
Temporal Aspects in Reuse of Requirement Specifications

V. De Antonellis, L. Vandoni

Politecnico di Milano

Abstract. This paper presents a methodological approach to support reuse of requirements

specification based on the use of a model for handling temporal information associated to complex

objects. The model is used to maintain, in a repository, project histories and reuse histories in

different applications. The approach is intended to support an application engineer in determining

candidate components for reuse and in restructuring existing reusable components in the

repository.

1. Introduction

Reusability of project components, either at the code level or at the conceptual specification

level, is considered a fundamental aspect in the application development process [1, 4, 13, 14].

In fact, it facilitates both effective development of good quality applications by exploiting

existing validated components, and easy re-development of applications by stressing and

promoting a modular design approach. Reusability can be considered from two different

perspectives. According to a design-by-reuse perspective, an application can be obtained by

tailoring existing components extracted from an available repository. According to a design-for-
reuse perspective, a repository must be populated with reusable components, properly defined

to be exploitable for designing new application not from scratch. Models and methods to

support the development of reusable conceptual specifications, according to a design-for-reuse
strategy, have been defined in [5, 6, 7]. The overall process of reusable specifications design

can be articulated in the following methodological phases:

1. candidature of project components for reuse;

2. classification of the candidate project components;

3. design of reusable components;

4. restructuring of reusable components.

While phases 2 and 3 have been investigated in [5, 6, 7], in this paper we focus on phases 1

and 4. Specifically, models and methods for analyzing project histories with the aim of

505

identifying "good" candidates for reuse (phase 1) and for analyzing reuse histories with the aim

of restructuring existing reusable components (phase 4) are presented.

We base our approach on the use of a repository in which historical information relative to both

projects and reusable components are stored. Most proposals of software engineering

environments are based on the use of a knowledge base or repository, which stores every kind

of information that can result useful to the application developer. This information may refer to

the current projects, to the methodology used in the development process and to previously

developed applications [12, 18, 27, 30]. A common characteristics of most proposals is the

representation of the project history as a set of decisions which transform the state of the project

evolution. In DAIDA, for instance, a project history is modeled by a sequence of decisions,

carried out with the help of some associated tool, that allow the transformation of design

objects into other design objects [18]. CARE allows the designer to give a high level

description of the knowledge of interest by means of a simple "real-world description" based

on the concepts of actor, entity and event. This description is then compared against a set of

predifined "patterns", describing common situations in software development. Each pattern is

associated to a set of triplets in the form <situation, decision, action>. The situation is the

current pattern, the decision is something that the designer will be asked for, and the action is

the schema transformation that is triggered by the designer's choice [12]. In KBMS, the

Software Engineering Knowledge (SEK) is maintained in a knowledge base and is represented

as a set of procedures that guide the elicitation process [30]. Scacchi and Mi propose a meta-

model for representing software development processes, based on the concepts of agent, task

and resource. A development process can be evaluated through simulation, and by means of a

ad-hoc query mechanism [27]. Souquieres and Levy separate the description of the

development process, whioh is modelled as a set of interrelated tasks, from the description of

the product being built, connecting tasks and products via links [26]. In our approach, for

proper management of project histories, temporal information is used to keep track of the

project evolution and of alternative design decisions. The concept of version is introduced to

model different snaphots of a project's evolution.

This paper is organized as follows: in Sect. 2 we provide the basic concepts underlying our

approach; in Sect. 3, the conceptual model proposed by Snodgrass and Jensen for retaining the

semantics of relational temporal databases is generalized to a framework for complex objects

evolving in time; in Sect. 4, the object-oriented model used for representing projects and

reusable components is presented; Sect. 5 presents the methodological approach; in Sect. 6

concluding remarks are given.

