
B M W k Rev i s i t ed

General izat ion and Formal izat ion of an
A l g o r i t h m for De tec t ing Recurs ive Relat ions in

Term Sequences

Guillaume Le Blanc*

LRI, URA 410 du CNRS, Bs 490, Universit6 de Paris-Sud,
F-91405 Orsay Cedex, France

E-mall: Guillaume. Le- Blanc@lri.fr

Abs t rac t . As several works in Machine Learning (particularly in Induc-
tive Logic Programming) have focused on building recursive definitions
from examples, this paper presents a formalization and a generalization
of the BMWk methodology, which stems from program synthesis from
examples, ten years ago. The framework of the proposed formalization is
term rewriting. It allows to state some theoretical results on the qualitie s
and limitations of the method.

1 I n t r o d u c t i o n

Detecting recursive relations in term sequences is likely to have a number of
applications in Machine Learning, Theorem Proving and other fields. During
the last seventies and early eighties, an algorithm called BMWk (for Boyer-
Moore-Wegbreit-Kodratoff) came out to be very fruitful in the field of program
synthesis from examples [5, 7, 8, 19]. Unfortunately, this topic has sunk into
oblivion mainly as its protagonists decided to investigate new ways of automatic
programming since program synthesis from examples seems too difficult.

Recently, many Machine Learning research workers - especially in the field of
Inductive Logic P r o g r a m m i n g - have come to the conclusion that it is essential
to be able to learn recursive definitions [14].

This background compels us to examine the previous works in program syn-
thesis. We studied the two last implementations of the BMWk algorithm [3, 17].
It appears that the methodology is very interesting and in some way close to the
work of Lapointe and Matwin [1, 11].

Nevertheless, the BMWk methodology as it is exposed by Fargues [3] and
Papon [17] suffers from some drawbacks (no distinction between operators and
utilization strategy, unjustified heuristics, limited framework, conception errors)
so that a formalization is absolutely necessary.

* This work is supported by the Esprit project BRA ILP n ~ 6020 and the french MRT
through PRC-IA

184

Moreover, the BMWk algorithms, as opposed to most of those coming from
Inductive Logic Programming [16, 18] follow strong directing rules and as L O P -

STER. [1] o r a s the algorithm of Idestam-Almquist [4] use fewer examples. These
qualities are very interesting since the search space is gigantic.

In the light of works published during the last decade, it is possible to refor-
mulate the BMWk methodology, building a solid formalization and even gener-
alizing it so that it can handle the Inductive Logic Programming usual bench
marks. The aim of this paper is to present a formalization and a generalization
of the BMWk methodology. As we state in Sect. 6 this results in a powerful
methodology able to synthesize complicated functions with several embedded
level of recursivity directly from examples built with constructors (e.g. synthe-
size polynomial functions or exponential functions from examples built with 0
and s, without any other knowledge).

2 Prel iminaries

In this Sect., we shall give the notations, definitions and the theoretical requis i te
propositions. Most vocabulary of this Sect. is defined and exemplified in a survey
on term rewriting by Dershowitz and Jouannaud [2].

Let 5 r = (f , g, h, . . .} be a finite set of function symbols and let X --
(u, v, w, x, y, z , . . . } be a set of variables. Let T(.T, X) be the set of terms con-
structed using ~ and variables in X and 7"(~') the set of ground terms (i.e. terms
without variables). Let Vat(T) be the set of all the variables which appear in
the term T. Let C, C' and C" be disjoint subsets of 5 c which are designated to be
sets of constructor symbols. Usually constructors are named with letters from
the beginning of the alphabet {b, c, e , . . . } . Constructors stand to represent data
types and non-constructors represent functions (e.g. 0 and s are constructors
for the natural integers 0, s(0), s (s(0))) , . . .). Lists are built with two construc-
tors cons and n i l , the empty list. Instead of cons(x, y) and n i l , we prefer the
notation [xly] and D.

A substitution ~r or 0 is a function from terms to terms which replaces the
variables of a term by other terms (e.g. if~r -- (x/a, y / f (x)} and T -- g(x, g(x, y))
then T~ -- g(a, g(a, f(x)))). A substitution p which replaces variables for vari-
ables and which is bijective is called a variable renaming. Given two terms M
and T, if there exists a substitution 0 such that M0 -- T we say that the pattern
M recognizes the term T or that M subsumes T or that M is a generalization
of T. The subsumption relation defines an ordering on terms. Given two terms
S and T, G is a least general generalization (lgg) if G subsumes S and T and if
all term which subsumes S and T also subsumes G. Two terms S and T unify if
there exists a substitution a such that T~ -- Sa.

