
B o t t o m - U p Induction of Oblivious Read-Once
Decision Graphs

Ron Kohavi

Computer Science Department, Stanford University
Stanford, CA. 94305

E-mail: Ronnyk@CS.St anford. EDU

Abs t rac t . We investigate the use of oblivious, read-once decision graphs
as structures for representing concepts over discrete domains, and present
a bottom-up, hill-climbing algorithm for inferring these structures from
labelled instances. The algorithm is robust with respect to irrelevant at-
tributes, and experimental results show that it performs well on problems
considered difficult for symbolic induction methods, such as the Monk's
problems and parity.

1 Introduct ion

Top down induction of decision trees [25, 24, 20] has been one of the principal
induction methods for symbolic, supervised learning. The tree structure, which

�9 is used for representing the hypothesized target concept, suffers from some well-
known problems, most notably the replication problem and the fragmentation
problem [23]. The replication problem forces duplication of subtrees in disjunc-
tive concepts, such as (A A B) V (C A D); the fragmentation problem causes
parti t ioning of the data into fragments, when a high-arity at tr ibute is tested at
a node. Both problems reduce the number of instances at lower nodes in the tree
- - instances greatly needed for statistical significance of tests performed during
the tree construction process.

The smallest decision trees for most symmetric functions, such as pari ty and
majority, have exponential size; consequently, programs that look for small trees
tend to generalize poorly on such functions. One notable advantage of decision
trees over other representations, such as neural nets, is the fact t h a t the learned
structures are readable by human experts who can confirm, reject, or modify the
given hypothesis (i. e., the tree), aided by background knowledge.

In this paper we investigate the use of Oblivious, read-Once Decision Graphs
(O O D G s) as a structure for representing concepts over discrete domains, and
present a bot tom-up, hill-climbing algorithm for inferring these structures from
instances. OODGs have a different bias from that of decision trees, and thus some
concepts that are hard to represent as trees are easy to represent as OODGs and
vice-versa (although the latter seems rare). Since OODGs are graphs, they are
easy for humans to perceive, and should be preferred over other representations
(e.g., neural nets) whenever it is important to comprehend the meaning and
structure of the induced concept.

155

OODGs (see Sect.2 for a formal definition) are rooted, directed acyclic graphs
(DAGs) that can be divided into levels. All nodes at a level test the same at-
tribute, and all the edges that originate from one level terminate at the next
level. See Fig.l(a) for an example of an OODG representing the exclusive-or
(denoted by @) of three variables, Xi, X2, and X4, with a fourth variable, X3,
being irrelevant.

The restriction that all nodes of a given level must test the same attribute
gives the structure many nice properties (see Sect.2.1), and has proven to be very
useful in the engineering community, where it is used in Ordered Binary Decision
Diagrams (OBDDs). This bias, while constraining the class of decision graphs,
still allows the "compression" of circuits with up to 10 i~~ states into manageable
structures, which are then used in automatic verification of correctness.

In the next section we formally define the OODG structure and present some
basic properties. Section 3 introduces the basic algorithm, which is nondetermin-
istic and assumes that the full instance space is available. Section 4 presents a
hill-climbing version of the algorithm using one level of lookahead to resolve
both the nondeterminism and the problem of generalization from an incomplete
instance space. An important observation is the ability of the algorithm to dis-
cover irrelevant attributes, helping to decrease the size of the hypothesis space,
and making the generalization much easier. Section 5 reports preliminary exper-
iments. Section 6 describes related work, and Section 7 concludes with future
work.

2 Oblivious Read-Once Decision Graphs

In this section we formally define the OODG structure and describe some basic
properties. The name OODG is a combination of the terms "Oblivious" and
"read-Once" that are used in theoretical complexity analysis of branching pro-
grams, and the term "Decision Graph" that is used in the artificial intelligence
community, most notably the recent use of the term by Oliver, Dowe, and Wal-
lace in [22, 21].

Given n discrete variables (or attributes), Xi ,X2, . . . ,X ,~ , with domains
Di, �9 D,~ respectively, the i n s t a n c e s p a c e X is the cross-product of the do-
mains, i.e., Di • . . . xDn. A k-categor iza t ion func t ion is a function f map-
ping each instance in the instance space to one of k categories, i.e., f : X ~-*
{0 , . . . , k - 1}. Without loss of generality, we assume that for each category there
is at least one instance in X that maps to it.

