Type Reconstruction with Recursive Types
and Atomic Subtyping

Jerzy Tiuryn* Mitchell Wand?
Institute of Informatics College of Computer Science
Warsaw University Northeastern University
Banacha 2, 02-097 Warsaw 360 Huntington Avenue, 161CN

Poland Boston, MA 02115, USA
tiuryn@mimuw.edu.pl wand@flora.ccs.northeastern.edu
Abstract

We consider the problem of type reconstruction for A-terms over a type system
with recursive types and atomic subsumptions. This problem reduces to the problem
of solving a finite set of inequalities over infinite trees. We show how to solve such
inequalities by reduction to an infinite but well-structured set of inequalities over
the base types. This infinite set of inequalities is solved using Biichi aulomata. The
resulting algorithm is in DEXPTIME. This also improves the previous NEXPTIME
upper bound for type reconstruction for finite types with atomic subtyping. We
show that the key steps in the algorithm are PSPACE-hard.

1 Introduction

John Mitchell, in his seminal paper [8, 9], considered a system for type reconstruction for
A-terms in which the set of types is augmented with a partial order (the subtype order),
and the type inference rules are augmented with the subsumplion rule

AFM:s s<t
A Mt

In this case the type reconstruction problem reduces to the problem of solving a set of
inequalities over the set of types. Mitchell showed thal if the partial order is generated
by a set of atoemic coercions on the base types, it reduces to the problem of solving a set
of inequalities over the base types [9].

This paper has been the source of a considerable body of work [5, 7, 17, 14]. Such a
system is an important component of a type-checking system for object-oriented program-
ming. However, a good model of object-oriented programining must include recursive
lypes, which correspond to infinite trees [2, 3], but Mitchell’s algorithm applies only to
well-founded types, which correspond to finite trees.

*This work was partly supported by NSF grants CCR-9002253 and CCR-8113196 and by Polish KBN

grant No. 2 1192 91 01
tWork supported by the National Science Foundation under grants CCR-9002253 and CCR-9014603.

687

In this paper we show how to extend Mitchell’s algorithm to handle recursive types.
Instead of solving inequalities over finite trees, we will need to solve inequalities over pos-
sibly infinite trees. Instead of reducing tree inequalities to a finite set of “flat” inequalities
over the base types, we will get an infinite but regular set of flat inequalities. Instead of
solving these inequalities in the base order (as in [17] or [7]) by nondeterministic choice,
we solve them by reducing to the emptiness problem for Biichi automata. The resulting
algorithm is in DEXPTIME. By contrast, the best previously-known upper-bound for
type reconstruction with atomic subtyping, in the case of well-founded types, is NEXP-
TIME; our algorithm can be used for this case also. Last, we show that the key steps in
the algorithm are PSPACE-hard.

Definitions are given in Section 3, along with the basic properties of the order on
infinite trees. The decision problems are posed in Section 4. Then, in Section 5, we
begin the development of the algorithm.. The algorithm has four main steps:

1. Reduce the type reconstruction problem to a set of inequalities over finite trees.
This is the same as for the finite case. We sketch this familiar reduction in Section 5.

2. Find the shapes of the solutions via unification. The algorithm is presented in
Section 6.1.

3. Enumerate the frontiers of the shapes to generate an infinite but regular set of flat
inequalities. This step is presented in Section 6.2.

4. Solve inequalities over the partial order on the base types. This is done in Section 7
by reduction to Biichi automata, whose emptiness problem is solvable in polynomial
time [15].

We note that our definition of types includes non-regular as well as regular trees; we
obtain as a corollary that if an expression has any typing at all then it has one in which
all the types are regular.

The resulling algorithm is in DEXPTIME, as all the steps are polynomial excepi for
the reduction to Biichi automata, which is 2°(*). On the other hand, when C is discrete,
then C-TR reduces to unification on infinite trees and is therefore in PTIME.

We then present scme lower bounds in Section 8. We show that C-REG-SAT is
PSPACE-hard for every non-trivial poset C by reduction from quantified boolean for-
mulas to the termination problem for a class of automata called autonomous reading
pushdown automata (ARPDA), and then from ARPDA termination to C-REG-SAT.

2 Related Work

Mitchell [8, 9] introduced the problem of type reconstruction with coercions, including
atomic coercions, and sketched the main algorithms for the case of well-founded types.
This work concentrated on generating the set of atomic coercions that must hold among
the base types. Fuh and Mishra [5] expanded these algorithms and introduced the variant
in which the set of atomic coercions was cither fixed or was part of the input.

Wand and O’Keefe [17] showed that type reconstruction when the set of atomic
coercions was part of the input was NP-hard if certain constants were allowed in the

688

terms to be typed. Mitchell and Lincoln {7] improved this result by establishing NP-
hardness without constants, and by systematically considering the various versions of
the problem.