If Li and Ri are terms in T(.T', X), the set of equations (Li = R4} defines a
congruence on 7-(.T', X) if f (S1 , . . . , S ,) = f (T 1 , . . . , T ,) whenever Si = ~ for all
i, if for all substitution 0, $0 = T0 whenever S = T and if it is reflexive, transitive
and symmetric. Equations define functions from constructors. For example, the
addition can be recursively defined by s(x) + y = s(x + y) and 0 + y = y. A

1 8 5

destructor is a function which extracts the n TM argument of a constructor term;
c a r and cd r are the destructors of the constructor cons. We use the notation a
and d instead of ca r and cdr; a and d are defined by a([xly]) = x and d([xly]) = y.
We also use the notation adddd(x) for a(d(d(d(d(x))))).

Term rewriting gives a way to calculate equalities. If Li and Ri are terms
in T(~ ' , X), the set of rewrite rules {Li -~ P~} defines a rewrite relation on
T (~ , X) if] (Sa , . . . , S ,) - -* / (TI , . . . , T,~) whenever Si ~ T~ for all i, if for all
substitution 0, S0 --* T0 whenever S --* T and if it is reflexive and transitive (the

notation for the reflexive and transitive closure of ~ is -~). A rewrite system
(namely a set of rewrite rules) terminates if for any term T there is no infinite
chain of rewriting from T. A rewrite system is confluent if for any terms T, U
and V, there exists a term S such that U - - S and V - ~ S whenever T - ~ U and
T--V.

A well-founded ordering is an ordering with no infinite decreasing chain. A
reduction ordering is a well-founded ordering -K on T(.~, X) such that for all
substitution a and all terms T and T', if T -K T' then Tc -< T'cr and such that
for all terms Ti, T and T' , i f T -K T' then f (T 1 , . . . , T i - I , T , ~ + I , . . . , T ,) -<
f(T1,. �9 Ti-1, T', Ti+l , . . . , T,) . The termination of a rewrite relation ---+ is pro-
ved if it is included into a reduction ordering. The sub-term relation defines a
reduction ordering. The sub-term ordering is a particular case of a more powerful
class of reduction ordering called recursive path ordering [2].

3 F u n c t i o n S y n t h e s i s f r o m E x a m p l e s

First and foremost, we have to expose precisely the problem we want to solve.
The BMWk methodology provides a way to compare terms in order to discover
recursive relations among them. The main mechanisms that it uses are term
matching and least general generalization calculus for two terms. Until now, the
framework of BMWk was the LISP language for historical reasons. The examples
have been defined as pairs of LISP lists and the solution of the synthesis as a
LISP function. Since the BMWk algorithms in fact operate on terms we prefer
to avoid this formalism. We use instead the notion of term rewriting [2] which
supplies a more general background and which is closer to logic programming.

Given some examp]es of a function defined on terms by a congruence
reve r se (D) = D
rev~r~<~"]) = [a,,]
~ r . ~ e ([a " , b"]) = [b", ,,,]

r ~ e ~ s ~ ([~ " , b", e"]) = [c", b", ~"]
r e v e r s e (I a " , b", e", d"]) = [d", c", b ' , a"]
the BMWk algorithms generates a recursive definition of that function.

--+ f (x , *)
f([1, v) ---. l1
f([zlY], v) --. f~([zlY], d(v), [a(v)])
f~ ([x], u, z) ---. z

186

f~([zl, zz[y], u, z) --* f~ ([xaly], d(u), [a(u)lz])
a([xly]) ~ x and d([xly]) --* y
Since it does not allow the constant a ' , b', c" or d" to appear in the defini-

tion of the function and since this problem can not always be solved by vari-
abilizing the constants a", b", c" or d" as we will see later, the examples are
written f(Io') = Oer, where ~r is a substitution which contains all the parts
of the example which must not appear in the definition of f . For example, we
write {zl /a", z2/b"}, reverse([x l , z2]) s-. [z~, xx] instead of reverse([a" , b"]) =
[b", a"]. C" will be the set of constructors {a", b", c", d"}, C the set of the other
constructors of the "inputs" {I-l-I, []} and C' the remaining constructors of the
"outputs" (this set is empty in our example).

D e f i n i t i o n l I n p u t / O u t p u t examp le . Given g, g' and C" three sets of con-
structor symbols and &" a set of variable symbols, an example (or Input /Output
example) of a function f is a triple (a, I, O) where a is a ground substitution on
7 - (gUt ' UC", X), I is a term from T(C, X) and O a term from "T(g Ug', X) such
that 1;at(O) C Var(I). We write or, f (I) ~-* 0 for an Input /Output example.

D e f i n i t i o n 2 f u n c t i o n s y n t h e s i s f r o m exampl e . Given {trj, Ij ~ O j } j ~ a
finite set of Input /Output examples from a function f (which defines a con-
gruence = on terms), synthesizing f from the examples means to build a term
rewrite system ~q such that for all j, f(Ij~rj) ~Tz Oj,rj.

The term rewrite system TZ is consistent with respect to f if for all ground
terms I and O from T(C U g' U C') such that f (I) --:~ 0 then f (/) = 0 .

