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Abstrac t .  We present a verification algorithm for duration properties 
of finite-state real-time systems. While simple real-time properties con- 
strain the total elapsed time between events, duration properties con- 
strain the accumulated time during which certain state predicates hold. 
We formalize the concept of durations by introducing duration measures 
for (dense-time) timed automata. Given a timed automaton with a du- 
ration measure, a start and a target state, and a duration constraint, 
the duration-bounded reachability problem asks ff there is a run of the 
automaton from the start state to the target state such that the accu- 
mulated duration along the run satisfies the constraint. Our main result 
is a novel decision procedure for solving the duration-bounded reachabil- 
ity problem. We also prove that the problem is PSPACE-eomplete and 
demonstrate how the solution can be used to verify interesting duration 
properties of real-time systems. 

1 Introduction 

Over the past decade, model checking [CES86, QS82] has emerged as a powerful 
tool for the automatic  verification of finite-state concurrent systems. Recently 
the model checking paradigm has been extended to real-time systems ([ACDY0, 
EMSSY0, AFHYl, HNSY92]). Thus, given the description of a finite-state system 
together  with its timing assumptions, there are algorithms to test whether such 
a system satisfies a specification written in a real-time temporal  logic. A typical 
property specifiable in real-time temporal  logics is the following time-bounded 
causality property: 

A response is obtained whenever a ringer has been pressed continuously 
for 2 seconds. - -  (*) 

The standard real-time temporal  logics, however, have limited expressiveness 
and cannot specify some properties we may want to verify of a given system. In 
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particular, they do not allow us to reason about the accumulated durations of 
state predicates. As an example, consider the following duration-bounded causal- 
ity property: 

A response is obtained whenever a ringer has been pressed, possibly in- 
termittently, for a total duration of 2 seconds, m (**) 

To specify this duration property, we need to measure the accumulated time 
spent in the state that models "the ringer is pressed" over a given interval of 
time. For this purpose, the concept of duration operators on state predicates 
was introduced in the Calculus of Durations [CHRgl]. In that paper, an axiom 
system is given to prove duration properties of real-time systems. 

Here we address the algorithmic verification problem for duration proper- 
ties of finite-state real-time systems. We use the formalism of timed automata 
[Di189, ADg0] to represent finite-state real-time systems. A timed automaton 
operates with a finite-state control and a finite number of fictitious time gauges 
called clocks, which allow the annotation of the state-transition graph of the 
system with timing constraints. The state of a timed automaton includes, apart 
from the location of the control, also the real-numbered values of all its clocks. 
Consequently, the state space of a timed automaton is infinite, and this compli- 
cates its analysis. The basic question about a timed automaton is the following 
time-bounded teachability problem: 

Given a start state a, a target state ae, and an interval I, is there a run 
of the automaton starting in state a and ending in state ~ such that the 
total elapsed time is in the interval I? - -  (~) 

The solution to this problem relies on a partition of the state space into finitely 
many regions and the construction of a quotient called the region graph of 
the timed automaton [ADg0]. The states within the same region are equiva- 
lent with respect to many standard questions. In particular, the region graph 
can be used for testing emptiness of a timed automaton [AD90], for checking 
time-bounded branching formulas [ACDg0], for testing bisimulation equivalence 
of states [C92], and for computing bounds on delays ICY91]. Unfortunately, 
the region graph is not adequate for testing the duration properties such as 
the duration-bounded causality property (**); that is, of two runs that start in 
different states within the sameregion, one may satisfy the duration-bounded 
causality property, whereas the other one does not. Thus new techniques are 
needed to analyze duration properties. 