Tiuryn [14] considered the problem of satisfiability of subtype inequalities (what we
call C-TREE-SAT, but over finite trees only) and showed that for some classes of posets,
the problem is PSPACE-hard, but for others it is polynomial-time.

All this work concerned well-founded (finite) types only. Amadio and Cardelli {1]
considered a related problem for infinite types. They considered the validity problem
for expressions denoting regular types, but with a rather different order, in which there
were clements L and T which were bounds for all types. This order may be related to
the “partial types” of Thatte [13], which have a top (but not a bottom element). The
decidability of type reconstruction for this type discipline was shown for the well-founded
case by O’Keefe and Wand [10]. Kozen, Palsberg, and Schwartzbach [6] gave an O(n?)
algorithm both for finite types and for recursive types under the partial-type ordering.

3 Definitions
3.1 Trees
Given a set C of labels, the set Treesc is the set of binary trees with leaf labels chosen

from Cj that is, the set of non-empty partial functions ¢ : {0,1}* — (CU{—1}) such that

1. the domain of ¢ is prefix-closed,
2. if {(a) = “—” then {(a0) and {(al) are both defined, and
3. if t(c) € C then neither {(a0) nor t(al) is defined.

Given a tree, its shape is its domain, that is, the set of nodes or paths in the tree. We
will occasionally refer to a string in dom(t) as a “path” or an “address”. We say 7 is a
leaf of t if it is in dom(t), but neither 70 nor 71 is in dom(t).

We will write t]w for the subtree of ¢ rooted at address w, that is the tree defined
by dom(t|w) = {= | wr € dom(t)} and (t|w)(7) = t(wr). The set Regircesy of regular
trees is the set of trees with only finitely many distinct subtrees ¢]w. Such trees can be
thought of as being generated by a finite automaton.

3.2 Partial Order on Trees
We assume we are given a partial order <¢ on the label set C. This relation is extended
to trees as follows:
1.t <ot forallt, t'.
2. For each n > 0, <,4; is defined as follows:
c<ed
¢ Spyt ¢
§<ns t<nt
G0 <ort (7 = 1)

689

3.s<tiff s<,tforalln>0.

This definition replaces the usual “bottom up” definition for < on finite trees by a
“top-down” definition. The subscripts essentially require that s <, tiff s <{ down fon
levels; by quantifying over n, we require that s < ¢ for all levels. This intuition is made
precise by the following lemmas.

The same-shape property, familiar from finite trees, extends to infinite trees as well:
Lemma 1 Ift </, then dom(t) = dom(t').

Proof: This is done by induction on the length of addresses, using the following
lemma: for all n > 0, if ¢ <,, ¢ and || < n, then = € dom(t) iff # € dom(t’). This is an
easy induction on n. The base case uses the fact that tree domains always contain ¢. O

Let POS denote the regular set of strings in {0, 1}* with an even number of 0’s, and
let NEG denote the corresponding set with an odd number of 0’s. The following easy
lemma will also be useful:

Lemma 2 Let t <t' and m € POS (resp. NEG). If 7 € dom(l) then t|m < t'|x (resp.
tVlr <tlw).

Lemma 3 ¢ <t iff dom(t) = dom(l') and for cvery leaf 7 of t either

1. 7w € POS and t(x) <¢ t'(7)
2. € NEG and t'(7) <¢ t(n)

4 The decision problems

4.1 C-TR

Let the set of types be Treescux for some set C of base types and some set X of type
variables.

The problem C-TR has as input a triple (4, M,!), where A is a map from a finite
set of variables of the A-calculus to regular types (represented as non-deterministic finite
automata), M is a A-term, and ¢ is a type. The problem is to determine whether there
exists a map B and a substitution ¢ : X — Treese such that B D A and Bo - M :iois
deducible in the following system:

Atz Ax)

AFM t—1 AFN:t
AF(MNY:

Alz f)F Mt
AF(Qz.M):t -1

690

AFM:t i<t
AF M0

Here t and t’ range over Treesc, and A and B range over maps from a finite set
of variables of the A-calculus to regular types (represented as non-deterministic finite
automata).

This version of the problem does not include constants in the A-terms. The problem
including constants can be'reduced to C-TR by including the types of the constants
in A. When C is a discrete order (¢ <¢ ¢’ implies ¢ = ¢'), this is the ordinary type
reconstruction problem over infinite trees. Another variant of this problem has as input
only A and M, and asks whether ? exists; this problem reduces to C-TREE-SAT similarly.

All these questions can be asked when the types are finite trees (i.e. simple types)
only; we denote the finite-tree version of C-TR by C-TRp.