506

2. T e m p o r a l I n f o r m a t i o n for Reusab le C o m p o n e n t s

In this paper, we focus on the design-for-reuse perspective at the conceptual design level. In

this framework, the role of application engineer is defined as responsible for: (i) the definition

of the reusable components, extracting generic conceptual specifications from existing

application specifications and def'ming corresponding guidelines for reuse; (ii) organization of

the reusable components in a repository according to a classification model, to support their

search and retrieval by the application developer. Models and methods to support the

development of reusable conceptual specifications, according to a design-for-reuse strategy,

have been defined in [5, 6, 7], Specifically, in the proposed approach, reusable components, at

the conceptual design level, are defined as Generic Conceptual Units and associated Meta -

Conceptual Units containing guidelines supporting the reuse. A Conceptual Unit (CU) is the

description of a real-world object within a conceptual schema (e.g. an entity type or an object

class). A Generic Conceptual Unit (GCU) is a "minimal" CU which encapsulates the set of

common structural and behavioral properties of a number of similar CUs. Guidelines

associated to a generic conceptual unit provide a set of design suggestions about ways to

incorporate that unit in an application by means of possible adaptations and transformations.

In this paper we focus on methodological phases devoted to the identification of candidate

components for reuse, by the analysis of project histories, and the restructuring of reusable

components existing in the repository, by the analysis of reuse histories.

A Project History is a tree of conceptual schemas which represent the evolution of a project in

terms of the ways in which it has been incrementally defined. A Reuse History is a tree whose

root is a reusable component, whose intermediate nodes are its different versions, and whose

leaves are CUs representing effective ways in which the component has been reused in

different applications. Proper management of project and reuse histories requires capabilities of

temporal information handling. In project histories, temporal information is used to keep track

of the project evolution and of alternative design decisions; in reuse histories, temporal

information is used to keep track of the actual usage of the reusable component. The concept of

version is introduced. Versions are used to model different snaphots of a project's evolution

and different ways in which a generic component has been reused in distinct applications. A

Version is a snapshot of the state of a complex object with associated temporal information

which identifies the version.

Versions of a reusable component model the evolution of a GCU in terms of the ways it has

been reused in successive applications; the associated temporal information identifies a version

in a rootedVersion Graph, representing the reuse history of the reusable component. A directed

507

arc between two nodes means that the latter version has been derived from the former through a

transformation primitive.

Versions of a project represent the project evolution at a particular moment in time; the

associated temporal information identifies a version in a rooted version graph, representing the

project history.

3. A C o n c e p t u a l F r a m e w o r k fo r Mode l ing T e m p o r a l C o m p l e x

O b j e c t s

In this Section features of a temporal model for representing project and reuse histories are

discussed. Several models for temporal databases have been defined to provide application

indipendent support for the management of time-dependent data, to answer historical queries

and perform trend analysis [19, 22, 25, 28]. Recently, a unifying conceptual model has been

proposed for retaining the semantics of temporal information, together with the suggestion that

implementation or presentation models, used for storing data or presenting them to the user,

should be made equivalent to such model [20]. This model, named Bitemporal Conceptual Data

Model (BCDM), associates relational tuples with time values from two orthogonal time

domains, Valid Time and Transaction Time.

Valid time refers to the time in which a fact is considered true in reality, whereas transaction

time is referred to the presence of the fact in the database as stored data. The bitemporal

chronons associated to each tuple identify a subset of the bitemporal domain in which the

relation attributes assume those particular values. A bitemporal relation instance can be

graphically represented as in Fig. 3.1. In this example, reported from [20], the tuple <Jake,

Ship> is considered true at valid time 5, according to transaction times 10, 11 and 12, while the

tuple <Jake, Load> is considered true at valid time 5, according to transaction times 13, 14 and

15. A similar situation may arise if we update the database with the insertion of a new fact

(employee Jake works in the Shipping Department at valid time 5) which is later recognized as

false (Jake's Department is the Load Departmen0 and consequently corrected.