To introduce the concept of durations in a timed automaton, we associate a 
duration measure, a nonnegative integer, with each of the control locations. The 
duration measure of a location gives the rate at which the accumulated duration 
increases while the automaton control resides in the location. For example, a 
duration measure of 0 means that the time spent in the location is not accu- 
mulated, a duration measure of 1 means that the time spent in the location is 
accumulated, and a duration measure of 2 means that the integral increases at 
twice the rate of time. The time-bounded reachability problem (~) can now be 
generalized to the duration-bounded teachability problem as follows: 
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Given a start state ~, a target state ~ ,  a duration measure, and an 
interval I,  is there a run of the automaton starting in state r and ending 
in state ~ such that  the accumulated duration along the run is in the 
interval I? - -  (tt)  

We provide a solution to the duration-bounded reachability problem, and we 
show the problem to be PSPACE-complete. Our algorithm can be used to verify 
many interesting duration properties of finite-state real-time systems, such as 
the duration-bounded causality property (**). 

Let us briefly outline our construction. Given a region R, a target state ~', and 
a path in the region graph from R to a t, we show that  the lower and upper bounds 
on the accumulated duration over all the runs that  start at some state in R and 
follow the chosen path, can be written as linear expressions over the variables 
that  represent the clock values of the start  state. In a first step, we provide an 
algorithm for computing these so-called bound expressions. In the next step, we 
define an infinite graph, the bounds graph, whose vertices are regions tagged with 
bound expressions that  specify the set of possible accumulated duration values 
along any path to the target state. In the final step, we show how the infinite 
bounds graph can be collapsed into a finite graph to solve the duration-bounded 
teachability problem. 

2 T i m e d  A u t o m a t a  

Timed automata  are a model for finite-state real-time systems [Di189, AD90, 
ACD90]. Each automaton has a finite set of control locations and a finite set 
of real-valued clocks. All clocks proceed at the same rate, and thus each clock 
measures the amount of time that  has elapsed since it was last reset. A transition 
of a timed automaton can be taken only if the current clock values satisfy the 
constraint that  is associated with the transition. When taken, the transition 
changes the control location of the automaton and resets one of the clocks. 

Formally, a timed automaton A is a triple (S, C, E), where 

1. S is a finite set of locations; 
2. C is a finite set of clocks; 
3. E is a finite set of transitions of the form (s, s ~, #, z), for a source location 

s E S, a target location s ~ E S, a clock constraint p, and an associated clock 
x E C. Each clock constraint is a boolean combination of atomic formulas 
of the form y < k and k < y, for a clock y E C and a nonnegative integer 
constant k E N. 

A configuration of the timed automaton A can be fully described by speci- 
fying the location of the control and the values of all clocks. A clock valuation 

E RIcl is an assignment of nonnegative reals to the clocks in C. A state ~ of A 
is a pair (s, I/) consisting of a location s E S and a clock valuation v. We write 

for the (infinite) set of states of A. As time elapses, the values of all clocks 
increase uniformly with time, thereby changing the state of A. Thus if  the state 
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of A is (s, v) at time t, then at time t -F 6, assuming that  no transition occurs, 
the state of A will be (s, v + ~) where v + 6 is the clock valuation that  assigns 
v(x) -t- 6 to each clock x E C. The state of A may also change because of a 
transition (s, s j, p, x) E E. Such a transition can be taken only in a state whose 
location is s and whose clock valuation satisfies the constraint p. The transition 
is instantaneous: after the transition, the automaton is in a state with location s j 
and the new clock valuation is v[x := 0]; that  is, the clock x E C associated with 
the transition is reset to the value 0, and all other clocks remMn unchanged. 

The possible behaviors of the timed automaton A are then defined through 
a consecution relation on the states of A: 

T~ans l t l on  successor  For all states (sl v) E s and transitions (s, s', #, x) E E, 

if v ~ # then (s, v) ~ (s', v[x := 0]). 
T i m e  successor  For all states (s, v) E ,U and all time increments ~ > 0, 

(s, v) =~ (s, v + 6). 

A state (s', v') is a successor of the state (s, v), written (s, v) ~ (s', v'), if[ 

there exists a time value 6 >. 0 such that  (s, v) ~ (s', ~/). The successor relation 
defines an infinite graph K(A) on the state space ~ of A. 

Depending on the application, a timed automaton may be augmented with 
additional components such as initial locations, accepting locations, input sym- 
bols as transition labels, or atomic propositions as location labels. We have 
chosen a very simple definition to illustrate the essential computational aspects 
of solving the teachability problems. Also, the original definition of a timed au- 
tomaton allows a (possibly empty) set of clocks to be reset with each transition. 
Our requirement that  precisely one clock is reset with each transition, does not 
affect the expressiveness. 