The term rewrite system R is complete if for all ground terms / and O from
7"(C U C' U C") such that if f (I) = 0 then there exists a ground term 0 ' such

that f (I) - -~ 0'.
The term rewrite system 7~ is correct if it is complete and consistent.

Given a set of examples {~j, Ij ~-+ Oj} je j it would be nice to be able to
consider the rewrite system {f(I j) --* Oj} je j . Alas, this rewrite system is not
necessarily consistent with respect to f . In particular, it can be inconsistent
with respect to the examples. Let us see an example. Given two examples from
member, with cr = {x/a", y/b", z/c"}:

tr, member(x, [y, x]) ~-+ true and it, member(z, [x, y]) ~ : fa lse

the rewrite rule member(z, [z, y]) ~ false is contradictory to the examples (be-
cause the first example implies that member(a", [b", a"]) = t rue) .

The method exposed in this paper only handles the case where the rewrite
system is consistent with respect to the example.

R e s t r i c t i o n 3 . Given two examples ~, f (I) ~ 0 and or', f (I ') ~ O' and = the
syntactic equality, if there exists 0 such that f(I'O) = f(Icr) then O'0 = Oh.

The functions r eve r se , p lus , t imes among others (as opposed to member)
meet this restriction (reverse([z , y]) --- [y, x] no matter if x = y or z ~ y).

187

In order to apply the BMWk methodology, the examples need a last trans-
formation which consists in replacing the variables of O by their position in I.
This position is given by the destructors. For example, zeverse([x, y]) --* [y, x]
is turned into r eve r se (z) --* f (x , z) and f([x, y], v) ~ [a(d(v)), a(v)] (since
ad([z, y]) = y and a([x, y]) = x). Since this transformation is not necessarily
unique, we state a new restriction.

R e s t r i c t i o n 4 . Given an example a, f (I) ~ 0 the variables of O must have a
single position in I.

Generally this restriction holds when the previous one holds. Also the func-
tions r e v e r s e , p lus , t imes bear this restriction.

If both restrictions hold, the example a, f (I) ~ 0 is turned into f (I , v) ---*
00, where 0 replaces each variable of 0 with its position in I. Assume, now, we
have a set of rewrite rules { f (Ci , v) ~ Fi}iel .

4 R e c u r s i v i t y

Given a set of rewrite rules { f (Ci , v m) --+ Fi }iel, where v m is the variable vector
Vl , . . . , vm, applying the BMWk methodology roughly consists in "matching two
consecutive terms." The most important restriction of the algorithms described
ten years ago was to only deal with linearly ordered examples. As Jouannaud and
Kodratoff pointed out, the inputs of the examples (i.e. the Ci) have to belong to
an ascending linear domain [5]. This condition still remains when they propose
a methodology for two variables functions [6]. In his P h . D . thesis, Papon [17]
considers recursive relations with a step greater than one but still retains the
linearity condition.

Because of these restrictions, the methodology was only able to handle re-
cursive relations such that f (s k (n)) is a function of f (n) or f([x]l]) is a function
of f(l).

We would like to deal with more complicated definitions. For example, the
Fibonnacci function is given by f (ss(n)) = f (s (n)) + f (n) , f(sO) = sO and
f(O) = sO. We can improve the methodology by defining the notion of recursive
scheme.

D e f i n i t i o n 5 r ecu r s ive scheme. Given -< a reduction ordering on T(C, 9 r, X),
a recursive scheme with respect to _ is a finite set {Me` ~-* {R,~z}l<_p<m,.},~eA
where the Ms and the R~# are terms from T(C, X) such that for all a and all
/3, Ra/3 -.< Me,. The Me` are called the patterns of the recursive scheme and the
R~Z the recursive calls of Ms.

The notion of recursive scheme specifies which kind of recursive relations
will be investigated by the BMWk methodology. The ordering condition is nec-
essary to ensure that the relation given by the method can be calculated (i.e.
the calculus terminates). The recursive scheme for the Fibonnacci function is
{ss(x) {s(=), s(0) r 0 r

188

Given a set of examples, it is not possible to detect a relation corresponding
to any recursive scheme. So, it is necessary to adapt in some way the recursive
scheme to the examples.

D e f i n i t i o n 6 r e c u r s i v e s c h e m e c o m p a t i b i l i t y . Given a set of terms {Ci}ie t,
Ci is recursively recognized by a pattern if it is recognized and if the recursive
calls also recognize some Cj with the same substitution up to a variable renam-
ing.

A recursive scheme is compatible with a set of terms if each pattern recur-
sively recognizes at least one Ci.

This definition is necessary because a relation like f(ss(x)) = f(s(x)) + f (x)
can not be established without some examples like f(sn+2(0)), f(sn+l(O) and
f(8-(0)).

