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Abst rac t .  In this paper, a formal model of Extended Finite State Ma- 
chines (EFSMs) is proposed and an approach to their analysis is sug- 
gested. The state of an EFSM is captured by its configuration. A class 
of EFSMs, called Modular Vector Addition Systems (MVAS), is defined 
and analyzed. Modular Vector Addition Systems cover a significant sub- 
set of models used in communication protocols and behavioral synthesis 
of hardware. For this class of EFSMs, an algorithm to compute the set of 
configurations reachable from an initial configuration is presented. This 
algorithm may also be used to compute the set of recurrent configura- 
tions. Knowledge of these sets is useful in verification, testing, and opti- 
mization of EFSM models. A compact representation of these sets and a 
simple test for membership for such representations are also presented. 

1 Introduction 

This paper introduces a formal model for Extended Finite State Machines (EF- 
SMs). The EFSM model is used widely in behavioral specification of hardware 
models and in communication protocol specifications. It is notationally compact 
and has been used as the basis of many specification languages, e.g. ESTELLE [1] 
and APSL [2]. However, most a t tempts  to analyze these models have been based 
on conventional FSM techniques. This approach suffers from the state explosion 
problem and does not exploit any algebraic relations that  may be present in the 
specification. A procedure for analyzing EFSMs without going to a conventional 
FSM representation is suggested in this paper. One step in this procedure is 
adapted from a technique (called stabilizalion) developed for transition systems 
that  was reported in [3, 4, 5]. Using the EFSM model, an algorithm to generate 
functional test vectors automatically for a class of hardware models is described 
in [6]. These results indicate that there is an advantage in treating EFSMs as 
a mathematical  object instead of simply a notational convenience. In the next 
section the Extended Finite State Machine model will be introduced and the 
terms used in its analysis will be defined. Section 3 introduces Modular Vector 
Addition Systems and develops their analysis. Section 4 provides an example of 
the results of Section 3. Concluding remarks are made in Section 5. 
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2 E x t e n d e d  F i n i t e  S t a t e  M a c h i n e s  

2.1 T h e  M o d e l  

A Extended Finite State Machine M is defined as a 5-tuple {S, I,  O, D, T},where 

S = a finite set of nodes, 
I = a set of input symbols, 
O -- a set of output  symbols, 
D = an n-dimensional linear space, 
T = a transition relation, T : S x 2 D x I ~ 2 (sxD) • O. 

Points in D will be denoted by n-tuples x = ( z t , . . . , z , ) .  We call z i , i  = 
1 , . . . ,  n, the variables associated with M. It is not necessary that  D be finite or 
even countably infinite(e.g, consider D = ~") .  Therefore, a general EFSM need 
not have an equivalent finite state model. The ordered pair < s, x > 6 S • D will 
be called a configuration of M. The operation of M is to be understood as follows: 
If the machine is in configuration < s, x >, on receiving an input i, it moves to 
a configuration < t, y > if and only if there exist P ,  Q 6 2 ~ with x 6 P and 
y 6 O such that  ((s, P, i), (t, Q, o)) 6 T for some o E O. In this case, we say that  
there is a transition from s to t labeled with the enabling function(or predicate) 
f and update function u, where f ( x )  = 1, if x 6 P and 0 otherwise, and u(.) 
is the function that  maps P to Q. Note that  the domain of u is P .  We denote 

this transition by s (Lu) t. The notation ui(x)  will refer to the i th component 
of u(x). An update function u is applicable at a configuration < s, x >,  if there 

is a transition s (l,~) t such that  f ( x )  = 1. The transition graph G of M has 
one node for each s 6 S (labeled s) and an edge between s and t if and only if 
there exist P, Q �9 2 D, i �9 I,  and o �9 O such that  ((s, P, i), (t, Q, o)) 6 T. We 
associate f ,  u, i, and o with this edge. 

