
B o t t o m - U p  Induction of Oblivious Read-Once 
Decision Graphs 

Ron Kohavi 

Computer Science Department, Stanford University 
Stanford, CA. 94305 

E-mail: Ronnyk@CS.St anford. EDU 

Abs t rac t .  We investigate the use of oblivious, read-once decision graphs 
as structures for representing concepts over discrete domains, and present 
a bottom-up, hill-climbing algorithm for inferring these structures from 
labelled instances. The algorithm is robust with respect to irrelevant at- 
tributes, and experimental results show that it performs well on problems 
considered difficult for symbolic induction methods, such as the Monk's 
problems and parity. 

1 Introduct ion 

Top down induction of decision trees [25, 24, 20] has been one of the principal 
induction methods for symbolic, supervised learning. The tree structure, which 

�9 is used for representing the hypothesized target concept, suffers from some well- 
known problems, most notably the replication problem and the fragmentation 
problem [23]. The replication problem forces duplication of subtrees in disjunc- 
tive concepts, such as (A A B) V (C A D); the fragmentation problem causes 
parti t ioning of the data into fragments, when a high-arity at tr ibute is tested at 
a node. Both problems reduce the number of instances at lower nodes in the tree 
- -  instances greatly needed for statistical significance of tests performed during 
the tree construction process. 

The smallest decision trees for most symmetric functions, such as pari ty and 
majority, have exponential size; consequently, programs that  look for small trees 
tend to generalize poorly on such functions. One notable advantage of decision 
trees over other representations, such as neural nets, is the fact t h a t  the learned 
structures are readable by human experts who can confirm, reject, or modify the 
given hypothesis (i. e., the tree), aided by background knowledge. 

In this paper we investigate the  use of Oblivious, read-Once Decision Graphs 
( O O D G s )  as a structure for representing concepts over discrete domains, and 
present a bot tom-up,  hill-climbing algorithm for inferring these structures from 
instances. OODGs have a different bias from that  of decision trees, and thus some 
concepts that  are hard to represent as trees are easy to represent as OODGs and 
vice-versa (although the latter seems rare). Since OODGs are graphs, they are 
easy for humans to perceive, and should be preferred over other representations 
(e.g., neural nets) whenever it is important  to comprehend the meaning and 
structure of the induced concept. 
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OODGs (see Sect.2 for a formal definition) are rooted, directed acyclic graphs 
(DAGs) that can be divided into levels. All nodes at a level test the same at- 
tribute, and all the edges that originate from one level terminate at the next 
level. See Fig.l(a) for an example of an OODG representing the exclusive-or 
(denoted by @) of three variables, Xi, X2, and X4, with a fourth variable, X3, 
being irrelevant. 

The restriction that all nodes of a given level must test the same attribute 
gives the structure many nice properties (see Sect.2.1), and has proven to be very 
useful in the engineering community, where it is used in Ordered Binary Decision 
Diagrams (OBDDs). This bias, while constraining the class of decision graphs, 
still allows the "compression" of circuits with up to 10 i~~ states into manageable 
structures, which are then used in automatic verification of correctness. 

In the next section we formally define the OODG structure and present some 
basic properties. Section 3 introduces the basic algorithm, which is nondetermin- 
istic and assumes that the full instance space is available. Section 4 presents a 
hill-climbing version of the algorithm using one level of lookahead to resolve 
both the nondeterminism and the problem of generalization from an incomplete 
instance space. An important observation is the ability of the algorithm to dis- 
cover irrelevant attributes, helping to decrease the size of the hypothesis space, 
and making the generalization much easier. Section 5 reports preliminary exper- 
iments. Section 6 describes related work, and Section 7 concludes with future 
work. 

2 Oblivious Read-Once Decision Graphs 

In this section we formally define the OODG structure and describe some basic 
properties. The name OODG is a combination of the terms "Oblivious" and 
"read-Once" that are used in theoretical complexity analysis of branching pro- 
grams, and the term "Decision Graph" that is used in the artificial intelligence 
community, most notably the recent use of the term by Oliver, Dowe, and Wal- 
lace in [22, 21]. 