Recall that a synthesis problem is a finite set of rewrite rules {f(Ci, v m)
Fi}iel (Cf. Sect. 3). Given a recursive scheme/~S = {Ms ~ {RsZ}15~<,,~, }seA,
Is is a subset of the set of the indexes of the Ci that Ms recursively recognizes.
We also assume that i belongs to some Is if Ci is recursively recognized by some
pattern.

We say that T~S is complete with respect to {Ci}ieI if each Ci is recursively
recognized by at least one pattern and that it is consistent if each Ci is recursively
recognized by at most one pattern. I f R S is complete and consistent, the Is form
a parti t ion ~ of I.

5 T h e B M W k M e t h o d o l o g y

Now, we can expose the mechanisms of the BMWk algorithms. It can be stated
as four operators or inference rules.

5.1 E x a m p l e

Let us consider first a simple case, the synthesis of the reverse function which
reverses the order of the items in a list. After the preliminary transformation
exposed in Sect. 3 the problem becomes:

Y(D, v) D
f ([xl] , v) --~ [a(v)]
f([x2, xl], v) ~ [ad(v), a(v)]
f([xa, x2, xl], v) --+ [add(v), ad(v), a(v)]
f([x4, xa, x2, xl], v) --+ [addd(v), add(v), ad(v), a(v)]
f([xs, x4, xa, x2, xl], v) -+ [adddd(v), addd(v), add(v), ad(v), a(v)]
with r e v e r s e (x) -~ f (x , x).
Let us call F0, F1, . . . , F5 the right hand sides of the rules. Given the recursive

scheme {[x[y] ~-~ {y}, ~ ~-~ (~} we try to find f([xly], v) as a function of f(y, v').

All index i E I belongs to one and a single I~

189

This can be achieved if there exists a substitution 0i such that Fi+a = FiOi. Alas
the matching between Fi and Fi+1 fails because there is no substitution 0 such
that [1 = [a(v)]O.

The generalizing rule (see Sect. 5.2 for technical details) is designed for this
kind of situation. Let Gi+l = lgg(F/, Fi+l), where "lgg" means the least general
generalization (G4 = lgg(F3, F4) = [add(u1), ad(ux), a(ua)lu2]). Since Fi+l is an
instance of Gi+l, it, is sufficient to find a recursive relation among the Gi to have
a recursive definition for the function f . Now, the Gi sequence is more simple
than the Fi sequence and it is probably possible to find a recursive relation
among the Gi even if it is not possible among the Fi.

When generalizing new variables appear which are a priori different for each
of the Gi because the least general generalization is defined up to a variable
renaming. Their renaming (so that they become the same for each Gi) is quite
complex and although Papon [17] and Kodratoff have studied it, it needs further
work.

In our example, the new variables are called Ul and u2. Let f~ be the function
which calculates the generalizations and let hi and h2 be the functions which
calculate the substitutions on ua and u2. The calculus of f can be decomposed
into the set of rules :

hx([zd, v) --* d(v) (h2([Xl], v) ~ [a(v)]
h~([~, *d, ~) -~ d(~) / h~([.~, ~d, ~) -~ [~(~)]
hl([X3, z:2, za], v) ~ d(v) h2([xa, x2, za], v) --~ In(v)]
h~([.,, .~ , .~ , . ,] , v) -~ d(~) h~([.~, .~ , .= , . ,] , ~) -~ [a(~)l
hl([xb,z4,zs , z2, z,], v) --* d(v) h2([xb, x4, xa, x2, xal,v) ---* [a(v)]

which defines the substitutions on ul and u~,

f~([], v) ~ 0
f~([Xl], Ul, U2) "~ U2
f~([x2, xl], ul, u2) ---+ [a(u,)l~2]
f~([z3, x2, Xl], Ul, U2) ---+ [ad(ul), a(ul)[U2]
f~([X4, ~'3, X2, xa], ttl, tt2) ~ [add(ttI), ~d(ul) , a(ul)tu=]
f~([zs, z4, ~:a, z2, xl], ua, u~) ~ [addd(ul), add(ul), ad(ut), a(ul)lu2]
which corresponds to the generalized part (using the new variables ul and

U2),
f([~qy], v) ~ f~([zly], h~([xly], v), h2([zly], v))
f(I], V) --~ f~(~, V)
the recursive definition for f .
The previous transformation consists in applying the generalizing rule. Now,

since hi and h2 are constant it is possible replace their rules with:
hi(x, v) .i+ d(v)
h~(~, v) -. [a(v)]
this process is called identifying.
The only remaining problem is the synthesis of f~. Following the new recur-

sive scheme {[zl, z~ly] ~ {[~2[Y]}, [x] ~ r it is possible to match F[with F[_ 1
(the right hand sides of the rules defining f~) since F[is an instance of F[_ a.
This yields the constant substitution {ul/d(ua), u2/[a(ul)lu2]}. The functions