Region Graphs 

Let us review the known method for analyzing timed automata.  The key to 
solving verification problems for a timed automaton is the construction of the 
so-called region graph of a timed automaton [AD90, ACD90]. The region graph 
of a timed automaton is a finite quotient of the infinite state graph that  retains 
enough information to answer teachability questions. 

Suppose we are given a timed automaton A and an equivalence relation 
on the states E of A. We write [cr]C • for the equivalence class of states that  
contains the state a E ~ .  The successor relation =~ is extended as follows: we 
write ~ =:~ [a ~] if for some time value 6 > 0, a ~ ~ and ( a + ~  ~) E ([a] U [a~]) for 
all 6 ~ < 6. The quotient graph of A with respect to the given equivalence relation 
~ ,  written [K(A)]_~, has an edge from [a] to [~'] iff a =~ [a']. The equivalence 
relation -~ is called forward-stable if whenever a =:~ [~'] holds so does a"  :=~ [a'] 
for all ~" E [a]. The quotient graph with respect to a forward-stable relation 
can be used for solving teachability problems. If ~ is forward-stable, and [a'] is 
singleton, then o" =~* a '  iff there is a path from [a] to [a'] in the quotient graph 
[K(A)]_~. 
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The region graph R(A) of a timed automaton A is a finite quotient graph 
with respect to the particular equivalence relation defined below. For x E C, let 
c= be the largest constant that the clock x is compared to in any constraint of 
A. For t E R, let (t) denote the fractional part of t, and let [tJ denote its integral 
part. Two states (s, •) and (s, v') are region-equivalent, written (s, v) ~ (s, t,'), 
iff 

1. for each clock x e C, either [~(x)J = [~'(x)J or both ~(x) and v'(x) are 
greater than c=; and 

2. for all x, y e C, (v(x)) < (~,(y)) iff (v'(~)) _< (z/(y)), and (~,(x)) = 0 iff 
= o.  

A'region R C ~ is a ~-equivalence class of states. Note that  a region is fully 
specified by a location, the integral parts of all clock values, and the ordering of 
the fractional parts of the clock values. For instance, if C contains three clocks 
x, y, and z, then the region Is, x = 1, y = 0.2, z = 1.3] contains all states (s, v) 
with t,(x) = 1, [v(y)J = 0, Lu(z)J = 1, and O < (u(y)) < (u(z)). Notice that 
there are only finitely many regions. The  finiteness follows from the fact that  
the exact value of the integral part of a clock x is recorded only if it is smaller 
than c=. The number of regions is bounded by I Sl. 2".n!.II=ee(c~ + 1), where n 
is the number of clocks. 

The region graph R(A) of the timed automaton A is the quotient graph with 
respect to the equivalence -~. I t  is easy to check that the relation ~ is forward- 
stable, and hence the region graph can be used to solve teachability problems. 
Let us define its edges explicitly. A region R is a boundary region iff there is some 
clock x such that R satisfies (x) = 0. A region that is not a boundary region 
is called an open region. For a boundary region R, we define its predecessor 
region pred(R) to be the open region R' such that for all states (s, t,) E R', 
there is a time increment ~f > 0 such that (s, v + ~f) E R and (s, t / +  6') E R ~ for 
all 6' < 6. Similarly, let the successor region succ(R) of R be the open region 
R'  such that for all states (s, v) E R j, there is a time value ~ > 0 such that 
(s, ~ - ~f) e R and (s, t / -  6') E R'  for all 6' < & The state of an automaton 
belongs to a boundary region R only instantaneously. Just  before that instant 
the state belongs to pred(R), and just  after that instant the state belongs to 
succ(R). For example, for R = [s,x = 1, y = 0.2, z = 1.3], pred(R) is the 
equivalence class Is, x = 0.9, y = O.1, z -- 1.2] and succ(R) is the equivalence 
class Is, x = 1.01, y = 0.21, z = 1.31]. 