4.2 C-TREE-SAT

Given a partial order C on the constants, the problem C-TREE-SAT is: Given a finite
set of inequalities of the form ¢ < ¢’ where ¢ and t’ range over terms of the form

ti=cla|t—-t

is there a valuation ¢ : Vars — Treesc that satisfies all the inequalities? When C is
discrete, this is just unification on infinite trees, and it is well-known that it is decidable
in polynomial time, and if a solution exists, then there is a solution in which all the trees
are regular.

We will use ¥ as a symbol to range over instances of C-TREE-SAT and similar
problems. We use z, y, z as metavariables ranging over the variables in the inequalities.
For C-REG-5AT below, we will introduce z4 as subscripted variables, and we will identify
z and z..

Let us consider an example, which we will use throughout to illustrate the pieces of
the algorithm. Consider the inequality

z<y—~(c—>z)

By repeatedly applying Lemma 2, it is easy to deduce that in any solution o, we will
have

oy < (02)]0

c< (oz)[10

(02)]0 < (06z)]110

(c2)]10 < (0z)]1110

ete. Furthermore, since « and z; are known to be interior nodes, all of these addresses
must be in the domain of any solution, and all of (¢z)}11*10 must be leaves comparable
to ¢, forming an increasing chain. In general, we have

{(ox}]lab < (gz)|alld|a €17}

By more complex initial conditions, one can generate quite complex sets of constraints,
with many interlocking chains of inequalities. Our goal is to reduce C-TREE-SAT to an

691

infinite (but structured) set of constraints to be solved in the partial order C. This leads
us to C-REG-SAT.

4.3 C-REG-SAT

Definition 1 A sel of consiraints is regular ff il can be expressed as a fintle union of
sels of inequalilies of the following forms:

(1) {zyr < Yu's | # € R} for some regular set R.

(2) {zw < c} for some constani ¢

(3) {¢ < zy} for some constant c.

Note that a regular set of constraints is a “flat” system: it contains no arrows, so we
may consider solving it over C, not Treesc.
The problem C-REG-SAT is: Given a regular set of constraints; with the regular sets

R represented by nondeterministic finite automata, is there a valuation ¢ : Vars — C
that satisfies all the inequalities?

We will show the decidability of C-REG-SAT by reducing it to the emptiness problem
for Blichi automata.

The fragment of C-REG-SAT in which all the regular sets R are finite is denoted
C-FIN-SAT.

5 Reducing C-TR to C-TREE-SAT

The reduction from ordinary type reconstruction to unification on finite trees is well-
known (e.g. [16]). The same process can be used to reduce C-TR to C-TREE-SAT.

Given an instance (A, M,t) of C-TREE-SAT, assign a type variable to every subex-
pression of M and every binding occurrence of a variable in M. We write ty for the
type variable associated with subexpression N; fechnically we shiould distinguish diflerent
occurrences of N, but this will be clear from context.

Since < is a partial order, consecutive occurrences of the subsumption rule may be
merged. Therefore, if ¢ is any solution to (4, M,t), then Ao - M : to has a derivation
tree in which each “structural” step is followed by exactly one subsumption step. For
example, for an application, the tree would look like: -

Aok M 1ip0 Aot N iiyo
Aot (MN) :t t < tmnyo
Aok (M N):tumo

where ¢ is some type. We can suminarize this information by generating the inequalities

ity =ty —1
t <My

where ¢ is a fresh type variable.

Extending these considerations to the other cases gives the following set of rules:

692

For each | generate

z l tA(z‘) <t

Az M |tz =iy Staou

(MN) lthiN-—ytl
[t <t

where t4(z) is the type variable associated with the binding occurrence of z and ¢; is a
fresh lype variable.

Each solution to the generated set of inequalities corresponds to a type inference tree,
and vice versa. Hence C-TR reduces lo C-TREE-SAT.

6 Reducing C-TREE-SAT to C-RIG-SAT
6.1 Finding the shape of the solution

By Lemma 1, we can determine the shapes of any solution to C-TREE-SAT by reducing
to the familiar problem of unification over infinite trees. More precisely, given an instance
Y of C-TREE-SAT, we can produce an instance Shape(X) of unification over infinite trees
as follows:

1. Replace every constant appearing in I by a single constant co. For each term {,
call the resulting term ¢

2. Replace every inequality ¢ <1/ in ¥ by the equality { = £
q 24

Lemma 4 If o is any solution lo L, then the map o' defined by

; _ co if (J’.’E) 7)€C
(o'z)(m) = { (oz)(w) otl(lerwgse)

is a solulion to Shape(X).

Proof: Obvious from Lemma 1, O

We say T is shape-consistent iff Shape(%) is solvable.
Lemma 5 If & is not shape-consisicnt, then ¥ 1s unsatisfiable.

Proof: Immediate from Lemma 4. O

By the familiar algorithim ([4], Theorem 4.9.2), we can determine if Shape(ZL) is solv-
able and, if it is, we can construct a principal solution to Shape(X), that is a rap
os : Vars — Regireecsqyx for some finite set X of new variables, such that the solutions
to Shape(X) are precisely the maps of the form ¢ o 7, where 7 is any map X — Treesc.