190

g~ and g~ calculate these substitutions. Since they are constant, the identifying
rule applies and leads to the rewrite system :

g~(ag, l t l , U2) -"+ d(721)
g~(=, ul, u~) -+ [a(~1)1~2]
f~([x], ul, u2) -"+ u2
f~([xa, x21M, u~, ~) --+ f~ ([~21M, gi([x~, x21y], ~1, ~2), g~([~, ~ly], ~ , ~))
h~(~, v) -~ d(v)
h~(~, v) ~ [a(~)]
f~(~, v) ---+ fl
f([xly], v) --+ f~([xly], h~([zly], v), h~([xly], v))
f(fl, ~) ~ f~(N, v)
Finally, replacing constant functions by their values and adding the definition

of the destructors a and d, the system becomes more readable :
r e v e r s e (x) ---+ f (x , x)

f([xly], v) ---+ f~([xly], d(v), [a(v)])
/~([~], ~1, ~) ~ ~
:~([xl, x2IY], ul, u2) ~ /~ ([x2[y], d(ul), [a(ul)lu2])
a([xly]) --+ x and d([~ly]) --+ y
The algorithm described in the thesis of Papon [17] synthesizes this program

since the examples have an ascending linear domain [5] (i.e. a domain which is
described by some predicates ri(x) = r0(di(x)) where d is made up of destruc-
tors).

Notice finally that the methodology needs a minimum number of four exam-
pies to yield this result.

5.2 I n f e r e n c e R u l e s

This section is rather technical and can be skipped by the reader who does not
need a deep understanding of the BMWk methodology.

Assume that we have a set of rewrite rules and a set of recursive schemes
(see the notations Sect. 4). When necessary we will choose a compatible recursive
scheme to apply one of the following inference rules :

I d e n t i f y i n g to synthesize the constant function on some domains.
Given a recursive scheme without recursive calls.

{ f (Ci ,v m) ~ F i } i ~ t i fV~, i i E l ~ = r
{f(M~, v m) --+ F~},eA

This means that if it is possible to group some Ci in a set where f(Ci, v '~)
is constant and has the value Fa and if the pattern Ma recognizes these Ci
(e.g. Ma is the least general generalization of the Ci) then it is possible to
replace the rules f(Ci, v "~) --+ F~ by a single one f (M~, v") --+ F~. This
corresponds to infer by induction that f(C, v m) is constant for all term C
recognized by Ms. In particular, if f is constant on all the examples it is
possible to infer that f is constant on any entry.

191

Gia2
Matching condition on Fi

Gi# iDt

H i ~ ~ Hi#~2
Hit~2

Generalizing condition on Fi

M a t c h i n g to detect recursive relations and synthesize a recursive definition. If
it is possible to find some instances of Fia and Fiz, into each term Fi (Cf. the
figure "Matching condition on Fi ") and if Ci is greater than Ci# and Ci#,
then some recursive relation like f (n) = h(n, f (n - 1, gal(n), g~2(n)), f (n -
2, g#q(n), gz,2(n))) holds. The purpose of the matching rule is to detect such
a recursive relation.
Given a recursive scheme complete with respect to {Ci}iez, if for all ~ and
all i in I~, Fi = H,[u~/Fi~[v~/Giz~, . . . , vm/Giz,,]]~<a<r~ (Cf. figure), then
the following inference rule applies :

{ f (C i , v m) ~ Fi}iei
{ha(Ci, v m , u rn~) -'~ Hi}aEA,iEI ,~

{ ga[3k (Ci , v m) ~ Gi#k } aE A,iEl,,,l <#<m~,l <k <rn
{f(M,~, v '~) ---* h,~(M,~, v m , f (n c ~ , g~(M~, v'n))'n'~)}~eA

with gaz(z, v m) = g,~/~l(z, v'~) , . . . , ga~,~(z, v m) and f(na[3, g~#(Ma, vm)) ' ~
= f (R a t , g~x(M~, v~)) , . . . , f (R~m~, gamo(Mc~, Vm)). This rule applies each
time the Fio match some disjoint subterms of Fi. Such a matching does not
always exist. If it fails only on few examples it is possible to slightly modify
the recursive scheme in order to deal with the failure cases as particular
c a , s e s .

Genera l iz ing to prepare the examples before applying the matching rule when
it does not apply. It is not always possible to find embedded instances of
Fia in Fi in order to apply the matching rule. But it could be possible to
find some term F[~ "which looks like" Fip. In that case it is possible to
eliminate the differences between F/~# and Fit~ when replacing F[a by Gi#,
the least general generalization of F[~ and FiE (Cf. the figure "Generalizing
condition on Fi "). The idea beyond this technique is to replace the wrong Fi
sequence by the better sequence obtained when elimating the subterms Hijk
(Cf. figure). This very important idea has been discovered by Kodratoff [7].
Given a recursive scheme complete with {Ci}iej, for all ~ and all i in I~ let

I ! Fi = F i[u~/F~a]l<_t3<_m~. Given Gir the least general generalization of Fia

192

and F[Z, and F[a = Giz[uf fHial , . . . , up~Hi,p], the following inference rule
applies :

{f(Ci , V m) -"* Fi}iE1
{haflk(Ci, v m) -'+ Hiok }aea,iel,,,,l<O<m,~,l<_k<p,~
{fta(Ci, vm, UP'*) "-+ U[u3/Git3]l<~O<_m~, }aEA,IEI,,,
{ f (Ma, v m) ~ f~(M~,, v m, ha#(Ma, vm) m~))aeA

with notations similar to those of the matching rule. This rule applies when
the matching rule does not, so that it constitutes in some way an a t tempt to
force the matching. When generalizing, new variables appear. The renaming
of these variables is a real problem that Papon explains in his thesis [17].