2.1 The O O D G S t r u c t u r e

We begin by describing a general decision graph, then specialize it to be read-
once and oblivious.

156

(a) An OODG for)(1 $ Xe @ X~ (b) An OODG for X1 @ X2 @)(4 with
"constant" branching nodes removed.

Fig. 1. An OODG for 3-bit parity with one irrelevant attribute (@ denotes exclu-
sive-or).

A d e c i s i o n g r a p h for a k-categorization function over variables X1, X2,...,
Xn with domains D1, D 2 , . . . , D~, is a directed acyclic graph (DAG) with the
following properties:

1. There are exactly k nodes, called c a t e g o r y n o d e s , that are labelled 0, 1 , . . . ,
k - 1, and have outdegree zero.

2. Non-category nodes are called b r a n c h i n g n o d e s . Each branching node is
labelled by some variable Xi and has IDil outgoing edges, each labelled by
a distinct value from D~.

3. There is one distinguished node - - the r o o t - - that is the only node with
indegree zero.

The category assigned by a decision graph to a given variable assignment (an
instance), is determined by tracing the (unique) path from the root to a category
node, branching according to the labels on the edges.

A r e a d - o n c e decision graph is a graph where each variable occurs at most
once along any computation path. A l eve l l ed decision graph is a graph where
the nodes are parti t ioned into a sequence of pairwise disjoint sets, the levels,
such that outgoing edges from each level terminate at the next level. An obl iv-
ious decision graph is a levelled graph such that all nodes at a given level are

157

labelled by the same variable. An oblivious graph thus defines a total ordering
on the variables. (The name "oblivious" denotes the fact that testing of variables
depends only on their order within the levels, independent of the input itself.)
An oblivious decision graph is r e d u c e d if there do not exist two distinct nodes
at the same level that branch in exactly the same way on the same values. If two
such nodes exist, they can be united.

An O O D G is an oblivious read-once decision graph. Unless otherwise noted,
the OODG is assumed to be reduced. The size of an OODG is the number of
nodes in the graph, and the w i d t h of a level is the number of nodes at that
level.

When displaying OODGs, if all edges emanating from a node terminate at
the same node, we either replace the edges by one edge labelled "always," as
shown in Fig.l(a), or remove such "constant" nodes altogether, as shown in
Fig.l(b).

2.2 " P r o p e r t i e s o f O O D G s

We now describe some properties of OODGs. These properties help us under-
stand the strengths and weaknesses of the OODG structure. Proofs of these
properties for OBDDs can be found in [7, 6, 17], and can be generalized to
OODGs.

- An OODG can represent any k-categorization function.
- For any k-categorization function f , and for a given ordering of the variables

for the levels, there is a unique (up to isomorphism) reduced OODG imple-
menting f .
This is not surprising, as an OODG is very similar to a deterministic finite
automaton that has been "unrolled" to avoid cycles.

- There exist functions that have a polynomial (or even linear) size OODG
representation under one variable ordering, and an exponential size OODG
under another ordering. One such example for Boolean variables is

(x~ A X2) v (x~ A x4) v . . . v (x~,~_l A x2~).

The ordering X1, X 2 , . . . , X ~ gives a graph with O(n) nodes, while the or-
dering X1, X,~+I, X2, X~+2, . . . , X~, X2~ requires 0(2 ~) nodes.

- There are functions for which no variable ordering results in a polynomial
size OODG representation (the Shannon effect). Wegener [28] has shown
that Mmost all Boolean functions result in exponentially sized branching
programs (and hence OODGs) under all orderings. Bryant [6] showed that
at least one of the 2n bits of integer multiplication is an inherently com-
plex function, requiring exponential sized OBDD (and hence OODG) for all
orderings.

- All symmetric Boolean functions - - functions which yield the same value
for all permutations of the input variables - - have OODGs of size O(n2).
Examples of symmetric Boolean functions are parity, "exactly k-of-n' , and
"at least k-of-n'.