A sequence of configurations < sl, xi >, i = 1 , . . . ,  n, is admissible if, for j = 
1 , . . . ,  n - l ,  there exist ij �9 I and oj �9 O such that  ((sj ,  x j ,  ij), (Sj+l, Xj+l, oj)) �9 
T; otherwise, the sequence is inadmissible. If a sequence < s i ,x l  >, i = 1 , . . . ,  n 
is admissible, then s i s 2 . . . s , ,  considered as vertices of G, form a path in G. 
However, the converse is not true, i.e., given a configuration < p0,w0 > and a 
path pop1 . . .pk  in G, let us construct < p i , w i  >, for i = 1 , . . . ,  k in an obvious 
manner.  Then, the sequence of configurations < pi, wi > for i = 0 , . . . ,  k is not 
necessarily admissible. This is due to the fact that  even though for some ai  �9 I 
and f/i �9 O ((pi, wj, hi), (Pi+l, W i+l, fit)) �9 T (by virtue of pl and Pi+l being 
successive nodes of a path in G), and there is an edge from Pi+1 to P1+2 in G, 
it does not necessarily follow that  ((pi+l, Wj+l, hi+l) ,  (pi+2, wj+2,f/i+t)) E T. 
A configuration < q, y i  > is reachable from another configuration < p, Y0 > if 
there exists a sequence < si,Yi > , i  = 1 , . . . , k  such that  < P, Y0 > <  s l , y l  > 
�9 �9 < sk, Yk > <  q, Y$ �9 is admissible. If < q, y !  �9 is reachable from < p, Y0 �9 
and vice versa, they are biconnected. A configuration < p, y > is recurrent if 
< p, y �9 and the initial configuration < so, x0 �9 are biconnected. 
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We can separate the set of variables X as Xc U X~ where Xc is the set of 
variables that  appear in at least one enabling function on some transition and 
X,  N Xz = r (x = [xc x~-]'). This induces an obvious decomposition of D into 
Dc x Dry, where xc E Dc and x r  E D~,. We call variables in Xe as control variables 
and variables in X'e as non-control variables. 

2.2 A n a l y s i s  o f  E F S M s  

Given an EFSM M, we may apply a technique called stabilization to derive 
another EFSM M ~ such that  every path in the transition graph of M j is an 
admissible path. This property greatly simplifies the analysis of EFSMs as it 
allows us to study admissible sequences by studying the paths of G ( M  ~) (It is 
always true that  the nodes in an admissible sequence form a path in the transition 
graph. The converse is not true for general EFSMs). A stabilized EFSM will be 
called a Vector Transformation System (VTS). The stabilization technique that  
we use for EFSMs is adapted from the one described in [5], which also describes 
the properties of this algorithm l Note that stabilization concerns only the control 
variables of the EFSM - -  the non-control variables do not play a part.  However, 
in some applications, it is of interest to consider the teachability of non-control 
variables also. In general, the stabilization algorithm need not terminate. 

In the sequel, we will study a special case where the update operations of the 
stabilized system are limited to additions, subtractions, or constant assignments 
and the enabling predicates are limited to comparisons of single variables to 
constant threshold values. In this case, the stabilization algorithm terminates 
resulting in a Vector Addition System. 

3 M o d u l a r  V e c t o r  A d d i t i o n  S y s t e m s  

A Vector Addition System is a special case of a Vector Transformation System 
(VTS) whose transitions have update functions u/j such that: 

= x + (1 )  

where b~j E D is a constant vector. We call b~j the edge vector of the transition. 
A Modular Vector Addition System (MVAS) is a Vector Addition System in 
which D = Zrnl • "'" x Zr, n and all arithmetic for the /th component of x, is 
performed modulo m~. However, we can derive an equivalent MVAS for which 
D = Zm • "'" x Z,n. This follows from the fact that  x - b mod m and kx - 
kb mod k m  have the same solution set for x. Thus, taking m to the least common 
multiple of all the moduli, we can transform the system to an equivalent one (in 
that  they have the same solution set) in which all equations have the same 
modulus. Therefore, the MVAS in the sequel will be assumed to have a single 
modulus m 1 . 