Update operations in this model, instead of substituting the old value with the new value, create

a new tuple holding the new value and properly adjust the associated set of ehronons. In this

way, information is never deleted, and one can ask about past database states (rollback queries:

e.g., in which Department is Jake working, according to the information available two months

ago?) and about facts which once held in reality (historical queries: e.g., in which Department

was Jake working three years ago, according to the information avaliable now?).

508

Emp

Jake

Jake

Kale

O e p l BilempoFtl chtono~

Ship (5.10) 15.11) {5,12)

Load (5,13) (5,14) (5,15)

ship (5:io1 (s.,l(5a21
(5,13) 15.14) (5.15)

Fig.3.1. A bitemporal relation in BCDM

Since the objects we consider - reusable components and project schemas - have complex

structure, we need a generalization of BCDM that considers objects as stored in an object-

oriented database [2, 10, 24].

As we will show in the following, the modelling cababilities of object-oriented languages are

suitable to be exploited for: (i) better representation of temporal information associated to an

object, and (ii) definition of new temporal domains besides "valid time and transaction time"

domains [31]. For point (i), note that in object-oriented systems there is a difference between

an object's state, that is the value of its properties, and the object's identity: two objects may

share the same value for all of their properties and neverthless be different objects. Thus, we

must distinguish between temporal information associated to the object itself and temporal

information associated to the object state. As regards point (ii), note that a temporal database

associates information from a temporal domain to ordinary data and provides facilities for their

management. Proposals for several time domains can be found in the literature which differ in

the primitive entities (time points vs. time intervals), in the topology (linear vs. branching), in

the structure (continuous vs. discrete), in the metric and in the number of dimensions [28, 29].

A temporal domain can result more appropriate than others for a particular application; for

instance, a branching domain, that is a temporal domain in which several possible future states

are considered, can be useful for Decision Support Systems and versioning mechanisms [15].

For this reason, we believe that considering only a predefined bitemporal domain can

sometimes be too restrictive and prevent the applicability of the model in some application

domain.

The generalized modeling framework is presented in the following by, first, defining the

objects to which temporal information will be associated, second, defining a generic n-

dimensional temporal domain, and last, describing how time domains are associated to objects.

A class <cn,P,M> is defined by a classname cn, a set P of properties and a set M of methods.

An object is defined as an instance of a class and is provided with a unique identifier. The

509

object's state is given by the values of its properties. Inheritance and overriding of properties

and methods are defined in the usual way.

A time domain is a class. There is one predefined time domain T whose objects are linearly

ordered time points. Other time domains can be defined by means of this domain. For instance,

a class time interval can be defined whose properties are two time points and whose methods

implement the common relationships holding between intervals.

A temporal class is a class with an associated time domain. Instances of the time domain are

associated to the object identifier, representing its lifespan, and to each object state. An instance

of a temporal class can be graphically represented as in Fig. 3.2.

OBJECT Lilospan

TATE s2 T=mo Obiect T2)

TATE s3 T . . Object T3)

Fig.3.2. Instance of a temporal class

Fig 3.3 shows a simple example, in which objects from class Emp are associated with a

transaction time domain. In the example, the object identified by X has a lifespan represented

by six temporal objects; this object, during its lifespan, has assumed two different states, which

are in turn associated with a set of temporal objects. Predefined methods for creation and

deletion of objects and for updating their properties are overriden in temporal classes, in that

old values and not discarded but associated to appropriate instances of the given time domain.

Emp X (1) (2)(3) '~__.,.(Namo:Jako (1) (2))
(4) (5)(6) J]-"-LDopt:Ship

/
~,.(l~ ame:Jake (3)(4) 1 ept:Load (5) (6)

Fig.3.3. Instance of temporal class Emp

510

4. Temporal Information Handling in an Object-Oriented
Environment

In this Section we present the object-oriented temporal data model, used for representing

project and reuse histories in the repository. The model is based on the conceptual modeling

framework discussed in Sect. 3 and will be identified in the sequel with the acronym OOtDB.