158

We now present a theorem that gives an upper bound on the width of different
levels of an OODG, given an instance space of Boolean variables. This theorem
shows that the width bounds on OODGs are asymmetric; the graph grows much
faster from the bot tom than from the top. In Fig.2, the width of the "kite"
at each level is proportional to the maximum number of nodes possible at that
level. The kite is thus an envelope bounding both the overall size and the specific
width of every OODG with the given number of levels. This theorem is one of
the motivations for growing the graphs bot tom-up - - a wrong ordering will
"explode" fast, and a lookahead of log n levels, will get us to the level where the
graph can be the widest.

T h e o r e m 1 K i t e T h e o r e m . The width of level i of a reduced OODG with m
levels implementing a k-categorization function over Boolean inputs is bounded
by

min {2i, k 2(m-~ }

Proof (sketch): The first term is a top-down bound; each Boolean variable can
cause the number of branching nodes to grow by a factor of at most two. The
second term is a bot tom-up bound; if a level has k nodes, the level above it
must have at most k 2 nodes, since there are only k 2 mappings from {0, 1} ~-+
{ 0 , . . . , k - 1}. If two nodes branch the same way on both values of the Boolean
variable, and the OODG is not reduced. []

3 B o t t o m - U p C o n s t r u c t i o n o f O O D G s

In this section we present an algorithm for constructing a reduced OODG given
the full (labelled) instance space. The algorithm is recursive and nondetermin-
istic. For simplicity of notation, we assume Boolean variables and an arbitrary
number of categories. Our current implementation allows general discrete vari-
ables.

The input to the algorithm is a set of sets, {Co, C1 , . . . , Ck-1}, where each
set C/ is the set of all instances labelled with category i. The output of the
algorithm is a reduced OODG that correctly categorizes the instance space.

The algorithm, shown in Fig.3, works by creating sets of instances, such that
each set corresponds to one node in the graph (the input sets corresponding
to the category nodes). Intuitively, we want an instance in a set C'i to reach
node ~ corresponding to it, when the instance's path is traced from the root of
the completed OODG, branching at branching-nodes according to the at tr ibute

values.
Given the input, the algorithm nondeterministically selects a variable X to

test at the penult imate level of the OODG. It then creates new sets of instances
(corresponding to the nodes in the penultimate level of the final OODG) which
are projections of the original instances with variable X deleted. The sets are
created in such a way that all instances in a set C= v (which matches a branching
node) are a subset of the instances of some input set C= when augmented with

r

r

159

Fig. 2. The diagram's width at a level is proportional to the maximum number of
nodes possible in an OODG at that level.

variable X = 0, and similarly, they are a subset of the instances of some set
Cy when augmented with variable X = 1. In the graph, the branching node
corresponding to C=u will have the edge labelled 0 terminating at node x, and
the edge labelled 1 terminating at node y.

The new sets now form a smaller problem over n - 1 variables, and the
algorithm calls itself recursively to compute the rest of the OODG with the sets
of the new level serving as the input. The recursion stops when the input to the
algorithm is a single set, possibly consisting of the null instance (0 variables).

It can be shown that the algorithm always terminates with a reduced OODG
(proof omitted).

Example 1. Executing the Algorithm on Pari ty In this example we show how to
run the algorithm for the 3-bit odd parity function with one irrelevant attribute,
i.e., f = X1 q) X2 @ X4 (X3 being irrelevant). To resolve the nondeterminism,
we will select attributes in reverse numerical order, that is, X4, X3, X2, X1.

The input to the algorithm is {Co, C1}. All instances in Co have a label 0,
and all elements in C1 have label 1

Co = {0000,0010,0101,0111,1001,1011,1100,1110}
C1 = {0001,0011,0100,0110,1000,1010,1101,1111}

Deleting at tr ibute X4 from each instances gives us the following projected in-

160

k--1 Input: k sets Co , Ck-1 such that A" = (.Ji=0 Ci (the whole instance space).
Output: Reduced OODG correctly categorizing all instances in 2d.

1. If (k = 1) then return the graph with one node.
2. Nondeterministically select a variable X to be deleted from the instances.
3. Project the instances in Co, . . . , Ck-1 onto the instance space A "~, such that variable

X is deleted. Formally, if X is the ith variable,

k--1
X' 7C(xl,...,xi_1,x,+l x ,) U Ci +. . -

i=0

4. For all i, j E {0 , . . . , k - 1} let Cij be the set containing instances from X" s.t.: the
instances belong to set Ci when augmented with X = 0, and to the set Cj when
augmented with X = 1.