Given n discrete variables (or attributes), Xi ,X2, . . . ,X ,~ ,  with domains 
Di, �9 D,~ respectively, the i n s t a n c e  s p a c e  X is the cross-product of the do- 
mains, i.e., Di • . . .  xDn. A k-categor iza t ion  func t ion  is a function f map- 
ping each instance in the instance space to one of k categories, i.e., f : X ~-* 
{0 , . . . ,  k - 1}. Without loss of generality, we assume that for each category there 
is at least one instance in X that maps to it. 

2.1 The  O O D G  S t r u c t u r e  

We begin by describing a general decision graph, then specialize it to be read- 
once and oblivious. 
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(a) An OODG for )(1 $ Xe @ X~ (b) An OODG for X1 @ X2 @ )(4 with 
"constant" branching nodes removed. 

Fig. 1. An OODG for 3-bit parity with one irrelevant attribute (@ denotes exclu- 
sive-or). 

A d e c i s i o n  g r a p h  for a k-categorization function over variables X1, X2,..., 
Xn with domains D1, D 2 , . . . ,  D~, is a directed acyclic graph (DAG) with the 
following properties: 

1. There are exactly k nodes, called c a t e g o r y  n o d e s ,  that  are labelled 0, 1 , . . . ,  
k - 1, and have outdegree zero. 

2. Non-category nodes are called b r a n c h i n g  n o d e s .  Each branching node is 
labelled by some variable Xi and has IDil outgoing edges, each labelled by 
a distinct value from D~. 

3. There is one distinguished node - -  the r o o t  - -  that  is the only node with 
indegree zero. 

The category assigned by a decision graph to a given variable assignment (an 
instance), is determined by tracing the (unique) path from the root to a category 
node, branching according to the labels on the edges. 

A r e a d - o n c e  decision graph is a graph where each variable occurs at most 
once along any computation path. A l eve l l ed  decision graph is a graph where 
the nodes are parti t ioned into a sequence of pairwise disjoint sets, the levels, 
such that  outgoing edges from each level terminate at the next level. An obl iv-  
ious  decision graph is a levelled graph such that  all nodes at a given level are 
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labelled by the same variable. An oblivious graph thus defines a total ordering 
on the variables. (The name "oblivious" denotes the fact that  testing of variables 
depends only on their order within the levels, independent of the input itself.) 
An oblivious decision graph is r e d u c e d  if there do not exist two distinct nodes 
at the same level that  branch in exactly the same way on the same values. If two 
such nodes exist, they can be united. 

An O O D G  is an oblivious read-once decision graph. Unless otherwise noted, 
the OODG is assumed to be reduced. The size of an OODG is the number of 
nodes in the graph, and the w i d t h  of a level is the number of nodes at that  
level. 

When displaying OODGs, if all edges emanating from a node terminate at 
the same node, we either replace the edges by one edge labelled "always," as 
shown in Fig.l(a),  or remove such "constant" nodes altogether, as shown in 
Fig.l(b). 

2.2 " P r o p e r t i e s  o f  O O D G s  

We now describe some properties of OODGs. These properties help us under- 
stand the strengths and weaknesses of the OODG structure. Proofs of these 
properties for OBDDs can be found in [7, 6, 17], and can be generalized to 
OODGs. 

- An OODG can represent any k-categorization function. 
- For any k-categorization function f ,  and for a given ordering of the variables 

for the levels, there is a unique (up to isomorphism) reduced OODG imple- 
menting f .  
This is not surprising, as an OODG is very similar to a deterministic finite 
automaton that  has been "unrolled" to avoid cycles. 

- There exist functions that  have a polynomial (or even linear) size OODG 
representation under one variable ordering, and an exponential size OODG 
under another ordering. One such example for Boolean variables is 

(x~ A X2) v (x~ A x4)  v . . .  v (x~,~_l A x2~). 

The ordering X1, X 2 , . . . ,  X ~  gives a graph with O(n) nodes, while the or- 
dering X1, X,~+I, X2, X~+2, . . . ,  X~, X2~ requires 0(2 ~) nodes. 

- There are functions for which no variable ordering results in a polynomial 
size OODG representation (the Shannon effect). Wegener [28] has shown 
that  Mmost all Boolean functions result in exponentially sized branching 
programs (and hence OODGs) under all orderings. Bryant [6] showed that  
at least one of the 2n bits of integer multiplication is an inherently com- 
plex function, requiring exponential sized OBDD (and hence OODG) for all 
orderings. 