1 If the m~ are arbitrary, their least common multiple (lcm) can be quite large. How- 
ever, in many applications of interest the moduli are powers of 2 and hence their lcm 
is simply the largest modulus. 
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The study of MVAS is motivated by hardware models. Many hardware mod- 
els make use of unsigned integers which are realized as registers of finite width. 
Thus all arithmetic on these registers is naturally modular and the common 
modulus is simply max(m/). In the following sections, we develop some proper- 
ties of MVAS and then derive an explicit characterization of the set of recurrent 
configurations for a specified initial configuration < so, x0 >. Previous work on 
reachability in VAS imposed the condition that  the path connecting the con- 
figurations lie entirely in the positive orthant of u-space  (see e.g. [7]). This 
restriction is not relevant here and thus we have a "simpler" problem. 

3.1 Analysis Using Simple Cycles 

In this section we show that  teachability and recurrence of configurations are 
equivalent concepts within a strongly connected component of the transition 
graph G of a MVAS V. Thus, reachability analysis can be done using the cycles 
of a strongly connected component of the graph G. For any cycle, the sum of 
its edge vectors will be called a cycle vector. A simple cycle of G is any path 
qoqi.. .qnqo such that,  for i = 1 , . . . , n ,  qi ~ qo and qi ~ qi for i r j . The cycle 
vector of a simple cycle is a simple cycle vector. 

L e m m a  1. Let p and q be two biconnected nodes in G. I f  < q, y > is reachable 
from < p, x >, then < p, x > is reachable from < q, y >. 

Proof: Adjoin the path from q to p to the path taking < p, x > to < q, y >. This 
is a cycle in G with a cycle vector ,4 i.e. x --* x + ,4. By traversing this cycle a 
finite number of times (_< m), we can make the total added vector to be 0. This 
brings us back to the configuration < p, x >. Hence the result. �9 

L e m m a 2 .  Let p and q belong to the same strongly-connected component of G. 
Then, i f  < p , y  + A > is reachable from < p, y >, then < q,,4 > is reachable 
from < q, 0 >. 

Proof." Since < p, x + A  > is reachable from < p, y >, there is a cycle Clbeginning 
and ending at p whose cycle vector is "4. Further, p and q lie on a cycle C2 with 
cycle vector ,41 since they are in the same strongly-connected component of G. 
Consider the following path: q to p along Cu, C1, p to q along C2. The cycle vector 
of this cycle is ,5 + "4x. Now traverse C2 k (< m) times such that  (k + 1)'41 = '0 .  
The cycle vector of this cycle beginning and ending at q is clearly ,4. Hence the 
result. �9 

In the following we assume G is strongly connected. Let us consider the set of 
configurations at node p reachable from an initial configuration < p, x0 >. This is 
obtained by computing the final vector x i  for every possible cycle of G rooted at 
p. Lemma 1 shows that  this is also the set of recurrent configurations. Suppose we 
start at the configuration < p, x0 > and traverse a simple cycle rooted at p with 
a final configuration < p, xI >. In an MVAS, the vector ( x / - x 0 )  is independent 
of x0 and depends only on the simple cycle (in fact, it is the cycle vector). There 
are only a finite number of simple cycles(not necessarily containing p) in G and 
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any cycle of G can be expressed as a composition of these cycles. Therefore, the 
cycle vector of any cycle can be expressed as a linear combination of the simple 
cycle vectors. Thus, given < p, x! > reachable from < p, x0 >, we can write 

( x !  - =- roao rood m (2) 
C a simple cycle 

where ac is the cycle vector for simple cycle C and r,  is the number of times C 
occurs in the decomposition of the cycle into simple cycles. If (2) has a solution, 
then Lemma 2 shows that  we can construct a solution in which the coefficient of 
any specific ac is non-zero. Thus, if the difference (xy - x0) can be generated by 
some simple cycles in G, it can always be generated by a cycle passing through 
a specified node of G. Therefore, every configuration < p, y > reachable from 
< p, x0 > is such that  y = (x0 + ~ r,ac )rood m, where the sum runs over the 
simple cycles of G. This can be written as y = (x0 + Av) rood ra, where A is a 
cycle vector matrix of G whose columns are the simple cycle vectors of G and v 
is a vector whose i th element is vi. Therefore, the set of reachable configurations 
< p , y  > is given by {y I Y = (y0 + Av)mod m for arbitrary v}and is denoted 
by R(y0, A). ~ 