5. Let k I be the number of non-empty sets from {Cij}. Call the algorithm recursively
with the k' non-empty sets, and let G be the OODG returned.

6. Label the k ~ leaf nodes of G, corresponding to the non-empty sets Cij with the
variable X. Create a new level of k nodes corresponding to the sets Co, . . . , Ck--~.
From the node corresponding to each Cij, create two edges: one labelled 0, ter-
minating at the (category) node corresponding to Ci, and the other labelled 1,
terminating at the (category) node corresponding to Cj.

7. Return the augmented OODG G.

Fig. 3. A nondeterministic algorithm for learning OODGs.

stance space

X' = {000,001,010,011, i00, i01, II0, iii}

Because we started with the full instance space, each of these projections has
a defined destination (a set name shown after the right-arrow below) for each
possible value of X4. Creating sets from all projected instances in X I that have
the same destinations for the same values of X4, we get

Col(O "--+ Co, 1 -..+ Cl) -- {000,001,110,111}
C10(0 --+ C1, 1 --+ Co) = {010,011,100,101}

Note tha t out of four possible sets, only two were needed. We now construct the
O O D G recursively using the two non-empty sets Cm and C10 as our input sets.
Selecting variable X3 to delete gives us the following project ion

X " = {00, 01, 10, 11}

Crea t ing the appropr ia te sets f rom the projected instances in +l'" yields

Coo(O ""+ Col, 1 -+ Col) -- {00, l l }
Cl1(0 -"+ Clo, 1 --+ Clo) ---- {01, 10}

161

Note that each of the two new sets implements a constant function that
ignores the value of the given at tr ibute (i.e., it branches to the same node re-
gardless of the at tr ibute value). A level for which all implemented functions are
constant implies that the variable is irrelevant. Continuing the execution yields
the OODG depicted in Fig.1.

4 HOODG: A Hill Climbing Algorithm For Constructing
OODGs

In this section we address the two main problems ignored in the algorithm de-
scribed in the previous section:

1. Deciding where to place projected instances (Step 4 of the algorithm) for
which we have more than once choice. This can happen if a projection does
not have all possible augmentations because we do not have the full instance
space.

2. Ordering the variable for selection in Step 2.

4.1 P l a c i n g P r o j e c t e d I n s t a n c e s

If we do not have the full instance space, there will be projections of instances
for which some values of the deleted attribute will be missing (e.g., we know
that a projected instance must branch to some node on values 0 and 2, but
do not know where it should branch on values 1 and 3). Call such projections
Incomplete Projections, or IPs . A decision on where to place these instances
constitutes a bias, since it determines how unseen instances will be classified.

Following Occam's razor principle, we would like to find the smallest OODG
consistent with the data (since we assume no noise, we will not overfit the data).
We are thus looking for a minimal set of branching nodes that "covers" all
projections, i.e., a minimal cover.

An IP is c o n s i s t e n t with another projection, P, (at the same level of the
graph) if they do not have conflicting destinations on the same value of the
deleted variable. An IP a g r e e s with another projection, P, if they are consistent,
and all destinations defined for the IP are also defined for the projection P (note
that agrees is an asymmetric relation).

The placement strategy used in our implementation is to start creating pro-
jection sets (branching nodes) with projections having the greatest number of
known destinations (values of the deleted variable), then for projections with
fewer known destinations. Each projection is placed in a projection set where it
agrees with all instances whenever possible; otherwise, it is placed in a set where
it is consistent with all instances, if possible; otherwise, a new projection set is
created, consisting of the single projection. Ties are broken in favor of projection
sets with more destinations.

162

4.2 Orde r ing the Variables

There are n! possible orders in which to select the variables in Step 2 of the
algorithm. Given the full instance space, it is possible to find the optimal ordering
using dynamic programming by checking "only" 2 n orderings, as described in
[11, 12].