Therelore, for each variable @ appearing in ¥, we can construct regular sets Ly(z),
Intz(z) and Cx(x) with the following properties.

693

7€ Ly(z) <= =€ dom(ozk)
<= for every solution o of Shape(X), = € dom(vx)

7 € Inlg(x) <<= (osz)(v)=—
<= for every solution o of Shape(X), (oz)(7) = —

T €Cx(z) <= (opz)(m)=co
<= for every solution o of Shape(Z), (oz)(w) = co

Let us further define Leavesg(z) = Ly(z) — Iniz(z). Furthermore, any solution o,
and the functions Ly, Inlg, etc., can be extended to act on finite terms instead of just
on variables by setting Ly(s — t) = Lg(s) — Lg(t), etc. Then, if (s = t) € X, we have
Lz(s) = L)_*,(i), etc.

For our example, we have Ly(z) = 1* U 1*0, Inig(z) = 1*, Leavesg(x) = 1*0, and
Cyx(z) = (11)*10.

Lemma 6 Lel T be a shape-consistent mnstance of C-TREE-SAT. Then:

1. If w € Lg(x), then in any solution o of T, w € dom(o(z)).
2. If m € Inig(z), then in any solution o of E, (sz)(x) = —.

3. If m € Cx(x), then in any solution o of I, (ox)(7) is ¢ constant.

Proof: We will do part 3; the others are similar. Let # € Cx(z) and o be any
solution of ©. Form ¢’ as in Lemma 4. Since ¢’ is a solution to Shape(X), we know that
{o'2)(7) = ¢o. But this implies that (¢z)(#) = ¢ for some ¢ € C, by the construction of
. 0

6.2 Enumerating the leaf inequalities

Now we can give the reduction from C-TREE-SAT to C-REG-SAT. For ashape-consistent
instance ¥ of C-TREE-SAT, we build an instance Flel(Z) of C-REG-SAT by the follow-
ing process. We start, with the sel T of inequalities with variables z, y, etc., and build
a new set of inequalities & over subscripted variables z,, for w € {0,1}*; we identify =
and x..

1. For each inequality (s <1) € I, consider each pair of strings (w, w’) such that w is
a leaf of s and ww' is a leal of ¢.

2. Consider the case in which s(w) is a variable (say z), and ww' is a leaf (either
t(ww') = c or t(ww') = y). If ww' is positive, insert in X the inequality z,s < ¢ or
zy <y. If ww' is negative, insert in X the inequality ¢ < £y or y < Ty,

3. If s(w) is a constant c, it must be that w' = ¢ (otherwise £ would not be shape-
consistent) so {(w) = ¢’ or t{{(w) = y. If w is positive, insert in X the inequality
¢ < c or ¢ <y If wis negative, insert in that inequality ¢’ < cor y <e.

694

4. Similarly for each pair of strings (w, w’) where w is a leaf of { and ww’ is a leaf of
s.

This gives us a set of inequalities of the form 2y < y, £ < Yu, Tw < ¢, ¢ < Ty, and
c<c.

For our example, this process gencrates ¥ = {v < zg,e < 219,211 < 2}
Lemma 7 If T is shape-consistent, then ¥ is satisfiable iff ¥ is satisfiable.

Proof: If ¥ has a solution ¢, define 6(z,) = (cz)jw. If & is a solution to 2, define
o to be the smallest tree such that (sz)(ww’) = (§z,)(v'), by marking every prefix of
w with —. 0

The instance Flai(2) of C-REG-SAT is defined as follows:

o For each inequality of the form z, < y, include the regular constraints
{-’L‘ww < ¥r | e C(y) n POS}

and
{yw < Zwr I S C’(y) nNEG}

o Include each inequality of the form z, < ¢ or ¢ < zy,.

For our example Cg(x) = (11)*10 C NEG, and Cg(y) = ¥, so we get Flai(L) = {c <
210, {2r < Z114 | 7 € (11)710}}

Theorem 1 If X is shape-consistent, then X is satisfiable iff Flai(X) is satisfiable.

Proof: (=): If v satisfies £ and 7 € Cyu(z), then (oz){r) is a constant. Hence
the variables in Flal(Z) are all assigned values in C, and it is easy to see that all of the
constraints in Flai(X) are salisfied.

(¢=): Given a solution o to Fla(Z), construct a solution ¢’ to ¥ as follows:

1. For cach variable z in X, let dom(o'z) = dom(szgz) = Ly(x).
2. If = € Inig(z), let (o'2)(7) = —.
3. If 7 € Cg(x), let (¢'z)(7) = o(xx) We will prove that 2, is a variable in #lai(X).