- All symmetric Boolean functions - -  functions which yield the same value 
for all permutations of the input variables - -  have OODGs of size O(n2). 
Examples of symmetric Boolean functions are parity, "exactly k-of-n' ,  and 
"at least k-of-n'. 
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We now present a theorem that  gives an upper bound on the width of different 
levels of an OODG, given an instance space of Boolean variables. This theorem 
shows that  the width bounds on OODGs are asymmetric; the graph grows much 
faster  from the bot tom than from the top. In Fig.2, the width of the "kite" 
at each level is proportional to the maximum number of nodes possible at that  
level. The kite is thus an  envelope bounding both the overall size and the specific 
width of every OODG with the given number of levels. This theorem is one of 
the motivations for growing the graphs bot tom-up - -  a wrong ordering will 
"explode" fast, and a lookahead of log n levels, will get us to the level where the 
graph can be the widest. 

T h e o r e m  1 K i t e  T h e o r e m .  The width of level i of a reduced OODG with m 
levels implementing a k-categorization function over Boolean inputs is bounded 
by 

min {2i, k 2(m-~ } 

Proof (sketch): The first term is a top-down bound; each Boolean variable can 
cause the number of branching nodes to grow by a factor of at most two. The 
second term is a bot tom-up bound; if a level has k nodes,  the level above it 
must have at most k 2 nodes, since there are only k 2 mappings from {0, 1} ~-+ 
{ 0 , . . . ,  k - 1}. If two nodes branch the same way on both values of the Boolean 
variable, and the OODG is not reduced. [] 

3 B o t t o m - U p  C o n s t r u c t i o n  o f  O O D G s  

In this section we present an algorithm for constructing a reduced OODG given 
the full (labelled) instance space. The algorithm is recursive and nondetermin- 
istic. For simplicity of notation, we assume Boolean variables and an arbitrary 
number of categories. Our current implementation allows general discrete vari- 
ables. 

The input to the algorithm is a set of sets, {Co, C1 , . . . ,  Ck-1}, where each 
set C/ is the set of all instances labelled with category i. The output  of the 
algorithm is a reduced OODG that correctly categorizes the instance space. 

The algorithm, shown in Fig.3, works by creating sets of instances, such that  
each set corresponds to one node in the graph (the input sets corresponding 
to the category nodes). Intuitively, we want an instance in a set C'i to reach 
node ~ corresponding to it, when the instance's path is traced from the root of 
the completed OODG, branching at branching-nodes according to the at tr ibute 

values. 
Given the input, the algorithm nondeterministically selects a variable X to 

test at the penult imate level of the OODG. It then creates new sets of instances 
(corresponding to the nodes in the penultimate level of the final OODG) which 
are projections of the original instances with variable X deleted. The sets are 
created in such a way that  all instances in a set C= v (which matches a branching 
node) are a subset of the instances of some input set C= when augmented with 



r 

r 

159 

Fig. 2. The diagram's width at a level is proportional to the maximum number of 
nodes possible in an OODG at that level. 

variable X = 0, and similarly, they are a subset of the instances of some set 
Cy when augmented with variable X = 1. In the graph, the branching node 
corresponding to C=u will have the edge labelled 0 terminating at node x, and 
the edge labelled 1 terminating at node y. 

The new sets now form a smaller problem over n - 1 variables, and the 
algorithm calls itself recursively to compute the rest of the OODG with the sets 
of the new level serving as the input. The recursion stops when the input to the 
algorithm is a single set, possibly consisting of the null instance (0 variables). 

It can be shown that  the algorithm always terminates with a reduced OODG 
(proof omitted).  

Example 1. Executing the Algorithm on Pari ty In this example we show how to 
run the algorithm for the 3-bit odd parity function with one irrelevant attribute,  
i.e., f = X1 q) X2 @ X4 (X3 being irrelevant). To resolve the nondeterminism, 
we will select attributes in reverse numerical order, that  is, X4, X3, X2, X1. 