In our implementation, we chose to greedily select the variable that yields
the smallest width (minimal number of nodes) at the next level (equivalent to
a one-ply lookahead). We consider each variable in turn, compute the width of
the level that would be formed if we were to select that variable in Step 2 of the
algorithm, and then select the one that minimizes the width. Tie-breaking for
variables with the same resultant width favors those with the greater number
of "constant" nodes, i.e., nodes that ignore the variable value. This tends to
favor irrelevant attributes early, increasing the ratio of the training set size to
the projected instance space. Equality is possible only if each projected instance
has exactly IDI instances in the sets before the projection, where ID] is domain
size of the irrelevant variable.

Example 2. The Monk's Problems The Monk's problems are three artificial prob-
lems that allow comparison of algorithms. In [27], 24 authors have compared 25
machine learning Mgorithms on these problems. In the given domain, robots
have six different nominal attributes as follows:

Head-shape E
Body-shape E

Is-smiling E
Holding E

Jacket-color E
Has-tie E

{round, square, Octagon}.
{round, square, octagon}.
{yes, no}.
{sword, balloon, flag}.
{red, yellow, green, blue}.
{yes, no}.

In the first problem, Monk 1, the target concept is

(Head-shape = Body-shape) or (Jacket-color = red)

The standard training set for this problem has 124 instances out of 432 possible
instances. Running our algorithm on this problem shows the significance of dis-
covering irrelevant attributes. The three irrelevant attributes are selected first,
and after constructing three levels of constant nodes, we are left with a problem
of inducing an OODG for the remaining three attributes. There are 36 possible
instances for the three remaining attributes, and the projections of the specific
training set given in this problem yield 35 different instances (the expected num-
ber is 34.91, so this is not a fortuitous training set). The missing instance agrees
with only one of the two nodes at the level at which it is projected, so we do
not have a choice of where to put it. After discovering the irrelevant attributes,
the problem becomes trivial. Fig.4 shows the resulting OODG, after removing
constant nodes.

163

~luare

Target concept is: (Head-shape = Body-shape) or (Jacket-color = red).

Fig.4. Resulting OODG for Monk's problem 1 (constant nodes removed).

In the second problem, Monk 2, the concept is

Exactly two of the attributes have their first value.

The standard training set for this problem has 169 instances. This problem
has no irrelevant attributes which makes it very hard, given the original encoding
of six nominal attributes. However, if we encode it using a local representation,
where each at tr ibute value is represented by one Boolean indicator variable,
many attributes become irrelevant. This is the encoding scheme used by Thrun
and Fahlman when neural nets were tested.

Under a local-representation encoding, there are 17 attributes, but 11 of them
are irrelevant. Projecting the instances on the six relevant attributes yields 52
different instances out of 64 possible ones.

There is a subtle problem when running our hill-climbing algorithm. In the
first stage, each of the 17 attributes is redundant (i.e., the penult imate level
has only constant nodes when each is selected), making it a candidate for being
an irrelevant attribute. Intuitively, deleting any one such Boolean at tr ibute still
allows us to solve the problem; in the local representation, the missing at t r ibute
can be reconstructed from the other attributes, since for every variable in the
original encoding, exactly one of the new indicator variables must be set to 1

164

(and the others to zero). Note of course that once one variable is deleted, other
variables that were "candidates" become relevant. Our heuristic for choosing the
"best" attribute is to do one level of lookahead for redundant attributes. The
attr ibute that creates the most number of redundant attributes at the next level
is selected.

With the lookahead procedure described above, and using local representa-
tion, HOODG correctly generalizes the training set to get 100% accuracy on the
test set. Fig.5 shows the resulting OODG, which is the smallest one possible for
the given target concept.

0

Holding sword

1

Target concept is: Exactly two of of the following attributes must have the value 1
{round-head, round-shape, is-smiling, holding-sword, jacket-red, has-tie}.

Fig. 5. Resulting OODG for Monk's problem 2

5 Experimental Results

The complexity of our algorithm as implemented is O(ns 2 + is2(n 1)) per
level, where i is the number of irrelevant attributes at the given level, and s is

165

the number of projected instances at that level. Running on a a SPARCstation
ELC, the execution time varies from about 3 seconds for Monk 1, 10 seconds for
parity 5+5 (described below) to four and a half minutes for Monk 2 in the local
representation (mostly due to the large number of irrelevant attributes).