4. Choose a cq € C. If # € Leaves(z) — C(z), let (¢'z)(%) = co.

Since X is shape-consistent, it follows that /ntx(z) N Cx(2) is empty, so it is easy to
see that this assigns a label to every address # € Ly(2).

We musl show that o is a solution to L. Lel (s < 1) € Z. Then (5§ =) € Shape(%), so
by the construction of o', dom(c's) = dom(ox3) = dom(oxl) = dem(o't). By Lemma 3,
it is enough to show that for every leal m of dom(o’s), (¢/s)(n) and (o’t)(w) are appro-
priately related.

695

If 7 € Leavess(s)—Cx(s), then (¢’s)(7) = (¢’t)(7) = co, so the condition of Lemma 3
is satisfied regardless of whether 7 is positive or negative.

The remaining casc is that 7 € Cy(s} = Cg(t). Then there must be paths w;, wy,
w1, 72 such that ¥ = w71 and wy is a leaf of s, and 7 = w73 and w, is a leaf of ¢.

If s(wy) is a constant (say ¢), then m; = €. So {(w;) must either be some constant ¢/,
in which case 73 = ¢, or some variable y. Consider the case in which 7 = w, is positive.
Then Flai(X) includes ¢ < ¢’ or ¢ < yx,. Since o is solution to Flai(X), we have ¢ <¢ ¢’
or ¢ < (0yx,). In either case we have (¢'s)(x) < (0't)() as required. The case for =
negative is symmetrical.

So assume that s(wy) is some variable z, and t(w;) is some variable y. Then we have
(¢'5)(w) = (¢'z)(m1) and (o't)(w) = (o'y)(m2).

Without loss of generality, assume that w, is a prefix of wq, say wy = wyw. Then we
have wim = 7 = weme == Wiwwg, S0 T = Wy,

We now have four cases, depending on the parity of w and 7. We will do only
the case where both are positive. Since w is positive, X must contain the inequality
zy < Y. Now 7 € Cx(s), so 13 € Cx(y), wra € Cx(z), and (Zyr, < ¥r,) € Flal(T).
Therefore o assigns a value from C to each of these variables, as desired. Furthermore, we
observe (&'5)(r) = (o'x)(m) = (¢')(wr2) = (63ux,) < (0Un,) = (o'y)(m2) = ()(m),
establishing the necessary relation between (¢’s)(7) and (o't)(n). The other cases are
similar, reversing the signs as needed. O

7 Reducing C-RFEG-SAT to Biichi automata

A Biichi automaton is a nondeterministic automaton which walks down a possibly infinite
tree in which every node has a label chosen from some alphabet A. A run associates each
node with a state. The state at any node may depend non-deterministically on the state
of the machine at the parent node, the label at the parent node, and the direction (6 or
1) taken from the parent node to the current node.

Formally, the automaton is specified by a tuple (Q, g0, A, F), consisting of a finite
set of @ states, an initial state qo € @, a transition relation A C Q@ x A x {0,1} x Q
and a set F C @ of final states. a run on a tree ¢ is a labelled tree t' with the same
domain as ¢, such that t'(¢) = ¢o and for any address 7 in the interior of ¢, the tuple
(t'(x),(x), a,t'(wa)} is in the set for @ € {0,1}. The run is successful if on each path,
some final state occurs infinitely often. It is well-known that the emptiness problem for
Biichi automata is decidable, and is in fact decidable in polynomial time [12, 15].

Given a regular set of inequalities over C, we will construct a Biichi automaton whose
language is non-empty iff the set of inequalities is satisfiable. Our machines will in fact
be deterministic.

The first step is to reverse all the indices in X. This gets us to a finite set of [amilies
of inequalities of the form
{xww S Yrw' l TE R}

for some regular sel R represented as a nondeterministic finite automaton. This transfor-
mation clearly preserves satisfiability. We call such a set of inequalities reverse-regular.

696

Theorem 2 Given any reverse-reqular set of incqualilies X, one can construct a Biichi
automaton A such that the set of irees uccepted by A ts non-empty iff £ is saiisfiable.

Proof: Without loss of generality, we consider only families of the form
{meyw IWER}

and

{zw < Yaw' [TEe R}
The constraints constructed in the preceding reduction are of this form; in general, any
set of the form {zzy < yrw’ | # € R} can be replaced by {z;s < 2x | # € R}, and

{#zx < Yzw’ | ®* € R}, for some new variable z.

Assume that there are n unsubscripted variables z!,2%,...2" in &, that is, the vari-

ables in T are of the form !, for some i € {1...n}. We will run our automaton over
complete binary trees labelled by elements of C™.

Such a tree will correspond to a solution of the set of inequalities. These trees are
not quite solutions to the original set of inequalities over trees, because the indices have
been reversed.