The concepts of time domain and temporal class axe in this model represented by means of

predefined classes, while user-defined subclasses of these can be used to construct actual time

domains and temporal classes.

There are four predifined classes, namely Top-Class, Time.Domain, Version and Temporal-
Class, which are defined as follows:

<Top-Class,

I J,
{ new, get, change, delete } >

is a built-in class, on top of the class specialization hierarchy: it has no properties, and has four

methods, which are inherited by all subclasses and serve to create, delete and manipulate object

properties.

<Time-Domain,

1},
{After:. [Time-Domain x Time-Domain] -> Boolean}>

is a time domain with no properties and an ordering relationship between its instances. It is

defined as a subclass of Top-Class. Every subclass of Time-Domain is a time domain.

<Version,

{ Value:Top-Class, Id:Timc-Domain },
{J>

is a class with two properties, Value constituted by a snaphot of the state of a complex object,

and Id constituted by a temporal object which univocaUy identifies the version among others.

Class Version is defined as a subclass of Top-Class.

511

<Temporal-Class,

{ Lifespan:Time-Domain, Versions:list-of(Version) },

{new, get, change, delete}>

is a temporal class with two properties, Lifespan constituted by a temporal object associated to

the Temporal-Class instance as a whole, representing a subset of the time domain in which that

instance was "alive", and Versions constituted by a list of snapshots of the instance state, each

with associated temporal objects.

Temporal-Class is also defned as a subclass of Top-Class, but the four methods defined in the

superclass are overridden. While in Top-Class the change and delete methods cause

information to be definitively lost, in Temporal-Class they allow the creation of versions. In

order to define the behavior of the Temporal-Class methods, we must introduce three more

predefined entities: class Time-Point (which corresponds to the predefined time domain T of the

modelling framework), defined as a subclass of Time-Domain; object Now, defined as an

instance of class Time-Point; and object Current, defined as an istance of class Time-Domain.

Class Time-Point is used as a basic class upon which other time domains can be built. Object

Now is a particular instance of class Time-Point which is associated to the current moment in

time, or the current computer clock time. One object labelled Current is defined as an instance

of each of the defined time domains. When dealing with time points, we set Current=Now. We

can choose an appropriate value for Current in other time domains: for instance, when dealing

with time intervals, we can set Current either equal to the endless open interval starting from

Now or to the minimum interval starting from Now and ending at Now+l. The precise

behavior of the Temporal-Class methods, in terms of the above defined concepts, is given, in

pseudo-code, in Figure 4.1.

/* Method new creates a new object with an empty list of versions and sets the object lifespan to the appropriate
value. The object is created invoking the Top.Class method new. */

n e w --- se[f.^new:
Lffe~an:---Curren~
Versions:=[].

/* Method get returns an attribute value. It requires two arguments: the fast indicates the attribute to be returned;
the second is a boolean expression used to identify a particular version of the object, in which both temporal
atlributes and ordinary ones may appear. A full version may be returned specifying version as first argument.
Instances of the associated time domain may he returned specifying t/me as fast argument. The list of versions
is searched starting from its bottom until one is found that is consistent with the given expression. */

x.g etf aurname.expr) = go to the bottom of Versions;
repeat found:=evaluate(expr)
until found;
return(am'name).

Fig.4.1. Temporal-Class methods

512

/* Method chmfge creates a new version of the object with an attached instance of the associated time-domain.
Notice that. because of the behavior of the get method for retrieving information, there is no need of modifying
Ihe time entities associated to other versions *1

x.change(attrvalues) = Slate.new;
Slate.Value:=attrvalnes:
$late.id:=Current:
Versions.append(Slate).

/* Method delete deletes logically the object. Tim object lifespan is modified in order to finish at the moment i.
which it is logically deleted */

x.delete ~ Lifespan:=Lifespan-Cun'cni.