The input to the algorithm is {Co, C1}. All instances in Co have a label 0, 
and all elements in C1 have label 1 

Co = {0000,0010,0101,0111,1001,1011,1100,1110}  
C1 = {0001,0011,0100,0110,1000,1010,1101,1111} 

Deleting at tr ibute X4 from each instances gives us the following projected in- 
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k--1 Input: k sets Co . . . .  , Ck-1 such that A" = (.Ji=0 Ci (the whole instance space). 
Output:  Reduced OODG correctly categorizing all instances in 2d. 

1. If (k = 1) then return the graph with one node. 
2. Nondeterministically select a variable X to be deleted from the instances. 
3. Project the instances in Co, . . . ,  Ck-1 onto the instance space A "~, such that variable 

X is deleted. Formally, if X is the ith variable, 

k--1 
X'  7C( xl,...,xi_1,x,+l ..... x ,  ) U Ci +. . -  

i=0 

4. For all i, j E {0 , . . . ,  k - 1} let Cij be the set containing instances from X" s.t.: the 
instances belong to set Ci when augmented with X = 0, and to the set Cj when 
augmented with X = 1. 

5. Let k I be the number of non-empty sets from {Cij}. Call the algorithm recursively 
with the k' non-empty sets, and let G be the OODG returned. 

6. Label the k ~ leaf nodes of G, corresponding to the non-empty sets Cij with the 
variable X. Create a new level of k nodes corresponding to the sets Co, . . . ,  Ck--~. 
From the node corresponding to each Cij, create two edges: one labelled 0, ter- 
minating at the (category) node corresponding to Ci, and the other labelled 1, 
terminating at the (category) node corresponding to Cj. 

7. Return the augmented OODG G. 

Fig.  3. A nondeterministic algorithm for learning OODGs. 

stance space 

X' = {000,001,010,011, i00, i01, II0, iii} 

Because we started with the full instance space, each of these projections has 
a defined destination (a set name shown after the right-arrow below) for each 
possible value of X4. Creating sets from all projected instances in X I that have 
the same destinations for the same values of X4, we get 

Col(O "--+ Co, 1 -..+ Cl )  -- {000,001,110,111} 
C10(0 --+ C1, 1 --+ Co) = {010,011,100,101} 

Note tha t  out  of  four possible sets, only two were needed. We now construct  the 
O O D G  recursively using the two non-empty  sets Cm and C10 as our input  sets. 
Selecting variable X3 to delete gives us the following project ion 

X "  = {00, 01, 10, 11} 

Crea t ing  the appropr ia te  sets f rom the projected instances in +l'" yields 

Coo(O ""+ Col, 1 -+ Col) -- {00, l l }  
Cl1(0 -"+ Clo, 1 --+ Clo) ---- {01, 10} 
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Note that  each of the two new sets implements a constant function that  
ignores the value of the given at tr ibute (i.e., it branches to the same node re- 
gardless of the at tr ibute value). A level for which all implemented functions are 
constant implies that  the variable is irrelevant. Continuing the execution yields 
the OODG depicted in Fig.1. 

4 HOODG: A Hill Climbing Algorithm For Constructing 
OODGs 

In this section we address the two main problems ignored in the algorithm de- 
scribed in the previous section: 

1. Deciding where to place projected instances (Step 4 of the algorithm) for 
which we have more than once choice. This can happen if a projection does 
not have all possible augmentations because we do not have the full instance 
space. 

2. Ordering the variable for selection in Step 2. 

4.1 P l a c i n g  P r o j e c t e d  I n s t a n c e s  

If we do not have the full instance space, there will be projections of instances 
for which some values of the deleted attribute will be missing (e.g., we know 
that  a projected instance must branch to some node on values 0 and 2, but  
do not know where it should branch on values 1 and 3). Call such projections 
Incomplete Projections, or IPs .  A decision on where to place these instances 
constitutes a bias, since it determines how unseen instances will be classified. 

Following Occam's razor principle, we would like to find the smallest OODG 
consistent with the data (since we assume no noise, we will not overfit the data). 
We are thus looking for a minimal set of branching nodes that  "covers" all 
projections, i.e., a minimal cover. 

An IP is c o n s i s t e n t  with another projection, P, (at the same level of the 
graph) if they do not have conflicting destinations on the same value of the 
deleted variable. An IP a g r e e s  with another projection, P, if they are consistent, 
and all destinations defined for the IP are also defined for the projection P (note 
that  agrees is an asymmetric relation). 