Table 1 shows the accuracy results for some classical datasets and some arti-
ficial ones. The datasets Monk 1,2,3, and Vote, were taken from Quinlan's C4.5
data files (Monk3 has 5% noise); each has one training set and one test set.
The vote database is a real-world database that includes votes for each of the
U.S. House of Representatives Congressmen on the 16 key votes identified by the
Congressional Quarterly Almanac Volume XL (the votes are simplified to yes,
no, or unknown). The data set consists of 300 instances and the test set consists
of 135 instances.

The second part of the table depicts the average of 10 runs, each with a
randomly chosen training set. Each training set for Monk 1" is of size 124 (as
is the original training set); each training set for Parity5, which is the XOR of
5 bits, consists of 50% of the instance space; and each training for Pari ty 5+5,
which is the XOR of 5 bits with 5 irrelevant bits, consists of 10% of the instance
space. The systems compared are ID3, C4.5, with and without grouping (-s flag),
and HOODG.

Data Set ID3 C4.5 / C4.5 (grouping) HOODG
Monk 1 81.7% 75.7%/100.0% 100.0%
Monk 2
iMonk 2 (local repr.)
Monk 3
Vote

Monk 1"
Parity 5 (50%)
parity 5+5 (10%)

69.2%
86:6%
94.4%

65.0%/74.1%
70.4%/75.9%

97.2%/100.0%

83.1%
lOO.O%
94.4%

94.1% 97.0%/93.3% 94.1%
92.3% • 4.6% 86.1% • 3.7%/92.9% 4- 7.0% 100% 4- 0.0%
60.6% 4- 3.0%
55.2% • 4.5%

50.0% • 0.0%/50.0% • 0.0% 100% • 0.0%
52.5% • 4.7%/52.5% • 4.7% 100% :i: 0.0%

Table 1. Comparison of different algorithms. Results in the second part of the table
are averaged over 10 runs with standard deviation after the 9= sign.

It is interesting to note that while C4.5 gets 100% on the original training
set for Monk 1, it has a large variance when executed on different training sets
of the same size.

6 R e l a t e d W o r k

Lee [15] introduced binary decision programs that are evaluated by executing a
series of instructions that test a variable and make a two way branch. He showed
that it is possible to represent any switching function in O (~) such instructions.

166

Akers [1] described binary decision diagrams, and gave a top-down procedure
for building them using the Boole-Shannon expansion [3, 26]:

/ = =~" f[~,=l + ~ . fl~,=o

where f[=i=b is the restriction, or cofactor, of the function f

f l ~ , = b (x l , . . . , = ,) = f (x l , . . . , z i -1, b, x i + l , . . . , z,O

Moret [20] gives an excellent survey of work on decision trees and diagrams,
with over 100 references.

Bryant [6] introduced Ordered Binary Decision Diagrams (OBDDs), which
spawned a plethora of articles and a whole subcommunity dealing with OBDDs
[7, 5, 19, 13]. OBDDs are a restriction of Binary Decision Diagrams (BDDs),
where a total ordering is defined over the set of variables and all paths must
test variables in accordance with the given ordering. Note that OBDDs are not
necessarily levelled. Bryant describes the advantages of OBDDs over the common
representations like CNF and DNF (these advantages apply to OODGs too):

- Operations like complementation may yield exponential growth for DNF and
CNF, while they do not change the size of OBDDs.

- Common operations such as reduction, fl < op > f2 (where op is any binary
function), restriction, and composition, are bounded by the product of the
graph sizes for the functions being operated on.

- Satisfiability testing takes constant time (check if the OBDD is the single
category node 0), while finding a satisfying assignment for n variables takes
O(n) Counting the number of satisfying assignments if O([G D where [G] is
the size of the graph, and finding all satisfying assignments is O(n. ISfl)
where IS/[is the number of such satisfying assignments.

OBDDs have been used for automatically verifying finite state machines, in-
cluding 64-bit ALUs, with up to 1012~ states by representing the state space sym-
bolically instead of explicitly [9, 8]. These applications show, at least empirically,
that many functions occurring in engineering domains seem to be representable
in small (polynomial) OBDD structures (and hence in OODGs).