Each family of inequalities
{27 <#ly, | 7€ R}

can be represented by the tuple (¢,j,w,+, R). Similarly, each family of inequalities
{¢i, <zl |x € R} can be represented by the tuple (j,4,w,—,). In each case the first
element of the tuple indicates the variable with the shorter subscript. The sign indicates
whether the “later-found” element is larger or smaller than the “earlier-found” one. We
refer to these as the original ilems.

~ Each inequality ¢ < xi, can be represented by the tuple (c, i, w, +), and each inequality
z}, < ¢ can be represented by the tuple (¢, i, w, —) We refer to these tuples collectively
as tlems.

We construct an automaton A whose states are either (a) a distinguished failure state
or (b) a finite set of items. The initial state will be the set of items corresponding to the
constraints of the form ¢ < «i, and zi < c. The accepling states will be all sets other
than the failure state.

Once in the failure state, the machine will stay in the failure state forever. Otherwise,
at every node the machine splits into two states, one for each branch. We refer to these
states as the O-successor state and the l-successor state, respectively.

To construct the set of items for the two successor states, add items according to the
following rules, beginning with the empty set:

1. For each original item (4,7, aw, +, R), if the current address is in R then put the
item (¢',j,w,+) in the a-successor state. Similarly for each item of the form
(i3jy aw, —, R)

2. For each original item (¢, f,¢,+, i), if the current address is in R then check to
see if ¢ < ¢. 1f hot, then make each a-successor state (a = 0 or 1) the failure
state. (If ¢! < ¢, then this constraint is satisfied at this address, so no itemn need
be inserted.) Similarly for the original item (4, j, ¢, —,).

697

3. For each item (c,i,aw,+) in the state, then the item (c,i,w,-) will be in the
a-successor state (a = 0 or 1).

4. Tor cach item (c,i,aw,—) in the state, then the item (c,i,w,—) will be in the
a-successor state.

5. For each item (c,i,¢,+) in the state, let ¢! be the i-th component of the label at
the current node. If ¢* £ ¢, then make both successor states the failure state. (If
¢' < ¢, then the constraint coded by this item has been satisfied, so the item can
be deleted). Similarly for each item {c,%,¢, ~).

For each family of inequalities, represented by (i, j, w, £, R), the automaton A keeps
track of the current address in the tree and check to see whether it is in the regular set
R. If the current address is in R, then we create an item {c, j, w, &) that will walk down
along the path w and check to see if the j-th component at that location satisfies the
necessary inequality. ’

Each item (¢, j, w, %) walks down the tree from its creation point =, following path w
to the tree address ww. It then compares the value of the y component at 7w to ¢ and
either succeeds or fails, depending on the value of the &. If the constraint is violated,
then the machine enters a failure state and rejects the input. Otherwise, the machine
continues.

We next count the number of possible items (¢, j,w,+). Let the system X have k
groups of inequalities, each of the form {¢ < zy,}, {2w; < ¢}, {Zr < Yow, | # € R}, o1
{¥nw; € 2« | ¥ € R}. Then the number of possible items obtained from one such group
is at most |C|- |w;|. So the total number of items is at most

ICl- (wal + .. + |wr]) < €] - |Z]

Thus the number of possible items is O(|E]), so .4 has at most 2°UZD states.

We next show that this machine accepts some tree iff the reverse-regular set ¥ of
inequalities is satisfiable. If ¢ : Vars(Z) — C is a solution to I, construct a tree
t:{0,1} — C™ by setling 1(7) = (c1,...ca), where ¢; = o(zt) if 2% € Vars(Z) and
¢ = cp (some fixed constant) otherwise. This tree will be accepted by A, since it will
never send A to the failure state.

Conversely, if t : {0,1} — C™ is accepted by A, then for each 2% € VarsX let o(2t)
be the i-th component of {(#). Since no run of A on t enters the failure state, it follows
that all the partial-satisfaction conditions together with the component inequalities are
satisfied, that is, this is a solution of &. 0O

Theorem 3 1. Given a reverse-reqular set of inequalities 3, il is decidable in deler-
ministic exponential time whether L is salisfiable.

2. C-REG-SAT 15 decidable in DEXPTIME.

Proof: By the polynomial decidability of the emptiness problem for Biichi automata
and the observation that the size of A is 200D o

Note by contrast that C-FIN-SAT is in NP, for every C.

We can summarize the sequence of reduclions as follows:

698

Theorem 4 1. The problem C-TRELE-SAT is decidable tn delerministic exponential
time.

2. The problem C-TR is decidable in delerminislic ezponential lime.

3. If & is an instance of C-TR that has a solution, then it has a solution in which all
the lypes are regular trecs.

Proof: (i) Use nondeterministic finite automata to represent the regular sets in the
solution of Shape(X); then all the reductions except the last are polynomial.
(1) All the reductions except the last are polynomial.