If R(y0,A) is a set of reachable configurations at p, it gives rise to a set of 
reachable configurations R(y0,q, A) at any other node q. Here Y0,q is the final 
vector obtained by following any path from p to q with initial value y0 at p. We 
can derive these sets systematically by finding a cycle in G that  passes through 
all the nodes of G at least once. Then, given a set R(y0, A) at some node in G, 
R(y0,q, A) for other nodes q in G can be found by following this cycle. We have 
developed a simple test to decide if a given y belongs to R(y0, A). In order to 
develop this test, we need some results from the theory of Linear Congruences. 
A good introductory reference for this material is [8]. The details of this test are 
given in the Appendix. 

If G has more than one strongly-connected component, this method can be 
extended by computing a cycle vector matrix for each component. InitiM point(s) 
for components other than the one containing the specified initial configuration 
can be computed after ordering them using a topological sort. 

3.2 M V A S  W i t h  Cons tant  A s s i g n m e n t s  

Quite often one encounters transitions in an MVAS which assign a constant 
value to a variable. These are commonly found in hardware models - -  in fact, 
it is not possible to initialize hardware systems without such operations. We 
call such systems MVAS with constant assignments (MVAS-CA). The update 
function uii of a transition tii of an MVAS-CA can be represented as uij = 
(Dijx + bij)  mod m, where Dij is a diagonal matrix whose diagonM elements 

2 T h e  number  of cycles could be very large. But  the cycle vector mat r ix  can be effi- 
ciently computed by keeping only linearly independentvectors as each cycle is found. 
If the rank of the matrix becomes full, no further computation is needed as all the 
values axe reachable. 
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E {0, 1}. If every Dij is the identity matrix, then we have a simple MVAS. 
In MVAS-CA, if a cycle transformation contains a constant assignment to a 
variable, then independent of the number of times the cycle is traversed (as long 
as it is greater than zero), the same constant value is assigned to that variable. 

In this paper, we consider only those MVAS-CA in which each Dij is either 
the identity or the zero matrix. In other words, either all variables are assigned 
constant values or none. We call such systems regular MVAS-CA. The transi- 
tions of a regular MVAS-CA are of two types - regular and constant-assigning. 
A transition from si to sj for which the corresponding Dij is the identity is 
called a regular transition. Otherwise, it is a constant-assigning transition (CA- 
transition). 

3.3 Analys is  o f  Regu la r  M V A S - C A  

In this section, we will describe a procedure to compute reachable and recurrent 
configurations of a regular MVAS-CA. Recall that R(x, A) = { y ] y E D and 
y = (x + Av) rood m}. The notation [A1 I A2] will denote the matrix formed by 
adjoining the columns of A2 to those of A1. 

Analys is  Considering only the regular transitions of G, we find its strongly 
connected components (if there are no CA-transitions this will, of course, be all 
of G). Let these be called G1, G2, . . . ,  G~. By convention, G1 will be contain the 
initial node. For each Gi, we calculate a matrix Ai whose columns are the cycle 
vectors of Gi. If Gi is an isolated node, we take Ai to be the scalar 0. With each 
node q of G we associate a set Sq of ordered pairs (x, A), where x E D and A is 
a matrix. The set of reachable configurations at each node q will then be given 
by Usq R(x, A). Our analysis provides a procedure for computing Sq for every q 
in G. 