The edges of the region graph R(A) are defined as follows: 

Trans i t ion  edges  If (s, v) ~ (s', v'), then there is an edge from the region 
[s, t o  [s', 

T i m e  e d g e s  For each boundary region R, there is an edge from pred(R) to R, 
and an edge from R to succ(R). 

The region graph is useful in solving the t ime-bounded reachability problem 
for a t imed automaton,  and also for checking specifications written in the real- 
time logic TCTL [ACD90]. 
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3 R e a c h a b i l i t y  a n a l y s i s  for  d u r a t i o n  c o n s t r a i n t s  

Durat ion  constraints 

Let A be a timed automaton. A duration measure is a function dur from the 
locations of A to the nonnegative integers. A duration constraint is of the form 
f dur G I, where dur is a duration measure, and I is an interval of the real line 
with integer end-points. 

Let dur be a duration measure. We extend the state space of A to evaluate 
the integral f dur along the runs of A. An eztended state is a pair (a, e) consisting 
of a state ~r of A and a nonnegative real e. The successor relation on states is 
extended as follows: 

Transit ion successor For all extended states (s, v, e) and transitions (s, s', p, z) 

such that  v ~ #, let (s, ~, e) ~ (s ~, v[z := 0], e). 
Time  successor For all extended states (s, ~, c) and all time increments ~ > 0, 

let (s, ~, e) :~ (s, ~ + ~,e + ~. dur(s)). 

We solve the following duration-bounded teachability problem between re- 
gions: 

Given an initial region R0, a final region R!,  and a duration constraint 
f dur G I, whether there exists a state in R0 from which a state in R! 
can be reached such that  the path satisfies the constraint f dur E I; that  
is, whether for some a E R0, or' E R!,  and $ E I, (a, 0) =~* (er~, 5) holds. 

Bound- labe led  regions 

Let R0 and R! be two regions and let dur be a duration measure. We will 
determine the set I of possible values of the integral f dur such that  (a, 0) =~* 
(al,6) for some ~ E Ro, a I E R!,  and ~ E I. To compute the lower and upper 
bounds on the integral f dur along a path of the region graph, we refine the 
graph by labeling all regions with expressions that  describe the extremal values 
of the integral. 

We build an infinite graph with vertices of the form (R, t, u), where R is a 
region, and t and u are linear expressions over the clock variables. The intended 
meaning of the bound expressions l and u is that  from a state (s, v) E R, a state 
in the target region R! can be reached, and in moving to R l, the set of possible 
values of the integral f dur has infimum l and supremum u, both of which are 
functions of the current clock values v. 

The bound expressions ~ and u labeling a region R will be of a special form. 
Suppose that  C = {~1, . - . ,  z ,}  is the set of clock variables and that  for all states 
(s, v) G R, ~ satisfies 

0 < (=1) < . . .  < < 1; 

that  is, Zl is the clock with the smallest fractional part and z• is the clock with 
the largest fractional part. The fractional parts of all n clocks partit ion the unit 
interval into n + 1 subintervals of length e0 , . . . ,  e , :  
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eo = 
el "- (X2) - - (Xl) ,  

e n - 1  = ( X n )  - -  (Xn-1), 
e n  = 1 - - ( ~ n ) .  

A bound expression for R is a positive linear combination of the expressions 
Co,..., en. We denote bound expressions by (n + 1)-tuples of nonnegative integer 
coefficients and write (a0, . . . ,  an) for the bound expression (a0.e0 + - . .  an-e,).  
For any expression e and a clock valuation v, we write [e]~ to denote the result 
of evaluating e using the clock values given by v. Note that when time advances, 
the value of a bound expression changes at ao ~- an times the rate of time. 

A bound-labeled region (R, ~, u) consists of a region R E R(A), and two bound 
expressions e and u for R such that for every state (s, v) E R, [u]v _> [t~. We 
construct Bdur,tr (A), the bounds graph of A for duration measure dur and target 
region R I. The vertices of Bd~,Rj (A) are the bound-labeled regions of A and 
the special vertex R I. 