(iii) Because if the language accepted by a Biichi automaton is nonempty, then it
includes some regular tree. O

Theorem 5 The problem C-TRp is decidable in deterministic exponential time.

Proof: To use this algorithm for type reconstruction with atomic subtyping in the
case of well-founded types, merely test each set Ly(x) for finiteness. This can be done
in polynomial time. O

This result improves the upper bound for C-TRp from NEXPTIME to DEXTIME.

8 Lower Bounds

We show that if C is any nontrivial partial order (ie it has two unequal but comparable
elements), then C-REG-SAT is PSPACE-hard. We will do this by defining a class of
automata called eutonomous reading PDA’s (ARPDA’s). Then we show that the ARPDA
termination problem is PSPACE-hard, and that ARPDA termination reduces to C-REG-
SAT over any nontrivial partial order.

An ARPDA consists of a finite sel @ of states and a pushdown stack over the alphabet
{0,1}, so an instantaneous description of a machine state is a pair (g, w) with ¢ € Q and
w € {0,1}"; we depict the top of the stack as being at the right-hand end of w. The
machine has an initial state ¢® and a final state ¢/, and ils behavior is specified by a set
A of transilions. Lach transition is of one of two [orms:

1. A pds transition ((p,a) — (g,b)), where p,q € Q and a,b € {0,1,¢}.

2. A pds query ((p,R) > q), where p,q € @, aud R C {0,1}* is a regular set,
represented as a nondeterministic finile automaton.

An ARPDA is a nondeterministic machine. Its behavior relation — is defined as
follows:

o I ((p,a) — (g,b)) € A, then (p, ua) — (¢, ub) for any v € {0,1}".

e If ((p, R) = ¢q) € A, then (p,u) — (¢, u) whenever u € K.

The ARPDA termination problem is: Given an ARPDA M, does (¢°,¢) = (¢f, €)?

699

Theorem 6 The ARPDA termination problem is PSPACE-hard.

Proof: By reduction [roin evaluation of quantificd boolean formulae. Let (Q1)) ... (Qna.,)®
be a quantified boolean formula; that is, each @; is a quantifier (V or 3) and @ is a
boolean formula in disjunctive normal form over the variables {z1,...z,}. We construct
a ARPDA M that terminates ifl this formula is true. The machine works by traversing a
backtracking search tree over {z1,...2,}. It maintains its position in the tree by keeping
the values of @1,..., 2, on the stack. It keeps track of its direction of travel (down or
up) and its current level in {0,...n+1} in its control state Q. The initial state is (down,
1), and the final state is (up, 0).

The machine maintains the invariant that in state (up, ¢), the stack contains a valu-
ation zy,...,z; that makes the formula (Q;12i41) ... (Qnzn)® true.

We next describe what happens at each state {d,7), when the machine is at level i
travelling in direction d, and at the same time show that the machine maintains this
invariant.

(down, ©) On this visit, the machine is searching down in the tree. If i < n and Q; is
V, push a 0 on the stack. If i < n and @Q; is 3, nondeterministically choose a value
for @; and push it on the stack. In cither case go to state (down, i + 1).

If i > n, we have a complete set of values for {z1,...2,} on the stack. Evaluate the
formula ® using these values; this is possible by encoding ® as a nondeterministic
finite automaton and using the ability of M to check whether its stack matches an
arbitrary regular set. If the formula is true, go to state (up, n). If not, then loop.

(up,). According to the invariant, the stack contains a valuation zy, ..., z; that makes

the formula (Qi412i41) . .. (@nza)® true. If Q; is 3, then the current value of z; is
the witness that shows that x1,...,#;_; makes (Q;%:)(Qis+12i41) - - - (@nzn)® true.
So pop the stack and go to state (up, i~ 1).
If Q; is V and 2; = 0, this is the “infix” visit to this node: set #; = 1 (by changing
the topmost cell on the stack from 0 to 1), and go to the state (down, i + 1). If
Qi is V and ®; = 1, this is the “postfix” visit to this node; at this point we have
succeeded in evaluating the formula at this node, so go to state (up, i — 1).

Hence il we reach the state (up, 0), the stack will be empty and the original formula
must have been true. Furthermore, it is clear that the machine M explores the entire
subtree, so if the formula is true, all the needed witnesses will be found. D

Theorem 7 The ARPDA lermination problem is polylinie reducible lo C-REG-SAT
over any noalrivial posetl C.

Proof: Let M =(Q,q% ¢/, A) be an ARPDA. We denote the initial and final states
with superscripts to avoid conflicts with the subscripled variables of C-REG-SAT. Let
C be a non-trivial poset with a < b, a # b holding in C. We will construct an instance
Yar of C-REG-S5AT such that Xy is unsatisfiable iff M halts.