C o m p o s i n g to cut a complex problem into two sub-problems.

{f(Ci , V m) "-'-> Fi}iEl
if Fi = Gi[u/Hi]

{h(Ci, V m) ~ Hi}iEl
f (x , V m) ~ g(x, V m, h(x, vm))

This inference rule splits the terms Fi into two subterms Gi and Hi. This
rule is difficult to use because many cuts are a priori possible, whereas most
of them lead nowhere.

6 R e s u l t s

Now, we shall state a few general results about the qualities and limitations of
the BMWk methodology. All the following results apply to any implementation
of the method. The formalization we gave has the advantage to yield to very
precise results on synthesized functions. We state below the most important
ones.

P r o p o s i t i o n 7 i n f e r e n c e t e r m i n a t i o n . For all sets of examples and all cho-
ices of recursive schemes lhere is no infinite chain of inferences.

Proof. Build a well-founded ordering which decreases with the inferences.

This result is very interesting because it ensures that the choice of a "wrong"
inference or a "wrong" recursive scheme has no other consequence than delaying
the final result. We can also show that the number of recursive schemes com-
patible with the domain is finite, that the number of variable renamings for the
generalization is finite and that the number of uses of the composing rule is also
finite thus there is a finite number of choices. Alas the search space is quite big.

P r o p o s i t i o n 8 c o r r e c t i o n on t h e e x a m p l e . Given or, I ~ 0 an example and
T~ a rewrite system calculated by the BMWk methodology, I~--~n Oa.

Proof. Show that if T~ ~- 7~ ~ then the relation - - n is a subset of ---**~,.

193

This means that the examples can be calculated from the recursive definition
given by the method. It was not always the case with the algorithm of Fargues
[3] and Papon [17].

P r o p o s i t l o n 9 t e r m i n a t i o n . The rewrite system given by the BMWk method-
ology terminates if all the recursive schemes are valid with respect to the same
recursive path ordering (in particular if it is the subterm ordering).

Proof. Expand the ordering so that it decreases on the calculated rewrite rules.

According to the last proposition, the BMWk methodology restricted to sub-
term ordering generates term rewrite systems which terminate (i.e. for all pos-
sible evaluation strategies, the use of the calculated recursive definitions always
leads to a value).

P r o p o s i t i o n 10 con f luency . Given a recursive scheme T~S used by the method-
ology, if there does not exist any pair of patterns which unify and if there does
not e~cist any variable which has more than one position in a given pattern then
the term rewrite system built by the BMWk methodology is confluent.

Proof. Technical, show that the term rewrite system is orthogonal (a class of
rewrite systems which are known to be confluent).

The confluency property ensures that the rewrite rules define a function (i.e.
given an input the calculated recursive definition leads to at most one output) .
The hypothesis on the recursive scheme is not very restrictive so that it can hold
in most cases.

P r o p o s i t i o n l l c lass o f t h e s y n t h e s i z e d f u n c t i o n s . The BMWk algorithm
restricted to subterm ordering and natural integers can not synthesize a func-
tion which increases faster than the exponential functions but it can synthesize
exponential functions.

This means that for any function f synthesized by the BMWk algorithm
restricted to subterm ordering and natural integers, there exists a constant c
such that If(z)[<: cl*l. The methodology restricted to unary functions on nat-
ural integers synthesizes exactly the functions f (n) = ~ i Pi(n)c'~ where Pi is
a polynomial with positive rational coefficients and ci a positive natural in-
teger constant. This result is very intuitive because of the analogy between
matching and substraction so that f (n) is a solution of some linear equation
f (n + k) = ~-'~i<k ai f (n + i) where ai is an integer.

The methodology is able to synthesize other functions like Ackermann's func-
tion. But it is quite improper to insist on this fact because only the recursive
scheme of Ackermann's function is complicated and the methodology gives no
indication of how to choose the recursive scheme. More important is the fact that
functions such as f (z) = z ~ can not be synthesized with the subterm ordering
restriction (the definition x ~+1 = x • xy is validated by the subterm ordering).

194

It is quite difficult to define in the general case the class of the synthesized
functions even with the subterm ordering restriction. Generally, when the sub-
term ordering restriction holds, BMWk can not synthesized functions which
increase faster than the exponential functions but there exists some pathologi-
cal cases (functions which increase arbitrarily fast). Moreover, BMWk can not
synthesized functions which increase too slowly (logarithm,square root, . . .).

