. Mesh Design: Number of Correctly Classified Examples. 

negative example looks like the following: 

N=I <= (LOAD = 0NE_SIDE_LOADED or  NOT_LOADED) and 
(EDGE-TYPE = NOT_IMPORTANT) 

The ability to form appropriate subsets of possible values of an at t r ibute 
(called internal value disjunction in AQ17-derived systems) seems to provide 
useful contructed attributes for this learning task. So C I P F  without any struc- 
tural  information performs almost twice as well as FOIL,  MFOIL, or G O L E M .  
Still even 93 correctly classified examples translate to only 33.5% accuracy. So 
there probably is a good chance of achieving much better results by means of a 
more careful analysis of the mesh design problem itself. 

For translating and using the complete original specification automatically 
we will have to encode constructive operators capable of recursively inspect- 
ing objects linked to the object in focus and of summarizing properties of these 
objects. We are currently designing such operators. These would allow construct- 
ing attr ibutes like this node has a neighbor node with the property ( e d g e - t y p e  
= f i x e d )  or this node has at least two o p p o s i t e  nodes. Naturally the property 
to be learned - number of finite elements for this node in the mesh d o m a i n -  
could also be represented as an at tr ibute of the example available for inspection 
by constructive operators. Thus for the mesh domain attributes like number of 
finite elements of my same neighbor could be constructed which effectively rep- 
resent a kind of recursive definition. Once such recursive definitions are allowed, 
additional control will be needed, e.g. to prevent the construction of cyclic at- 
tributes useless for effective prediction. For instance an at tr ibute the number of 
finite elements of my same neighbor's same neighbor would not make sense for 
prediction, as it references the node in question itself. Pitfalls of recursion in ILP 
are dealt with at length in [Cameron-Jones & Quinlan 93]. 
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A constructive induction system equipped with such operators might offer an 
alternative perspective 7 on ILP, possibly providing a more natural fit for data 
in object-oriented representations or databases. 

5 C o n c l u s i o n s ,  R e l a t e d  W o r k ,  a n d  F u r t h e r  R e s e a r c h  

Incorporating the MDL Principle into CIPF as the single, uniform heuristic for 
evaluating theories and thereby implicitly guiding constructive induction proved 
valuable. The MDL Principle combines both accuracy and complexity of a theory 
into a single uniform measure. Thus CIPF does not require any ad-hoe measure- 
ments or user-defined evaluation functions of possibly questionable quality and 
can nonetheless use all of the available training data for induction. Other ap- 
proaches (e.g. AQ17-MCI) have to resort to splitting the training data into two 
or more sub-parts performing some sort of cross-validation on these sub-parts. 
Such an approach may be more expensive computationally and may miss reg- 
ularities in the data. Nonetheless, on a systems level, CIPF certainly is most 
closely related to and influenced by the multi-strategy system AQ17-MCI. The 
main difference is the way control is imposed on constructive induction. CIPF 
eagerly tries to use every opportunity for constructive induction until the MDL 
principle stops this cycling process. AQ17-MCI takes a different approach: re- 
lying on a set of meta-rules [Aha 92], it tries to identify the need (when) and 
the directions (how) for a change in the representation space. On the operator 
side AQ17-MCI seems to be more mature especially regarding so-called deeon- 
structors. It would certainly be interesting to compare both systems on some 
tasks using the same set of operators in both systems. A further difference is our 
aiming at emulating and extending ILP in a constructive induction framework. 

Principled Construclive Induction is an interesting concept introduced in 
[Mehra et al. 89]. Geometric interpretation of the various constructors and the 
notion of linear separability is used to guide the selection of appropriate con- 
structors. These ideas might have interesting implications for CIPF, too. 

The problem of language fitting is also mentioned and discussed in 
[Matheus 90] in the context of the CITRE system and a framework for con- 
structive induction. This approach uses additional background knowledge in two 
different ways when constructing attributes. Domain-knowledge constraints are 
used to eliminate less desirable new attributes beforehand and domain-dependent 
transformations generalize newly constructed attributes even further in ways 
meaningful to the current problem. Though these ideas do not currently fit di- 
rectly into CIPF's schema for constructive induction, they might still point to 
valuable further improvements possible for CIPF. 

Our further research directions for CIPF include: 

- Replacing all other heuristics currently employed by CIPF (e.g. the Laplace 
estimate as a search heuristic guiding the selective learner) by the MDL prin- 
ciple [Tangkitvanich &5 Shimura 93]. We have already implemented a simple 

7 at least at the level of implementation 
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selective learner guided by MDL instead of some accuracy est imator plus 
stopping criterion. Preliminary experiences seem to suggest robustness re- 
garding noise but  a bias towards over-general theories. 

- Identifying and implementing additional generally useful constructive oper- 
ators. 

- Improving the selective learner: for instance, the stopping criterion could be 
modified to take into account the results of the evaluator. From the worst 
rule still included in the current rule set according to the MDL principle a 
stronger stopping criterion (like minimal accuracy) could be estimated. 

An additional endeavour is the search for learning problems at the right level of 
difficulty. Unfortunately, most of the public machine learning databases at Irvine 
seem to be easy [!tolte 93]. Therefore the best one can hope for for a system like 
C I P F  (and other constructive learners) is to be on a par with sophisticated se- 
lective learners (e.g. C4.5) for such databases. We are looking for more difficult 
and complex learning tasks (tasks where it is hard to define an adequate repre- 
sentation language beforehand), which will allow constructive induction systems 
to really show their abilities. 
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