We begin with finding bounds for the paths that reach R/ without going 
through any other regions. Suppose that R! is an open region with duration 
measure d. The target region R! is reachable from a state (s, u) E R! by re- 
maining in R! for at least by 0 and at most [1 - (xn)]v time units. Hence we 
add an edge in the bounds graph to RI from (RI, s u) for s = (0 , . . . ,  0, 0) and 
u = (0 , . . . ,  0, d). If R! is a boundary region, we add an edge to RI from (RI, s u) 
for  e =  u = ( 0 , . . . , 0 , 0 ) .  

Now let us look at longer paths to reach the target region RI.  For each edge 
from R to R ~ in the region graph, the bounds graph has an edge from (R, ~, u) 
to (R', g,  u ~) if the bound expressions t and u are related to s and u ~ according 
to certain rules. We discuss here only the lower bounds; the rules for updating 
the upper bounds are similar and will be given in the full paper. 

First let us consider an example. Suppose that C = {a:, y, z} and the bound- 
ary region R1, which satisfies 0 = (x) < (y) < (z), is labeled with the lower 
bound ~1 = (0, a, b, c). This means that starting from a state (s, v) e Rt, the 
lower bound on the integral f dur for reaching some state in R! is 

[ a  (y) + b  - (y))  + c  (1 - 

Now consider the open predecessor region R2 satisfying 0 < (y) < (z) < (x), 
There is a time edge from R2 to R1 in the region graph. Let d2 be the duration 
measure of R2. We want to compute the lower bound label s for R2 from/1. 
Staring in a state (s, u) E R~, the state (s, v~), ~ / =  v -t- 6, of the region R~ is 
reached after a time increment of 6 that equals [1 - (x)]u, and 

= [ (y)  + (1 - (=))]., 

[1- (z)]~,+~ = [(x)- (z)],,. 
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Furthermore, from any state (s, ~) G R2 the integral increases by [d2-(1 - (x))]~ 
before entering the region R1. Hence, the new lower bound is 

In .  @) + a .  ( 1 -  @)) + b .  ((z) - @)) + c .  (@) - (z)) + d ~ .  ( 1 -  (x))]~ 

and the label ~2 is (a, b, c, a + d2). Next consider the predecessor region Ra 
satisfying 0 = {y) < (z) < (x) and the time edge from region Ra to region R~. 
The reader can verify that the updated lower bound label ta of Ra is (a, b, c, a + 
d2), same as ~2. 

The process repeats if we consider further time edges, so let us consider a 
transition edge from region R4 to region Ra. We assume that the region R4 is 
open with duration measure d4, satisfies 0 < (z) < (y) < (x), and the cor- 
responding transition resets the clock y. Given a s ta te  (s, u) G R4, let ul be 
the clock values immediately after the transition. The choice of v' depends on 
when the transition occurs, and we want to minimize [~3]~, over all such possible 
choices. First observe that independently of when the transition occurs 

[(x) - ( z ) ] ~ ,  = [ ( x )  - ( z ) ] ~  = [ ( @ )  - ( z ) )  + ( ( ~ )  - ( Y ) ) ] ~ .  

If the transition occurs immediately, then 

[(z) - (y)]~, = [(z)lV, 
[1-- (x)]v, -- [ 1 -  (x)]v, 

and in this case the updated lower bound ~41 is (b, c, c, a + di) .  On the other 
hand, if the transition happens as late as possible the lower bound is computed 
as follows. Let vt be the clock values just  prior to the transition, where [(x)]v, 
is arbitrarily close to 1. Then the lower bound l~ starting from (s, v) is the sum 
of [d4- (1 - (~))]~ (1 - (x) is the time to reach (s, ~1)) and of the lower bound 
starting from (s', ~/). The later is equal to [b-((z) - (y)) + c.  ((x) - (z))]v,, and 
since [(z) - (y)]u, = [(z) + (1 - (x))]~, this is equal to 

[ b .  + ( 1  - + e .  - ( y ) )  + c .  ( ( y )  - 

Hence, ~ is (b, c, c, b + d4). The new lower bound label ~4 is s if a + d2 <__ b + d4, 
and s otherwise. 