The placement strategy used in our implementation is to start  creating pro- 
jection sets (branching nodes) with projections having the greatest number of 
known destinations (values of the deleted variable), then for projections with 
fewer known destinations. Each projection is placed in a projection set where it 
agrees with all instances whenever possible; otherwise, it is placed in a set where 
it is consistent with all instances, if possible; otherwise, a new projection set is 
created, consisting of the single projection. Ties are broken in favor of projection 
sets with more destinations. 
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4.2 Orde r ing  the  Variables 

There are n! possible orders in which to select the variables in Step 2 of the 
algorithm. Given the full instance space, it is possible to find the optimal ordering 
using dynamic programming by checking "only" 2 n orderings, as described in 
[11, 12]. 

In our implementation, we chose to greedily select the variable that yields 
the smallest width (minimal number of nodes) at the next level (equivalent to 
a one-ply lookahead). We consider each variable in turn, compute the width of 
the level that would be formed if we were to select that variable in Step 2 of the 
algorithm, and then select the one that minimizes the width. Tie-breaking for 
variables with the same resultant width favors those with the greater number 
of "constant" nodes, i.e., nodes that ignore the variable value. This tends to 
favor irrelevant attributes early, increasing the ratio of the training set size to 
the projected instance space. Equality is possible only if each projected instance 
has exactly IDI instances in the sets before the projection, where ID] is domain 
size of the irrelevant variable. 

Example 2. The Monk's Problems The Monk's problems are three artificial prob- 
lems that allow comparison of algorithms. In [27], 24 authors have compared 25 
machine learning Mgorithms on these problems. In the given domain, robots 
have six different nominal attributes as follows: 

Head-shape E 
Body-shape E 

Is-smiling E 
Holding E 

Jacket-color E 
Has-tie E 

{round, square, Octagon}. 
{round, square, octagon}. 
{yes, no}. 
{sword, balloon, flag}. 
{red, yellow, green, blue}. 
{yes, no}. 

In the first problem, Monk 1, the target concept is 

(Head-shape = Body-shape) or (Jacket-color = red) 

The standard training set for this problem has 124 instances out of 432 possible 
instances. Running our algorithm on this problem shows the significance of dis- 
covering irrelevant attributes. The three irrelevant attributes are selected first, 
and after constructing three levels of constant nodes, we are left with a problem 
of inducing an OODG for the remaining three attributes. There are 36 possible 
instances for the three remaining attributes, and the projections of the specific 
training set given in this problem yield 35 different instances (the expected num- 
ber is 34.91, so this is not a fortuitous training set). The missing instance agrees 
with only one of the two nodes at the level at which it is projected, so we do 
not have a choice of where to put it. After discovering the irrelevant attributes, 
the problem becomes trivial. Fig.4 shows the resulting OODG, after removing 
constant nodes. 
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~luare 

Target concept is: (Head-shape = Body-shape) or (Jacket-color = red). 

Fig.4.  Resulting OODG for Monk's problem 1 (constant nodes removed). 

In the second problem, Monk 2, the concept is 

Exactly two of the attributes have their first value. 

The standard training set for this problem has 169 instances. This problem 
has no irrelevant attributes which makes it very hard, given the original encoding 
of six nominal attributes. However, if we encode it using a local representation, 
where each at tr ibute value is represented by one Boolean indicator variable, 
many attributes become irrelevant. This is the encoding scheme used by Thrun 
and Fahlman when neural nets were tested. 

Under a local-representation encoding, there are 17 attributes, but 11 of them 
are irrelevant. Projecting the instances on the six relevant attributes yields 52 
different instances out of 64 possible ones. 

There is a subtle problem when running our hill-climbing algorithm. In the 
first stage, each of the 17 attributes is redundant (i.e., the penult imate level 
has only constant nodes when each is selected), making it a candidate for being 
an irrelevant attribute. Intuitively, deleting any one such Boolean at tr ibute still 
allows us to solve the problem; in the local representation, the missing at t r ibute 
can be reconstructed from the other attributes, since for every variable in the 
original encoding, exactly one of the new indicator variables must be set to 1 
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(and the others to zero). Note of course that  once one variable is deleted, other 
variables that  were "candidates" become relevant. Our heuristic for choosing the 
"best" attribute is to do one level of lookahead for redundant attributes. The 
attr ibute that  creates the most number of redundant attributes at the next level 
is selected. 