Fig.4.1 (continued). Temporal-Class methods

We will now represent the concepts defined in Sect. 2, namely Project History, Reuse History,

Conceptual Schema, Conceptual Unit and Generic Conceptual Unit, according to the OOtDB

model. This is achieved through the definition of appropriate subclasses of the four predefined

classes introduced above, each used to represent a distinct concept. We will proceed in a top-

down fashion, starting from temporal classes and then detailing their components.

A project history is a tree of conceptual schemas, and a reuse history is a tree of conceptual

units, whose non-leaf nodes are generic conceptual units. Their are both defined as temporal

classes, and consequently represented by subclasses of Temporal-Class, which override the

domains of properties Lifespan and Versions and inherit the four methods new, get, change

and delete.

<project-History,

{ Lifespan:Project-Version-Time, Versions:list-of(Schema_Version) },
{}>

<Reuse-History,

{ Lifespan:Reuse-Version-Time, Versions:list-offCU version) },
{}>

Versions of both project and reuse histories are organized in a version graph, which imposes a

partial ordering among versions. Since versions arc maintained in a list and identified by their

associated temporal object, the time domain associated to versions is non-linear. Non-linear

513

time domais are called branching time domains, and are characterized by a partial ordering

relation defined among their elements [22. 28. 29]. Two time domains are defined as

subclasses of Time_domain. Their properties are useful to identify versions of a project or of a

reusable component in the version tree: Transaction is the time point in which the information

has been entered in the database; From is the parent node in the version tree; Through is the

decision, applied to the parent node, to produce the child. The "after" relationship is overriden

to become a partial ordering relationship between nodes in the version tree: node A is after node

B iff B is an ancestor of A.

<Project-Version-Time,

{Transaction:Time-Point, From:Schema_Version. Through:Project-Decision),

{ After:[Project-Version-Time x Project-Version-Time] -> Boolean }>

<Reuse-Version-Time,

{Transaction:Time-Point, From:GCU Version, Through:Reuse-Decision),

{ After:[Reuse-Version-Time x Reuse-Version-Time] -> Boolean }>

A conceptual schema is a set of inter-related conceptual units, and is also a version of a project

history. It is thus represented by a subclass of class Version, whose associated time domain in

the project version time.

<Schema_Version,

{ Value:set of CU, Id:Project-Version-Time}.
{}>

A conceptual unit is the construct used to describe real-world objects within a schema, and is

also a version of a reuse history. Generic conceptual units encapsulate a set of common

structural and behavioral properties of a set of similar CUs. Class CU Version is defined as a

subclass of Version, whose associated time domain is the reuse version time. GCU_Version is

defined as a subclass of CU_Version representing generic conceptual units. CU is the class

which contains the information to describe real world objects, with attributes Name, Interface

and Implementation.

<CU_Version,

{ Value:CU, Id:Reuse-Version-Time },
[}>

514

<GCU_Version,

{1,
I1>

<CU,

{ Name:string, Interface:set-of(Function),

Implementation:Code],
{l>

Project-Decision and Reuse-Decision represent decisions taken by the designer to transform

versions of schemas and generic conceptual units into new versions. In case of project

decisions, the operation performed is defined as an instance of class Transformation, and the

property Applied-to identifies the CU belonging to the parent node to which the operation is

applied. In case of reuse decisions, the operation performed is defined as an instance of class

Specialization.

<Project-Decision,

{ Applied-to:CU_Version, Operation:Transformation },

{1>

<Reuse-Decision,

{ Operation:Specialization },

{1>

Two subclasses of class Transformation are defined, to represent two different kinds of

operations associated to a project decision: "refmemcnf' decisions, that consist in exploding the

source CU_Version instance in a set of CU_Version instances describing the same concept at a

lower level of detail, and "tailoring" decisions that consist in selecting a reusable component

and possibly a version of it, and then adapting them to particular needs applying the guidelines

provided by the rncta-CU.