We now formally define the edges of the bounds graph. Suppose that  the 
region graph has an edge from R to R! and let d be the duration measure of,R. 
Then the bounds graph has an edge from (R, ~, u) to (R', ~', u~), where the lower 
bound labels s = (a0, h i , . . . ,  a , )  and ~' = (a~, a~ , . . . ,  a~) are related as follows 
(and the upper bound labels are related according to similar rules). There are 
various cases to consider, depending on whether the edge from R to R ~ is a time 
edge or a transition edge: 

T i m e  e d g e  1 R I is a boundary region and R = pred(R I) is an open region: 
! . for all 0 <_ i < n, ai = hi+i, 

a ,  = a~) + d. 
T i m e  e d g e  2 R is a boundary region and R I -'- succ(R) is an open region: 
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for all 0 < i < n, ai = a~; 
T r a n s i t i o n  edge  R ~ is a boundary region, and suppose the clock with the k-th 

largest fractional part i n / / i s  reset: 
I o for all 0 < i < k, ai = ai+ 1, 
I for all k < i < n, ai = a i. 

t < a t + d, then the lower bound is achieved when the reset occurs If a n 
immediately; in this case 

? 
a n  .-- a n .  
! If a n > a t + d, then the lower bound is achieved when the reset is delayed 

as much as possible; in this case 
a,., = a t + d. 

Reachabi l i ty  in t h e  b o u n d s  graph 

Given a state a = (s, u) and bound expressions g and u, we define the interval 
I(g, u, a) of the real line as follows: if [/]~ = [u],, then I(g, u, o') is the singleton 
set containing [g]~; otherwise I(g, u, ~r) denotes the open interval (I/]u, [u]v). The 
next lemma indicates how the bounds graph can be used to solve teachability 
problems with duration constraints. 

L e m m a l .  For any region RI  E R(A),  time value 6 E R, and state ~ E ~ ,  
there exists a state a' E R!  such that (a, O) ~ *  (tr', 6) iff there "is a bound-labeled 
region ([tr],g, u) in the bounds graph Bdur,R,(A) from which there is a path to 
R!  and df E I(e, u, tr). 

We need some more definitions. For a bound-labeled region B = (R, ~, u), let 
I (B)  denote the union UaeR I(l ,  u, a). It is easy to check that  for any B, the set 
I (B)  _C R is an interval with integer endpoints. The left endpoint is the infimum 
of [/]~ over all possible choices of !/subject to the ordering of the fractional parts 
of the clock values in R. This infimum is simply the smallest coefficient in the 
tuple representing L Similarly, the right endpoint of I (B)  is the supremum of 
[u]~ over the allowed ordering of the fractional parts, and is the largest coefficient 
i n  u .  

Now the desired teachability property between R0 and R! holds iff there is 
a bound-labeled region B = (Ro, l,  u) such that  (i) there is a path from B to R 1 
in the bounds graph Bd=r,R, (A), and (ii) I (B)  M I • ~. 

To test the desired property, we start building the vertices of Bp,Rj (A) from 
which RI is reachable. This can be done in a breadth-first fashion starting from 
the target vertex R 1. On a particular path, the same region may appear with 
different bound expressions, but when the coefficients of the bound expressions 
become "sufficiently" large, some collapsing is possible. 

Collapsing the  bounds  graph 

Given a constant K,  we define an equivalence relation over bound expressions 
as follows. 
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Let ej, j 1, 2, be bound expressions given by (a~,. . .  a~). Define el ~zr 
1 equals ai 2 or both exceed K. e 2 iff for 0 < i < n, either a i 

The equivalence relation ~K is extended over bound-labeled regions as follows. 

Two bound-labeled regions (Rt , t l ,  Ul) and (R2, ~2, u2) are said to be 
equivalent with respect to ~K iff (1) Rt = R2, (2) el --K e2, and (3) 
Ul ~ K  U2. 