With the lookahead procedure described above, and using local representa- 
tion, HOODG correctly generalizes the training set to get 100% accuracy on the 
test set. Fig.5 shows the resulting OODG, which is the smallest one possible for 
the given target concept. 

0 

Holding sword 

1 

Target concept is: Exactly two of of the following attributes must have the value 1 
{round-head, round-shape, is-smiling, holding-sword, jacket-red, has-tie}. 

Fig. 5. Resulting OODG for Monk's problem 2 

5 Experimental  Results 

The complexity of our algorithm as implemented is O(ns 2 + is2(n 1)) per 
level, where i is the number of irrelevant attributes at the given level, and s is 
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the number of projected instances at that  level. Running on a a SPARCstation 
ELC, the execution time varies from about 3 seconds for Monk 1, 10 seconds for 
parity 5+5 (described below) to four and a half minutes for Monk 2 in the local 
representation (mostly due to the large number of irrelevant attributes).  

Table 1 shows the accuracy results for some classical datasets and some arti- 
ficial ones. The datasets Monk 1,2,3, and Vote, were taken from Quinlan's C4.5 
data  files (Monk3 has 5% noise); each has one training set and one test set. 
The vote database is a real-world database that  includes votes for each of the 
U.S. House of Representatives Congressmen on the 16 key votes identified by the 
Congressional Quarterly Almanac Volume XL (the votes are simplified to yes, 
no, or unknown). The data set consists of 300 instances and the test set consists 
of 135 instances. 

The second part of the table depicts the average of 10 runs, each with a 
randomly chosen training set. Each training set for Monk 1" is of size 124 (as 
is the original training set); each training set for Parity5, which is the XOR of 
5 bits, consists of 50% of the instance space; and each training for Pari ty 5+5, 
which is the XOR of 5 bits with 5 irrelevant bits, consists of 10% of the instance 
space. The systems compared are ID3, C4.5, with and without grouping (-s flag), 
and HOODG. 

Data Set ID3 C4.5 / C4.5 (grouping) HOODG 
Monk 1 81.7% 75.7%/100.0% 100.0% 
Monk 2 
iMonk 2 (local repr.) 
Monk 3 
Vote 

Monk 1" 
Parity 5 (50%) 
parity 5+5 (10%) 

69.2% 
86:6% 
94.4% 

65.0%/74.1% 
70.4%/75.9% 

97.2%/100.0% 

83.1% 
lOO.O% 
94.4% 

94.1% 97.0%/93.3% 94.1% 
92.3% • 4.6% 86.1% • 3.7%/92.9% 4- 7.0% 100% 4- 0.0% 
60.6% 4- 3.0% 
55.2% • 4.5% 

50.0% • 0.0%/50.0% • 0.0% 100% • 0.0% 
52.5% • 4.7%/52.5% • 4.7% 100% :i: 0.0% 

Table 1. Comparison of different algorithms. Results in the second part of the table 
are averaged over 10 runs with standard deviation after the 9= sign. 

It is interesting to note that  while C4.5 gets 100% on the original training 
set for Monk 1, it has a large variance when executed on different training sets 
of the same size. 

6 R e l a t e d  W o r k  

Lee [15] introduced binary decision programs that  are evaluated by executing a 
series of instructions that  test a variable and make a two way branch. He showed 
that  it is possible to represent any switching function in O ( ~ )  such instructions. 
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Akers [1] described binary decision diagrams, and gave a top-down procedure 
for building them using the Boole-Shannon expansion [3, 26]: 

/ = =~" f[~,=l + ~ .  fl~,=o 

where f[=i=b is the restriction, or cofactor, of the function f 

f l ~ , = b ( x l , . . . ,  = , )  = f ( x l , . . . ,  z i -1,  b, x i + l , . . . ,  z,O 

Moret [20] gives an excellent survey of work on decision trees and diagrams, 
with over 100 references. 