5. Candidature for Reuse and Restructuring of Reusable
Components

The present methodology is intended to help the Application Engineer in identifying candidate

reusable schemas from the analysis of existing project histories and in restructuring reusable

components together with their reuse history and reuse guidelines. The overall intended

behavior is outlined in Figure 5.1.

hiS" 1

515

Project Histories

Reuse histories

(~r or
oject components 1

I
rDe~idon of I
reusable I

I / ,
reusable

omponents

/
Fig.5.I. Methodological phases

Two methodological phases are defined (phase 1 and phase 4 of the overall methodology). The

first is concerned with the analysis of project histories, while the second is concerned with the

updating of reuse histories. Original contribution of this paper concerns the use of the OOtDB

model for better inspecting the project histories and for continuously upgrading the reuse

histories including new reuse experiences.

5.1. Cand ida tu re of Project Components for Reuse

The goal of the first phase is to identify project components that prove to be good candidates

for reuse and provide them as inputs for the second and third phases as defined in [5, 6, 7].

Criteria, with associated metrics, to test whether a given component can be considered a good

candidate for reuse have been proposed in the literature [21, 8]. According to these criteria, a

good candidate must be loosely coupled with other conceptual units, have a simple interface,

516

and appear at a high level in the speciatizion hierarchy. In essence, an easy-to-reuse component

must be meaningful, simple and not too application dependent. Adopting these considerations,

and exploiting the capabilities of analyzing the evolution of a project in time, we can greatly

improve the chance of finding "good" components.

The advantage of inspecting different versions of the same project lies in the fact that the "most

reusable" version of a project component can be found. Whenever the same component (we

assume the existence of a data dictionary including definitions of all conceptual units managed

in the project, so that the expression "the same component" has a precise and not intuitive

meaning, [3, 9]) appears in different versions of a project, it may be the case that it has been

slightly modified, e.g., with the addition of a new property, from one version to another. If

this happens, the version of the component which shows the greatest degree of reusability

according to the defined criteria, is considered.

The availability of a ful project history allows also the definition of new criteria for reusability

which involve the temporal properties of a component. The three criteria we propose also aim at

identifying simple and not too application dependent components. They can be enunciated as

follows. First, it would be better for the candidate to appear at a high level in the project

history, because this means that the component has been soon identified as a meaningful one in

the project being developed. Second, it would be better for the candidate to appear in many

versions of the project, because this means that it is not specific to a particular version. Third, it

would be better for the candidate to have been refined and transformed, at lower levels in the

project history, into many and more specific conceptual units, because this means that it can be

considered as a high level view for more specific concepts.

The association of metrics to these criteria is quite straightforward. As to the first one, a value

is associated to the root version, say 100, and, if the longest path in the u'ee is N steps long, the

value 100-K(100/N) is associated to each node K steps far from the root. As to the second one,

the value is the percentage of versions in which the component appears. As to the third, a

positive value is given to components which have been refined, and a negative value is given to

those which have been not. All information needed to compute this values is recorded in the

OOtDB instances of class Project-History, and can be accessed via simple get messages.

We associate with each project component a reusability value, consisting of a weighted sum of

all the single values for each of the defined criteria. All project components whose reusability

value exceeds a given threshold are stored as inputs for the second phase. The threshold is

computed in such a way to have a desired number of candidates to evaluate in the second phase:

if we wish to evaluate only a small number of candidates, a high threshold is needed, while a

517

low threshold is preferable if we wish a large amount of candidates. A threshold value of 2/3

the sum of the maximum and minimum reusability values seems to be an appropriate one.

5.2 Restructuring of Reusable Components

A first goal of this phase is to find CUs which have been derived by tailoring existing reusable

components. In OOtDB, the operation of retrieving components out of the repository is

recorded as a project decision in the project history. Specifically, it is recorded as an instance of

a particular subclass of class Transformation. To retrieve the required CUs, we send a message

to a project history, requiring the selection of all versions which have been derived through a

"reuse" decision; then we send a message to such versions, which are instances of class

SchemaVersion, to select the CU which has been derived by tailoring the selected reusable

component. Syntax of the two messages is shown below.