We construct a new graph H which is obtained from G by replacing each Gi 
with a single node VG,. The remaining nodes are left unchanged. A transition 
incident or leaving a node in Gi in G will be incident or leave from vG~ in H. Now, 
H can have no cycle consisting only of regular transitions that passes through 
some va~. For, if there is such a cycle, then all the Gi corresponding to the va~ 
in this cycle along with the transitions forming the cycle would form a strongly 
connected component of G consisting only of regular transitions. This contradicts 
the assumption that each Gi is obtained as a strongly connected component of G 
considering all the regular transitions of G. Therefore, H restricted to its regular 
transitions must be a directed acyclic graph (dag). Based on this dag, we can rank 
the vertices of H such that for any two nodes p and q of H, rank(p) < rank(q) 
iff there is a path from p to q consisting only of regular transitions. We assign 
ranks to nodes in Gi by assigning the same rank rank(va~) to every node in 
Gi. There are two kinds of paths in H - -  regular and CA. A path that contains 
at least one CA-transition is a CA path. The path vector of such a path is a 
CA-vector. If a path has only regular transitions, it is a regular path and its path 
vector is the sum of the edge vectors of the transitions in the path. 



116 

Given a regular MVAS-CA V with initial configuration < so, x0 >, we con- 
struct the graph H as .described above and rank the vertices of G ( V )  based on 
H.  We then proceed to compute Sq for every node q in G. An algorithm to do 
this is given in Figure 1. The first phase accounts for the CA-transitions in H 
and the second the regular transitions. 

For all nodes q, set Sq = ~b. 
Set S~al = {(x0,A1)}. 

/* Phase I : Deal with CA-transitions */ 

for  ( each node voi in H ) do begi n 
for  ( each node vaj such that rank(vo j )  < rank(vo i )  ) do begin  

if( there is a CA-transition from voj  to vai ) then  
Add the image set under this CA-transition to the 
set of reachable configurations at p, where p is the 
head node (in G) of the CA-transition. 

end i f  
end  

end  
Remove all CA-transitions from H. 

/* Phase II : Deal with regular transitions */ 

for ( each node vG, such that rank(tlGi ) < rank(tl(71 ) ) do begin  
for ( each node va i such that rank(vo j )  = rank(vG~ - 1) ) do begin  

if( there is a transition from vGj to va~ ) then  
For each set of reachable configurations at p, add 
its image under this regular transition to the set of 
reachable configurations at q. (p is the tail node and 
q the head node (in G) of this transition) 

end i f  
end  

e n d  

Fig. 1. Algorithm for Computing Reas Configurations 

In Phase I, we update the se t  of configurations at every node by finding 
the images under every CA-transition. This is done according to the discussion 
below on computing image sets. If the CA-transition is from vaj to va~ (p to q 
in G), we use the image at q to update the set of configurations at other nodes 
in Gi as described in Section 3.1It earl be shown that  every one of the starting 
points computed in Phase I is reachable from the initial configuration. Before 
continuing with Phase II, we remove all CA-transitions from the graph. 

Phase II finds the image of the sets of ordered pairs (x, A) describing reach- 
able configurations at the nodes va~ found in Phase I under regular transitions 
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according to the discussion in Section 3.3. When the two phases are complete, 
we have a set of ordered pairs (x, A) for each node in G that defines its set of 
reachable configurations. More importantly, it can be shown that any two con- 
figurations < p, x > and < q, y > from these sets (except perhaps R(x0, A1)) 
are strongly connected. In order for a reachable configuration to be recurrent, 
there must be a path from it to the initial configuration < So, x0 >. Therefore, 
we check if any of the sets at the initial node intersects the set of recurrent 
configurations R(x0, A1). If there is an intersection, the set of reachable config- 
urations computed above is also the set of recurrent configurations. The results 
of Lemmas 3 and 4 may be used to simplify this set. If there is no intersection, 
then the set of recurrent configurations is simply R(x0, A1). 

Given a configuration < q, xq >, we test if it is in the set of reachable 
configurations as follows: 

for( each (x, A) in Sq ) do begin  
i f (  xq �9 R(x, A) ) t h e n  

report true and exit. 
end i f  

end  
report false and exit. 

In a similar manner, we can test for recurrent configurations. This completes 
the description of the sets of reachable and recurrent configurations of regular 
MVAS-CA. 