7 R e l a t e d W o r k s

In program synthesis from example, Summers [19] was the first to introduce the
idea of comparing two terms Fi and Fi+l in order to discover that the first one
is an instance of the second one (Fi+l = FiO). Then Fargues showed that the
substitution 0 may be considered i dependent so that the same search process
should apply with O instead of F and Kodratoff refines the method considering
Gi the least general generalization of Fi and Fi+l in order to deal with the case
where 0 does not exist [3, 7]. Then Kodratoff and Papon introduced a variable
renaming algorithm for the Gi set [8, 17] to implement the idea of Fargues and
Kodratoff.

Up to now, there exists only two implementations of BMWk [3, 17]. These
implementations contain a conception error concerning the generalizing rule (see
Sect. 5.2) which entails that the synthesized program does not always calculate
all the examples. Despites this problem these algorithms are usually able to
synthesize unary functions on linear domains (lists, integers, stacks). Intro-
ducing the notion of recursive scheme, we made a strong generalization of the
method which allows to synthesize functions of any arity and needing several
recursive calls so that it is now possible to synthesize functions on other data
types such as trees, heaps, terms,...Nevertheless, this is not.yet implemented.
Moreover, our formalization (Sect. 5.2) allows to correct the conception error in
the algorithms of Fargues and Papon (Proposition 8).

Recently, in Inductive Logic Programing several works came close to the
BMWk methodology. Ling pointed out the necessity of learning recnrsive pred-
icates 3 [14] and several algorithms have been proposed to achieve this task ([16,
18] among others). Most of these algorithms need numerous examples and even
more counter-examples. Also, Ling has proposed an algorithm to learn from
agood examples" [12, 13]. The notion of "good examples" is very close to our
work since the BMWk methodology is able to learn from very small sets of
examples. The algorithm of Lapointe and Matwin [1, 9, 10] could be seen in
some way as a particular case of the work of Fargues although they now develop
it in a different way. Finally, Idestam-Almquist [4] showed how to use subterm
positions to discover recursive relations. This is close to the idea of Summers
which consists in replacing output constants by their position in the input.

Among all the Inductive Logic Programing works, those of Lapointe and
Matwin are the closest to BMWk. These algorithms are strongly driven by the

3 Following the work of Kleene, Ling emphasized that some theories are not finitelly
axiomatisable without using recursive definitions.

195

examples so that they avoid useless calculus and also use the notion of subterm
unification. BMWk is more powerful since the class of the functions it synthesizes
is larger. For example, it can synthesize all the polynomial functions from exam-
ples only containing the constructors 0 and s (this entails that the definitions
BMWk built could contain an arbitrary number of recursivity levels) whereas
the algorithm of Lapointe and Matwin can not synthesizes such functions with-
out using some background knowledge. The BMWk methodology restricted to
natural integer is based on the principle that if f is a polynomial function of
degre d then f (n + 1) - f (n) is a polynomial of degre d - 1. This analogy is
possible since u = vO entails NI = Ivl + 101. It is the original idea which is behind
the BMWk methodology.

All the functions that can be synthesized with the algorithms of Lapointe and
Matwin [1, 9, 10] can be synthesized by BMWk. The main difference between
their work and BMWk is rather technical. With the notations of Sect. 5.2, their
algorithms try to find some relations of the form Fi = Hi[Fi-k] with Hi H~O k
and H ' = at[H~_z] where 0 and ~ correspond to what they call some generating
terms. BMWk search for relations of the form Fi = Hi[Fi-lOi] where Hi and Oi
could verify some similar relations or may be constant, which is obviously more
general. The reasons why BMWk use the substitution Oi which does not appear
in the work of Lapointe and Matwin are described in Sect 3 (non-instanciated
examples, positions of input variables in the output). The other differences are
that some of the algorithms of Lapointe and Matwin can use background knowl-
edge whereas BMWk does not 4 and that they usually does not need consecutive
examples whereas BMWk does.

The last important difference between BMWk and the Inductive Logic Pro-
gramming usual methods is that it can not use instanciated examples (see Sect.
3) whereas the later usually only use instanciated ones.

8 C o n c l u s i o n

Our work confers a new youth to the old BMWk algorithms. This is achieved by
separating four fundamental operators from the calculus strategy. Introducing
the notion of recursive scheme, we have done a strong generalization with respect
to the "state of the art" of the BMWk methodology. This results in gain of power.
Since our formalization uses the framework of term rewriting, we are able to
state precise results on the calculated recursive definitions. Last, but not least,
the BMWk methodology supplies a restricted search space and needs very few
examples so that it is likely to be very useful in Machine Learning (in particular
in Inductive Logic Programming).