In the computer science theory community, binary decision graphs have been
called b ranch ing p rograms , and have been extensively studied in the hope
of separating some complexity classes and for studying the amount of space
needed to compute various functions [4]. Two important theorems tell us that an
algorithm in SPACE(S(n)) for S(n) >_ log n has a branching program complexity
of at most c s(n) for some constant c [16], and that constant-width branching
programs are very powerful, being able to accept all NC 1 languages [2].

In the machine learning community, general decision graphs were investigated
by Oliver [21, 22] whose algorithm constructs the graphs top-down, by doing a
hill-climbing search through the space of graphs, estimating the usefulness of
each graph by Wallace's MMLP (minimum message length principle). At each
stage a decision is made whether to split a leaf (and which), or whether to join to
leaves. Operations that increase the message-length are never performed, hence

167

the algorithm is guaranteed to terminate. The algorithm is (heuristically) able
to overcome the replication and fragmentation problem associated with decision-
trees.

Dvorak independently discovered the bottom-up technique we have used here
to minimize OBDDs [10]. Although his work resembles ours, his motivation is
to minimize functions with Don't Cares, while ours is to induce structures with
high predictive power.

The relations between the different models, that is, OBDD, Branching Pro-
grams, and Decision Trees are summarized by Meinel in [17]. Translating Meinel
results to the terms used in this paper, we get the following lemmas:

- There exists a Boolean function for which the smallest decision tree repre-
senting it has size O(2~), while there is an OODG representing it of size
O(n).

- There exists a Boolean function for which the smallest OODG representing
it has size O(2(~/l~ while there is a tree of size O(n2/log n) representing
it. (This lemma shows the different bias of the two structures.)

- There exist a Boolean function for which the smallest OODG has size size
2 ~(~), while an oblivious decision graph of depth linear in n that is not
read-once, can represent it in n ~

An interesting point, first mentioned by Lee and Akers and studied in [19],
is that a decision diagram actually represents more than one function. Entering
the diagram at a different node allows sharing functions.

7 Fu ture Work

Since our algorithm is essentially a hill-climbing algorithm, it may not find a
global minimum. Researchers working on OBDDs (cf. [18, 14]) have experi-
mented with exchanging variables after building the graph, and have achieved
good results.

Deeper lookahead for variable selection is an obvious possible extension, es-
pecially since one motivation for growing the graph from the bottom is the
asymmetric shape (the kite shape depicted in Fig.2) bounding the OODG.

We have shown promising preliminary results of using this structure with a
simple hill-climbing heuristic. Looking further down the road, we need a method
of dealing with noise, possibly by pruning the OODG. We need to extend the
variable domains from discrete to real-valued, and to conduct more experiments
on the generalization power.

Acknowledgements We would like to thank Ntis Nilsson and Yoav Shoham
for their continued support for this idea, and for supporting the MLC++ project
at Stanford. Thanks to everyone who contributed to MLC++, especially George
John, Richard Long, David Manley, Ofer Matan, and Karl Pfleger. Thanks to
Ronen Brafman, Pat Langley, John Oliver, Ron Rymon, and Tomas Uribe for
their comments on the first draft of this paper, and to James Kittock for carefully

168

reading drafts of this paper. Our implementat ion was written using the MLC++
library, and the OODGs depicted in this paper are actual outputs generated by
l ibrary routines tha t interface with AT&T's d o t program written by Koutsofios
and North.

References

1. Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
C-27(6):509-516, 1978.

2. David A. Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC 1. Journal of Computer and System Sciences,
38(1):150-164, 1989.

3. George Boole: An investigation of the laws of thought, on which are founded the
theories of logic and probabilities. London, Walton and Maberly; Macmillan and
Co., 1854. Reprinted by Dover Books, New York, 1954.

4. Ravi B. Boppana and Michael Sipser. The complexity of finite functions. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science. Elsevier, 1990.

5. Karl S. Brace, RichaM L. Rudell, and Randal E. Bryant. Efficient implementation
of a BDD package. In 27th A CM/IEEE Design Automation Conference. Proceed-
ings, pages 40-45, 1990.

6. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on computers, C-35(8):677-691, 1986.

7. Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

8. J. R. Butch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently
in symbolic model checking. In 28th A CM/IEEE Design Automation Conference.
Proceedings, pages 403--407, 1991.

9. J. R. Butch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10 z~ states and beyond. In Fifth Annual IEEE Symposium on
Logic in Computer Science., pages 428-439. IEEE Comput. Soc. Press, 1990.

10. Vaclav Dvorak. An optimization technique for ordered (binary) decision diagrams.
In P. Dewflde and J. Vandewalle, editors, Compeuro Proceedings. Computer Sys-
tems and Software Engineering, pages 1-4. IEEE Comput. Soc. Press, 1992.

11. Steven J. Friedman and Kenneth J. Suppowit. Finding the optimal variable order-
ing for binary decision diagrams. In 2~th ACM/IEEE Design Automation Confer-
ence, pages 348-355, 1987.

12. Steven J. Friedman and Kenneth J. Suppowit. Finding the optimal variable order-
ing for binary decision diagrams. IEEE Transactions On Computers, 39(5):710-
713, 1990.

13. Masahiro Fujita, Hisanori Fujisawa, and Jusuke Matsunaga. Variable ordering al-
gorithms for ordered binary decision diagrams and their evaluation. IEEE Trans-
actions On Computer-Aided Design of Integrated Circuits and Systems, 12(1):6-12,
1993.

14. Nagisa Ishiura, Hiroshi Sawada, and Shuzo Yajima. Minimization of binary de-
cision diagrams based on exchanges of variables. In IEEE International Confer-
ence On Computer-Aided Design. Digest of Technical Papers, pages 472-475. IEEE
Comput. Soc. Press, 1991.

15. C. Y. Lee. Representation of switching circuits by binary-decision programs. The
Bell System Technical Journal, 38(4):985-999, 1959.

169

16. William J. Masek. A fast algorithm for the string editing problem and decision
graph complexity. Master's thesis, Massachusetts Institute of Technology, 1976.

17. Christoph Meinel. Branching programs - - an efficient data structure for computer-
aided circuit design. Bulletin of the European Association For Theoretical Com-
puter Science, 46:149-170, 1992.

18. Shin-ichi Minato. Minimum-width method of variable ordering for binary decision
diagrams. IEICE Transactions On Fundamentals of Electronics, Communications
and Computer Sciences, E75-A(3):392-399, 1992.

19. Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared binary decision di-
agram with attributed edges for efficient boolean function manipulation. In 27th
ACM/IEEE Design Automation Conference. Proceedings, pages 24-28, 1990.

20. Bernard M. E. Moret. Decision trees and diagrams. ACM Computing Surveys,
14(4):593-623, 1982.

21. J.J. Oliver, D.L. Dowe, and C.S. Wallace. Inferring decision graphs using the min-
imum message length principle. In A. Adams and L. Sterling, editors, Proceedings
of the 5th Australian Joint Conference on Artificial Intelligence, pages 361-367.
World Scientific, Singapore, 1992.

22. Jonathan J. Oliver. Decision graphs - - an extension of decision trees. In Proceed-
ings of the fourth International workshop on Artificial Intelligence and Statistics,
pages 343-350, 1993.

23. Giulia Pagallo and David Haussler. Boolean feature discovery in empirical learning.
Machine Learning, 5:71-99, 1990.

24. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
Reprinted in Shavhk and Dietterich (eds.) Readings in Machine Learning.

25. J. Ross Quinlan. C~.5: Programs for Machine Learning. Morgan Kaufmann, Los
Altos, California, 1992.

26. C. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28(1):59-98, 1949.

27. S.B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De Jong,
S. Dzeroski andS.E. Fahlman, D. Fisher, R. Hamann, K. Kaufman, S. Keller,
I. Kononenko, J. Kreuziger, R.S. Michalski, T. Mitchell, P. Pachowicz, Y. Reich,
H. Vafaie, W. Van de Weldel, W. Wenzel, J. Wnek, and J. Zhang. The monk's
problems: A performance comparison of different learning algorithms. Technical
Report CMU-CS-91-197, Carnegie Mellon University, 1991.

28. Ingo Wegener. The Complexity of Boolean Functions. B. G. Tuebner, 1987.