Image of a Set of Configurations Consider two nodes p and q such that 
there is a transition e from p to q. Let R(xl, Ap) be a set of configurations at p. 
Suppose e is a regular transition from p to q with edge vector Xd. Then the image 
of R(xl,Ap) under e is the set {< q,x >[ x = u + x d + A q v ,  u E R(xl ,Ap)  }. 
This can be written more compactly as {< q, x >1 x �9 R(x 1 + Xd, [Ap I Aq])}. 
If e is a CA-transition assigning the constant vector k, then the image is the 
set {< q,x >1 x = k + Aqv}. Note that this image is independent of the set 
R(xl,  Ap) at p. We now state two lemmas that can be easily verified by algebraic 
manipulation. All the matrices and vectors in this discussion will be assumed to 
have dimensions appropriate to the multiplications and additions indicated. All 
arithmetic is to be understood as that of Zm. 

L e m m a  3. Given Xl, x2 E D and a matrix A, one and only one of the following 
statements is true: 

1. R(Xl, A) = R(x 2, A) 
e. R(xl, A) n R(x2, A) = r  

L e m m a 4 .  Given xl,x2,  Xd, all in D, and matrices A1 and A2, one and only 
one of the following statements is true: 

1. a(xx + xd, [A1 I A2]) _.D R(x2, A2) 
2. R(xl + Xd, [A1 I A2]) N R(x2, A2) = r 
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4 A n  E x a m p l e  of  an M V A S - C A  

In this section, we will consider an example of an MVAS-CA. This system V 
is shown in Figure 2. The set S of nodes of V is {S1,$2,$3,$4,$5,$6}. G(V) 

laizial ~ z i o n  = <St[ l  o o]'> 

[*1 *0 *0]' 

* indicates a r ~ i ~ m r  

Fig. 2. An MVAS with Constant Assignments 

[oo2 ] '  

is the directed graph in Figure 2. A prime is used to indicate a transpose - -  
[000]' indicates a column vector. An edge labeled [001]' from $1 to $2 indicates 
that  u(x) = x + [001]'. In other words, it is the edge vector. Labels whose 
entries are marked with an asterisk are CA-transitions. Thus, the edge from $5 
to $1 marked [*0 * 0 * 0]' means that  u(x) = [000]' for this transition. Since 
all the transitions assign constant values to either all variables or none, this is 
a regular MVAS-CA. A common modulus m -- 16 is assumed for this system. 
The initial configuration is taken as < S1, [100]' >. The strongly connected 
components of G, considering only the regular transitions, are enclosed in dotted 
lines in Figure 2. The component containing the initial node S1 is Gz. G2 is an 
isolated node Ss. The derived graph H is shown in Figure 3. The nodes of H 
are ranked as rank(vG1) = 0 and rank(vg2) = 1. There are four simple cycles in 
this component - $1S2SsS4S1, S1S~$4S1, S1S2S3&$4S1, and SzS3&S4S1. All 
cycles in this component can be expressed as the composition of these simple 
cycles. The cycle vectors of this component are [811]', [612]', [-253]', and [-454]'. 
Therefore, the cycle vector matrix Ai of G1 is 

;) 8 6 - 2  
AI= 1 5 

2 3 

and the cycle vector matrix A2 of G2 is 0. At the beginning of Phase I, we have 
the following sets of starting points and matrices: 
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[*0 *0 *0]' 

[*1 *0 *0]' ~[0 
['2 *0 *0]' 

01]' 

* indicates constant assignment 

Fig .  3. Derived graph H for the example MVAS-CA 

rank(VG)l = 0 

rank(vd2= 1 

Ss, : {([100]',A1)} Ss2: {([101]',A1)} 
Ss3 : {([301]',Ai)} Ss, : {([-153]',A1)} 
Ss~ : {([-121]', A1)} Ss~: {(r 0)} 