Version:= Project.get(version,Time.Through.Project-Decision="reuse");

Comp:=Version.get(Id.Through.Applied-to);

Not every selected CU will be used to enrich reuse histories, but only those of them which

appear to be "easy-to-reuse", according to the criteria discussed in the previous subsection. A

reusability value is thus computed for these CUs, and only the ones exceeding a given

threshold are stored, together with the reusable component version they have been derived

from. A reusable component is structured as in Fig.5.2. A meta-CU is associated to the tree

root and contains guidelines for tailoring the reusable component according to particular needs.

The root and other non-leaf nodes represent GCUs, while leaf nodes are CUs which have

actually been used in some developed project.

Fig.5.2. A reusable component

518

Selected conceptual units, obtained through a "reuse" decision, may be used to improve the

information associated to a reusable component. The improval consists in augmenting the

version graph and in adding some information to the meta-CU. The version graph is augmented

in that a new leaf, corresponding to the new CU, is added, and it is connected via an axe to the

particular reusable component version'it has been derived from. Information to the meta-CU is

added to record the fact that the component has been reused in that particular process. This

information is represented in a meta-CU by a rule in the form "if you work at process P and

want to reuse this component, then it is better for you to select version V 1, and possibly tailor it

to version V2" [6].

6, C o n c l u d i n g R e m a r k s

We have presented a methodological approach that exploits an object-oriented temporal data

model, to support application engineers in the analysis of project and reuse histories for the

definition and maintenance of reusable components.

The concepts of Project History, Reuse History, Version and Version Graph have been defined

and a model for representing this information, according to both temporal databases and object-

oriented databases concepts, has been introduced. The model, named OOtDB, is actually

constituted by a set of classes in object-oriented style, which serve to represent the concepts of

time domain and temporal class. A time domain is defined by a class provided with an ordering

relationship among its elements. A temporal class is defined by a list of versions identified by

an associate instance of a time domain. OOtDB is used for modelling project and reuse

histories. Project histories and reuse histories are defined as particular temporal classes, and

suitable time domains axe designed to retain the semantics of project evolution and component

reuse in different projects.

Major advantagns of the proposed approach consist in the possibility of choosing the most

reusable version of a project component (as a consequence of the capability of version

handling) and of using suitable criteria for reusability based on temporal properties of

components.

Acknowledgements
Part of this work has been supported by the F 3 Esprit Project N.6612, by the Italian National
Research Council Project "Sistemi Informatici e Calcolo Parallelo", L.R.C. INFOKIT, and by
MURST 40%.

519

References

I .

2.

.

ACM Issue on Object-Oriented Design, September 1990

M.Atkinson, F.Bancilhon, D.DeWitt, K.Dittrich, D.Maier, S.Zdonick - The object-
oriented database system manifesto - in W.Kim, J.M.Nicholas, S.Nishio (eds.)
"Deductive and object-oriented databases", Elsevere Science Publishers, Amsterdam, the
Netherlands, 1990

C.Batini, G.Di Battista, G.Santucci - A formal framework for multilevel schema
documentation in a data dictionary - Information System Concepts: Improving the
understanding (E.D.Falkenberg, C.Rolland, E.N.E1-Sayed Eds.), Elsevier Science
Publishers 1992

4. T.J. Biggerstaff, A.J. Pedins (eds.), "Software Reusability- Concepts and Models",
vol.I, ACM Press, Addison-Wesley, 1990

5. S.Castano, V. DeAntonellis, B. Zonta, "Classifying and reusing conceptual schemas",
Entity-Relationship Int. Conf., Karlsruhe, October 1992

6. S.Castano, V. DeAnt0nellis, "Reuse of Conceptual Requirement Specifications",
accepted to RE '93, ACM/IEEE Int. Conf. on Requirements Engineering, San Diego,
CA, January 1993

7. S.Castano, V. DeAntonellis, "A Constructive Approach to Reuse of Conceptual
Components", accepted to ACM/IEEE Second Workshop on Software Reusability,
Lucca, March 1993

.