We say that a bound expression e is K-bounded if all the coefficients in e 
are at most K. Clearly, for each bound expression e, there exists a K-bounded 
expression e I such that e ~/r d.  For a given region R, the number of K-bounded 
expressions is at most (K + 1) n+l, and hence 

L e m m a 2 .  For any K, the number of different equivalence classes of bound- 
labeled regions under ~K is bounded by ISI.n!.2n.(K + 1)2(n+l).II=eccx, where 
n = ICI-  

Thus the number of equivalence classes of bound-labeled regions is exponen- 
tial in the length of the input to the problem. Also the equivalence relation ~K 
is a bisimulation, or is stable with respect to teachability: 

L e m m a 3 .  If  the bounds graph Bdur.Rs(A) contains an edge from a bound- 
labeled region B1 to a bound-labeled region B2, and BI "~If B3, then there exists 
a bound.labeled region B4 such that B2 ~--K B4 and the bounds graph contains 
an edge from B3 to B4. 

Recall that we are searching for a bound-labeled region B from which RI is 
reachable and I(B) has nonempty intersection with I. Also recall that the end- 
points of I(B) are obtained by choosing the smallest and the largest coefficients 
from the associated bound expressions. If two bound-labeled regions B1 and B2 
are equivalent with respect to --~K, then the corresponding end-points of the two 
intervals I(B1) and I(B~) are either the same or greater than K. This leads to 
the following: 

L e m m a 4 .  Consider two bound.labeled regions BI and B2, and an interval I 
whose end.points do not exceed K. If B1 ~--K B2, then I f l  I(B1) = 0 iff I n 
I(B2) = O. 

This gives an algorithm for deciding the desired property. If the duration 
constraint we want to test is f dur E I, then we choose K to be the right 
end-point of I. We start building the bounds graph starting from the target ver- 
tex RI in a breaxtth-first manner. The coefficients of the bound expressions are 
always bounded by K by identifying equivalent bound-labeled regions. The de- 
sired property holds upon visiting a vertex B = (Ro,~, u) with I (B)NI  ~ 0. The 
property does not hold if the search terminates otherwise. The time complexity 
of the search is linear in the number of regions labeled with K-bounded expres- 
sions. Notice that each such bound-labeled region can be represented in space 
polynomial in the length of the input, and hence the search can be performed in 
PSPACE: 
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Theor e m 5. Given an initial region Ro and a target region RI,  and a duration 
constraint f dur ~ I, the problem of testing whether there exist states tr E Ro 
and tr' E R I, and a time value ~ E I, such that (a, O) ~*  (or', 5) is decidable in 
PSPACE. 

We point out that  the reachability problem for a timed automaton is PSPACE- 
hard, and this implies that  the duration-bounded teachability is also PSPACE- 
hard. 

4 D i s c u s s i o n  

In the previous section we solved the duration-bounded teachability problem 
between two specified regions. The construction can be used for many related 
problems as outlined below. 

It should be clear that  the initial or final region can be replaced either by a 
specified state (with rational clock values) or by a specified location (i.e., a set of 
regions). For instance, suppose we are given an initial state tr, a target state ~ ,  
a duration constraint f dur E I, and we want to decide whether (~r, 0) ::~ (g~, 5) 
for some 6 E I. Assuming ~ and ~t assign rational values to all the clocks, we can 
choose an appropriate time unit so that  the regions [~] and [~r ~] are singletons. 
Then the solution for the reachability problem between the regions [~] and [~'] is 
actually a solution to the teachability between the states. Thus the teachability 
problem between states (~t) is also solvable in PSPACE. 

Another example of a property we can test is the following. Given a finite- 
state system modeled as a timed automaton, and integers 5, a, and b, we want 
to verify whether in any time span of length 5, the system always spends at least 
a and at  most b accumulated time units in a given set of locations. For instance, 
consider a railroad crossing, similar to the one that  appears in various papers 
on real-time verification. If the minimum separation between two consecutive 
trains entering the gate is known, then we can use our algorithm to verify a 
property such as "in any interval of length 1 hour, the gate is closed for at 
most 5 minutes." Notice that  testing this property requires computing the total 
accumulated delay for which the gate is closed. 