The starting points for G1 were obtained by following the cycle $1S2S3S5S4S1. 
We now consider the CA-transitions of G. The transition from $5 to $2 with 
CA-vector [ ,2,0,0] '  adds ([200]', Ai) to Ss~. This leads to the following starting 
points at the other nodes in Gt: [400]' at $3, [020]' at $5, [052]' at $4, and [052]' 
at St. After Phase I is completed, we have the following: 

Ss, : {([100]', At), ([052]', AI), ([000]', A1), ([100]', A1)}; 
Ss~ : {([101]', A1), ([200]', A1), ([001]', A1), ([101]', A1)}; 
Sss : {([301]', A1), ([400]', A1), ([201]', A1), ([301]', A1)}; 
Ss, : {([-153]', Ai), ([052]', At), ([-253]', A1), ([-153]', At)}; 
Ss~ : {([-121]', A1), ([020]', A1), ([-221]', At), ([-121]', At)}; 
Ss~ : r 

We have one regular transition 'to account for in Phase II - -  from Sa to $6. 
Performing this update we get 

Ss, : {([302]', At), ([401]', A1), ([202]', A1), ([:]02]', Ai)}. 

We now have the sets of reachable configurations at each node. We check if any 
of the sets at the initial node $1 overlaps R([100]', A1). First, we transform A1 
to an upper-triangular matrix A* by pre-multiplying it by a matrix T: 
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We check if any of the starting points at S1 (other than [100]' of the initial 
configuration < $1, [100]' >) belong to R([100]',A1). Since one of the added 
starting points is also [100]', we have an intersection between an image set at $1 
and the set R([100]', A1). Therefore, every reachable configuration is recurrent. 
We can use Lemma 3 to simplify the sets of starting points. After simplification 
we get the set {([100]',A1), ([052]',A1), ([000]',A1)} at S1. As an example of 
the test for membership, let us check if < $1, [175]! > is reachable. Taking 
the difference between [175]' and each initial point at 5'1, we get [075]', [123]', 
and [175]' respectively. Pre-multiplying [075]' by T we obtain [7 - 24]'. Each 
entry of this vector is divisible by the corresponding boxed diagonal entry of A*. 
Therefore, this difference is generated by the matrix A1. In fact, A1[-5220]' = 
[075] I . Therefore, this configuration is reachable. 

5 Conclus ion and Fu ture  Work  

A formal model of Extended Finite State Machines has been defined. It is sug- 
gested that a stabilization technique may be used to simplify the analysis of 
some classes of EFSMs. A special class of this model called Modular Vector Ad- 
dition Systems, with or without constant-assigning transitions, is described and 
analyzed. An algorithm to compute the sets of reachable and recurrent configu- 
rations was described. Using the theory of Linear Congruences, a simple test for 
membership in these sets is developed. The entire process is illustrated with an 
example. There are many interesting avenues for future work. It would be useful 
to enlarge the class of update functions u that can be analyzed - -  for example, 
transitions that assign constant values to a few variables only. Another interest- 
ing problem, with applications to test engineering, is that of finding an actual 
path to reach the final configuration from the initial Configuration. While the 
upper-triangular system described in the appendix can be used to give solutions, 
it is not necessarily an optimal solution based on, say, path length. This is an 
interesting optimization problem with practical applications. We are currently 
working on incorporating the results described here in the software implemen- 
tation described in [6]. 
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A p p e n d i x  

' In this appendix, we develop a test for membership in the set R(x0, A). The 
set of integers will be denoted by Z, while Zm will refer to the set {0, 1 , . . . ,  m -  
1}. The greatest common divisor, ted, of a set {at,  . . . , a n )  will be denoted by 
(at ,  . . . ,  an). A scalar will be denoted by x, while x will denote a vector. The i th 
component of x will be denoted by xl. Note that  xl and xl are different entities. 