The methodology is also interesting because it can be improved. First, to
handle example sets which contain a, I ~ O and or', I ' ~ O I such that there
exists 0, I0 = I'O and O0 # O'0 (our current work). This allows to deal with
the member predicate, for example. By the way, it is probably possible to supply

4 Nevertheless BMWk is able to synthesize the auxilliary knowledges that it needs.

196

background knowledge to the methodology in order to synthesize functions like
s o r t which use the knowledge of the predifined < predicate. Finally, it is very
easy to extend the methodology to the synthesis of relations (more than one
output is associated to a given input, in([a", b", c ']) = a" or b" or c ') .

Acknowledgements

I would like to gratefully thank C~line Rouveirol, Jean-Francois Puget and Jos~
de Siqueira for their helpful advices and Yves Kodratoff my thesis advisor.

References

1. David W. Aha, Charles X. Ling, Stan Matwin, and Stephane Lapointe. Learning
singly-recursive relations from small datasets. In F. Bergadano, Luc De Raedt,
Stan Matwin, and S. Muggleton, editors, Proceedings of the IJCAI workshop on
inductive logic programming, Chamb6ry, France, 1993.

2. Nachum Dershowitz and Jean-Pierre Jouannaud. Handbook of Theorical Computer
Science, volume B, chapter Rewrite Systems, pages 243-320. MIT Press, 1990.

3. Jean Fargues. Une mdthodologie pour la synth~se de programme : application ~ la
synth~se h partir d'exemples. Th~se, Universitd Pierre et Marie Curie (Paris VI),
June 1978.

4. Peter Idestam-Almquist. Recursive anti-unification. In Stephen Muggleton, editor,
Proceedings of the third international workshop on Inductive Logic Programming,
pages 241-253, Ljubljana, Slovenia, March 1993. J. Stefan Institute.

5. Jean-Pierre Jouannaud and Yves Kodratoff. Characterization of a class of func-
tions synthesized from examples by a SUMMER's like method using a BMW
matching technique. In Proceedings of the 6th IJCAI, pages 440-447, 1979.

6. Jean-Pierre Jouannaud and Yves Kodratoff. A methodology for two variable func-
tions synthesis from examples. CRIN universit~ de Nancy, 1979.

7. Yves Kodratoff and Jean Fargues. A sane algorithm for the synthesis of LISP
functions from example problems : the Boyer and Moore algorithm. In Proceedings
of the AISB meeting, pages 169-175, Hamburg, 1978.

8. Yves Kodratoff and l~ric Papon. A system for program synthesis and program
optimization. In Proceedings of the AISB meeting, pages 1-10, Amsterdam, 1980.

9. St~phane Lapointe, Charles Ling, and Stan Matwin. Constructive inductive logic
programming. In Stephen Muggleton, editor, Proceedings of the third international
workshop on Inductive Logic Programming, pages 255-264, Ljubljana, Slovenia,
March 1993. J. Stefan Institute.

10. St~phane Lapointe, Charles Ling, and Stan Matwin. Constructive inductive logic
programming. In Ruzena Bajcsy, editor, Proceedings of the 13th IJCA1, volume
Vol. 2, pages 1030-1036. Morgan-Kaufmann, August 1993.

11. St~phane Lapointe and Stan Matwin. Induction de programmes logiques r~cursifs
fondde sur la sous-unification. In PRC-IA GRECO, editor, Acres des 1 ~res
Journdes Francophones d'Apprentissage et d'Explication des Connaissances, pages
3-14. AFIA AFCET, PRC-IA GRECO, April 1992.

12. Charles Xiaofeng Ling. Inductive learning from good examples. In Proceedings of
the 12th IJCA1, volume Vol. 2, pages 751-756, Sydney, Australia, August 1991.
Morgan-Kaufmann.

197

13. Charles Xiaofeng Ling. Inductive Logic Programming, chapter Inductive learning
from good examples, pages 113-129. APIC. Tuting Institute Press, academic press
edition, 1992.

14. Charles Xiaofeng Ling. Inventing necessary theoretical terms to overcome rep-
resentation bias. In Proceedings of the ML9P workshop on biases in inductive
learning, Aberdeen, Scotland, July 1992.

15. Stephen Muggleton, editor. Inductive Logic Programing. APIC. Turing Institute
Press, academic press edition, 1991.

16. Stephen Muggleton and C. Feng. Inductive Logic Programming, chapter Efficient
induction of logic programs, pages 281-298. APIC. Turing Institute Press, aca-
demic press edition, 1992.

17.]~ric Papon. Algorithmes de d6tection de relations de r~currence - application k la
synthkse et k la transformation de programmes. Thkse, Universit~ de Paris-Sud,
April 1981.

18. Ross 3. Quinlan. Learning logical definition from relations. Machine Learning
Journal, Vol. 5(3):239-266, 1990.

19. P.D. Summers. A methodology for LISP program construction from examples.
Journal of the ACM, Vol. 24:161-175, 1977.