Now let us outline how to test a duration property such as the duration- 
bounded causality (**) which says that  "a response is obtained whenever a ringer 
has been pressed, possibly intermittently, for a total duration of 2 seconds." As- 
sume that  each location of the timed automaton is labeled with state predicates 
p (denoting that  the ringer is pressed), and q (denoting the response). The du- 
ration measure is defined so that  dur(s) = 1 if p is true in s, and dnr(s) = 0 
if p is false in s. The labeling of the locations is also extended to regions and 
bound-labeled regions. The desired duration-bounded causality property does 
not hold iff there are regions /to, R 1, q holding in RI,  and a bound labeled 
region B = (Ro, ~, u) such that  I(B) N (2, c~) = 0, and in the bounds graph 
Bd~r,R], there is a path from B to R! that  visits only ('-q)-labeled vertices. In 
general, the algorithm for testing teachability can be extended to incorporate 
simple (untimed) logical properties of the paths. 
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The duration-bounded teachability problem has been studied, independently, 
in [KPSY92] also. Their approach is quite different from ours as indicated be- 
low. They first show that the problem is solvable in the discrete-time case; i.e., 
in the case where all the transitions of the timed automaton are assumed to 
occur at integer time values. Next they prove that the discrete-time solution is 
actually a solution to the original problem (i.e., the dense-time case) under the 
following two assumptions: (i) the constraints of the timed automaton use only 
positive Boolean combinations of non-strict inequalities, and the automaton can 
take many transition steps in zero time, and (ii) the duration constraint is of the 
form f dur ,~ k for the comparison relation NE {<, <, >__, >} and k E N. The 
first requirement ensures that the runs of the timed automaton are closed under 
digitization (i.e. truncating real time values with respect to arbitrary e E [0, 1)). 
The second requirement rules out the duration constraints of the form f dur = 2 
or 2 <_ f dur < 3. This approach of proving that the discrete and dense solu- 
tions coincide gives a simpler solution than ours, and it also admits duration 
measures that associate negative rates with some locations. However, both the 
requirements (i) and (ii) are crucial for this approach, and for computing dura- 
tion properties in general, the analysis is likely to require techniques designed for 
dense-time case. We also note that, when the timed automaton contains a single 
clock, [KPSY92] gives an algorithm to check more complex duration constraints 
such as f dur E I A f dur' E I ~ for different duration measures dur and dnr ~. 

An alternative approach to analyzing duration constraints of a timed au- 
tomaton is to add variables that measure accumulated durations directly to 
the timed-automaton model. An integration graph [KPSY92] is essentially a 
timed automaton where the accumulated duration f dur, called the integrator, 
is a component of the automaton state. The integrator~ like an ordinary clock, 
can be reset with a transition of the automaton, and the constraints associ- 
ated with the transitions can test integrator values also. The reachability prob- 
lem for such integration graphs is undecidable even in a very restricted setting 
[KPSY92, ACHH92]. In this paper, the duration constraints are not a part of 
the system, but constitute a part of the property we want to test. Thus, this 
distinction between whether we strengthen the model or the specification lan- 
guage with the duration constraints, is crucial to the decidability of the resulting 
verification problem. 

The expressiveness of the specification language can be increased further; 
it is possible to define a temporal logic with duration constraints. While our 
construction allows immediately the test of validity for some formulas of such 
a logic over a timed automaton, the symbolic fixpoint computation procedure 
of [ACHH92] gives a semi-decision procedure for model-checking problem. The 
decidability of the model checking problem remains an open problem. The model 
checking problem is closely related to the following problem: 

Given an initial region R0, a target state tr', a duration constraint f dnr E 
I, compute the set R~) C_ R0 consisting of states cr E Ro for which there 
exists 8 E I such that (a, 0) O* (a', 8). 

Each bound-labeled region (Ro, ~, u) from which Rf is reachable in the bounds 
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graph Bdur,R,(A) contributes the subregion {a E Ro ] I n I ( t , u , a )  # O} to 
finding R~. In general, this is an infinite union, possibly of singleton sets, and 
hence seems hard to manipulate. 
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