A M e m b e r s h i p  T e s t  

A . 1  L i n e a r  C o n g r u e n c e s  

The equation 

E xiai =-- b mod m (3) 
i=1 

is a linear congruence. Here ai and b E Z m  and xi E Z. For this equation to 
have a solution for xi, it is necessary and sufficient that  d = ( a l , . . . a p ,  m) divide 
b. We use the notation d [ b to indicate that  d divides b. We are interested in 
systems of simultaneous congruences of the form 

p 

L = {Li [ Li : E a i J x J  - ci =- 0 mod m , i  = 1 , . . . , n } .  
j = l  

Li refers to the i th  equation in the system L. Two systems of linear congruences L 
and L' will be called equivalent if they have the same solution set. The following 
lemma provides a key result used in deriving systems equivalent to a given system 
L. 

L e m m a 5 .  Given L, derive L I as follows: Lj '  = Lj when j ~ k and L~ = 
~ = 1  7iLi, where 7i E Z m .  I f  (Tk, m) = 1, then the system Li' = 0 mod m, i = 
1 , . . . n  is equivalent to the system Li = 0 mod m , i  = 1 , . . . n .  

Proof." See Section 4, Chapter 19 of [8]. �9 
Consider an MVAS with n variables and whose G(V) has p simple cycles. The 
result of traversing an arbitrary Cycle of G, starting with a vector x0, can be 
written as x!  = (x0 + Ay) rood m. Here x!  is the value of the vector after 
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traversing the cycle, A is an n x p matrix, whose columns are the cycle vectors of 
G. This relation can be written as Ay =- (x!  - ~0) rood m.  Thus, z !  is reachable 
from z0 iff this system has a solution. The set of b(= (x!  - x0)) for which this 
system has a solution is considered next. 

A.2 Characterization of  b 

We will now derive necessary and sufficient conditions on b such that  Ax - 
b rood rn has a solution. By applying a Gaussian elimination algorithm (modified 
to account for the fact that  we are working in Zm) to this system, we arrive at 
a system A'x* - b* rood m equivalent to Ax -- b rood rn. A* has the following 
structure: 

A *  - �9 �9 �9 I 

H e r e ,  (a~5, m) = (aiS, at, i + 1 , . . . ,  atp, m) = ~,  i = 1 , . . . ,  n, a n d  e n t r i e s  m a r k e d  

"*" indicate possibly non-zero values. This fact is guaranteed by the elimination 
algorithm. We now have the following 

T h e o r e m 6 .  With A*, b*, and 6i, i = 1 , . . . ,  n as defined above, the s y s t em  A x  - 

b rood m has a solut ion iff61 I b * , i -  1 , . . . , n .  

Proof." Since the two systems are equivalent, if b is solvable with A, then b* 
is solvable with A*. Looking at the i Ch row of A*, it follows immediately that  
61 ] b*, since 61 is the gcd of all the elements in that  row and m. Thus the 
condition is necessary. Now suppose that  6i ] b*, i - -  1 , . . . ,  n. We now construct 
a solution for this case. Set zj = 0 for j = n + 1 , . . . , p .  Then in the resulting 
system, zna~n -- b~ rood m.  But, by hypothesis, ( a ' n ,  m) -- 6i ]b* and hence 
we can solve for xn. Let us assume that  all xi, i --/c + 1 , . . . ,  n have been solved. 
Consider the k Ch equation 

a* a* zk kk + Xk+X k,k+l + ' . "  + Zna~n ---- b* rood m (4) 

Substituting for all the variables' zi,  i = k + 1 , . . . ,  n, we get a new equation 

x k a ~  + ~6k =- bk rood m,  (5) 

g* where ~ is some integer. This follows from the h c t  that  ~k [ ( t,k+l, " ' ,  a*kn)" 

Since 6k ] b~ and ~k [ a~k, this equation can be solved for xk. Therefore, by 
induction, we can solve for x l , i  = 1 , . . . , n .  Thus the condition is suff icient .  
Hence the theorem. �9 

During the execution of the triangularizing Mgorithm above, we can save the 
matr ix  of row transformations ~ at each step. Let T = T n -  1 �9 " �9 T1. Then given 
a vector b, it is solvable with A if T b  is such that  51 [ (Tb)i .  
This article was processed using the IbTEX macro package with LLNCS style 