.

10.

S.R.Chidamber, C.F.Kemerer - Towards a metrics suite for object-oriented design -
ACM SIGPLAN Notices, vol.26, no.ll, November 1991

De Antonellis V., Zonta B, "A disciplined Approach to Office Analysis", IEEE TSE,
Vol. 16, No. 8, 1990, pp. 822-828

O.Deux et al. - The 02 system - Communications of the ACM, voi.34, no.10, October
91

11.

12.

13.

14.

K.R.Dittrich, R.A.Lorie - Version support for engineering database systems - IEEE
Transactions on Software Engineering, vo1.14, no.4, 1988

G.Grosz, C.RoUand - Why and how should we hide conceptual models? - Third Int.
Conf. on Software Enginncring and Knowledge Engineering, USA, 1991

S.Gibbes, O.Tsichritzis, E.Casais, O.Nierstrazs, X.Pintado - Class management for
software communities - Communications of the ACM, vol.33, no.9, September 1990

J.W.Hoopcr, R.O.Chester - Software reuse: guidelines and methods - Plenum Press,
New York 1991

15.

16.

17.

W.Kafer, H.Schoning - Mapping a version model to a complex object data model -
Proc. Int. Conf. Data Engineering, 1992

R.H.Katz, E.Chang, R.Bhateja - Version modelling concepts for CAD databases - Proc.
ACM SIGMOD Int.Conf. Data Management ,1986

R.Kowalski - Database updates in the event calculus - Journal of Logic Programming,
vol. 12, 1992

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

520

M.Jarke, T.Rose - Managing knowledge about information system evolution - Proc.
ACM SIGMOD, June 1988

C.S.Jensen, J. Clifford et AI. - A glossary of temporal database concepts - SIGMOD
RECORD, vol.21, no.3, September 1992

C.S.Jensen, R.Snodgrass - Proposal for a data model for the temporal structured query
language - TEMPIS tech.rep, no.37, 1992

R.E.Johnson, B.Foote - Designing reusable classes - Journal of Object-Oriented
Programming, June-July 1988

R.Maiocchi, B.Pemici - Temporal data management systems: a comparative view - IEEE
Transactions on Knowledge and Data Engineering, vol.3, no.4, 1991

J.Rothemberg - Prototyping as modeling: what is being modeled? - Int. Work.Conf. on
Dynamic Modelling of Information Systems, April 1990

L.A.Rowe, M.R.Stonebraker - The POSTGRES Data Model - Int. Conf. on Very Large
Databases, 1990

F.Schreiber - Is time a real time? An overview of time ontology in informatics - NATO
Adv.Study on Real Time Computing, October 92

J.Souquieres, N.Levy - Description of a specification development model - Int. Conf.
on Requirements Engineering, 1993

W.Scacchi, P.Mi - A knowledge-based environment for modeling and simulating
software engineering processes - IEEE Transactions on Software and Data Engineering,
September 1990

R.Snodgrass - Temporal databases: status and research directions - SIGMOD RECORD,
vol. 19 no.4, December1990

R.Snodgrass - Temporal databases - in Proc. Int. Conf. GIS Sept. 1992

K.Zeroual, P.N.RobiUard - KBMS: a knowledge-based system for modelling software
system specifications - IEEE Transactions on Knowledge and Data Engineering, vol.4,
no.3, 1992

G.Wuu, U.Dayal - A uniform model for temporal object-oriented databases - Proc. Int.
Conf. Data Engineering, 1992