Bryant [6] introduced Ordered Binary Decision Diagrams (OBDDs), which 
spawned a plethora of articles and a whole subcommunity dealing with OBDDs 
[7, 5, 19, 13]. OBDDs are a restriction of Binary Decision Diagrams (BDDs), 
where a total ordering is defined over the set of variables and all paths must 
test variables in accordance with the given ordering. Note that OBDDs are not 
necessarily levelled. Bryant describes the advantages of OBDDs over the common 
representations like CNF and DNF (these advantages apply to OODGs too): 

- Operations like complementation may yield exponential growth for DNF and 
CNF, while they do not change the size of OBDDs. 

- Common operations such as reduction, fl  < op > f2 (where op is any binary 
function), restriction, and composition, are bounded by the product of the 
graph sizes for the functions being operated on. 

- Satisfiability testing takes constant time (check if the OBDD is the single 
category node 0), while finding a satisfying assignment for n variables takes 
O(n) Counting the number of satisfying assignments if O([G D where [G] is 
the size of the graph, and finding all satisfying assignments is O(n.  ISfl ) 
where IS/[ is the number of such satisfying assignments. 

OBDDs have been used for automatically verifying finite state machines, in- 
cluding 64-bit ALUs, with up to 1012~ states by representing the state space sym- 
bolically instead of explicitly [9, 8]. These applications show, at least empirically, 
that many functions occurring in engineering domains seem to be representable 
in small (polynomial) OBDD structures (and hence in OODGs). 

In the computer science theory community, binary decision graphs have been 
called b ranch ing  p rograms ,  and have been extensively studied in the hope 
of separating some complexity classes and for studying the amount of space 
needed to compute various functions [4]. Two important theorems tell us that an 
algorithm in SPACE(S(n)) for S(n) >_ log n has a branching program complexity 
of at most c s(n) for some constant c [16], and that constant-width branching 
programs are very powerful, being able to accept all NC 1 languages [2]. 

In the machine learning community, general decision graphs were investigated 
by Oliver [21, 22] whose algorithm constructs the graphs top-down, by doing a 
hill-climbing search through the space of graphs, estimating the usefulness of 
each graph by Wallace's MMLP (minimum message length principle). At each 
stage a decision is made whether to split a leaf (and which), or whether to join to 
leaves. Operations that increase the message-length are never performed, hence 
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the algorithm is guaranteed to terminate. The algorithm is (heuristically) able 
to overcome the replication and fragmentation problem associated with decision- 
trees. 

Dvorak independently discovered the bottom-up technique we have used here 
to minimize OBDDs [10]. Although his work resembles ours, his motivation is 
to minimize functions with Don't Cares, while ours is to induce structures with 
high predictive power. 

The relations between the different models, that is, OBDD, Branching Pro- 
grams, and Decision Trees are summarized by Meinel in [17]. Translating Meinel 
results to the terms used in this paper, we get the following lemmas: 

- There exists a Boolean function for which the smallest decision tree repre- 
senting it has size O(2~), while there is an OODG representing it of size 
O(n). 

- There exists a Boolean function for which the smallest OODG representing 
it has size O(2(~/l~ while there is a tree of size O(n2/log n) representing 
it. (This lemma shows the different bias of the two structures.) 

- There exist a Boolean function for which the smallest OODG has size size 
2 ~(~), while an oblivious decision graph of depth linear in n that is not 
read-once, can represent it in n ~ 

An interesting point, first mentioned by Lee and Akers and studied in [19], 
is that a decision diagram actually represents more than one function. Entering 
the diagram at a different node allows sharing functions. 

7 Fu ture  Work  

Since our algorithm is essentially a hill-climbing algorithm, it may not find a 
global minimum. Researchers working on OBDDs (cf. [18, 14]) have experi- 
mented with exchanging variables after building the graph, and have achieved 
good results. 

Deeper lookahead for variable selection is an obvious possible extension, es- 
pecially since one motivation for growing the graph from the bottom is the 
asymmetric shape (the kite shape depicted in Fig.2) bounding the OODG. 

We have shown promising preliminary results of using this structure with a 
simple hill-climbing heuristic. Looking further down the road, we need a method 
of dealing with noise, possibly by pruning the OODG. We need to extend the 
variable domains from discrete to real-valued, and to conduct more experiments 
on the generalization power. 
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