The variables of £, are Q. The inequalities are
q

Pwa < Qub

700

for every w € {0,1}" and ((p,a) — (q,b)) € A,

Puw < Gw
for ((p, R) — ¢) € A and w € R, and the two inequalities

b<¢® ¢/ <a

It is clear that in M, (p, w) reduces to (g, u) in at most k steps iff the assertion
Pw < qy is deducible from Ijr in at most & applications of transitivity. Hence M halts
iff ¢° < ¢/ is deducible from py.

We claim that M halts iff £, is unsatisfiable. Assume M halts and Ly is satisfiable
with solution ¢. Then we have b < o(¢°) < o(¢f) < a, so a = b, contradicting our
assumption that a # b.

Il M does not halt, construct a solution ¢ to Xy as follows: If (¢, w) is reachable
from the initial state (¢°, ¢), assign o(qy) = b. Otherwise assign ¢(gs) = @. It is easy to
show that this assignment satisfies all the inequalities in Zpr. O

It should be noted that C-REG-SAT exhibits dramatically different behavior than its
fragment C-FIN-SAT which consists of finite instances of C-REG-SAT. As we remarked
carlier, C-FIN-SAT is always in NP. It follows {rom the results of [11] that there are
finite posets for which C-FIN-SAT is actually NP-complete. Our results of this paper
indicate that C-REG-SAT is always between PSPACE and DEXPTIME, for all posets
C which are not discrete. Over discrete C, C-REG-SAT is clearly in PTIME.

9 Conclusions

We have shown how to extend Mitchell’s algorithm for type recomstruction in a type
system with atomic subtyping to handle recursive types. This extension is necessary to
do type reconstruction for object-oriented systems with self. The resulting algorithm
is in DEXPTIME, which also improves the previous NEXPTIME algorithm for atomic
sublyping on finite types.

References

[1] Roberto M. Amadio and Luca Cardelli. Subtyping Recursive Types. In Conf. Rec.
18th ACM Symposium on Principles of Programming Lenguages, pages 104-118,
1991.

[2] Kim B. Bruce. A Paradigmatic Object-Oriented Programming Language: Design,
Static Typing and Semantics. Technical Report CS-92-01, Williams College, January
1992.

[3] Williamz R. Cook, Walter L. Hill, and Peter S. Canning. Subtyping is not Inher-
itance. In Conf. Rec. 17th ACM Symposium on Principles of Programming Lan-
guages, pages 1256-135, 1990.

[4] Bruno Courcelle. Fundamental Properties of Infinite Trees. Theoretical Compuler
Science, 25:95-169, 1983.

701

[5] Y.-C. Fuh and P. Mishra. Type Inference with Subtypes. In Proceedings European
Symposium on Programming, pages 94-114, 1988.

[6] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient Inference of
Partial Types. Technical Report DAIMI PB-394, Computer Science Department,
Aarhus University, April 1992.

[7] Patrick Lincoln and John C. Mitchell. Algorithmic Aspects of Type Inference with
Subtypes. In Conf. Rec. 19th ACM Symposium on Principles of Programming Lan-
guages, pages 293-304, 1992.

(8] John C. Mitchell. Coercion and Type Inference (summary). In Conf. Rec. 11th
ACM Symposium on Principles of Programming Languages, pages 175-185, 1984.

{9] John C. Mitchell. Type Inference with Simple Subtypes. Journal of Funclional
Programming, 1:245-285, 1991.

[10] Patrick M. O’Keefe and Mitchell Wand. Type Inference for Partial Types is De-
cidable. In Bernd Krieg-Briickner, editor, European Symposium on Programming
’92, volume 582 of Springer Lecture Noles in Computer Science, pages 408-417.
Springer-Verlag, 1992.

[11] Vaughn Pratt and Jerzy Tiuryn. Satisfiability of Inequalities in a Poset. to appear,
1992,

[12] Michael O. Rabin. Weakly Definable Relations and Special Automata. In Y. Bar-
Hillel, editor, Mathematical Logic and the Foundalions of Sel Theory, pages 1-23,
Amsterdam, 1970. North-Iolland.

[13] Satish Thatie. Type Inference with Partial Types. In Proceedings Inlernational
Colloguium on Aulomala, Languages, and Programming ’88, pages 615-629, 1988.

{14] Jerzy Tiuryn. Subtype Inequalities. In Proc. 7th IEEE Symposium on Logic in
Computer Science, pages 308-315, 1992.

[15] Moshe Y. Vardi and Pierre Wolper. Automata-Theoretic techniques for modal logics
of programs. J. Comp. Sys. Sci., 32:183-221, 1986.

[16] Mitchell Wand. A Simple Algorithm and Proof for Type Inference. Fundamenta
Informaticae, 10:115-122, 1987.

[17] Mitchell Wand and Patrick M. O’Keefe. On the Complexity of Type Inference with
Coercion. In Conf. on Funclional Programming Languages and Compuler Architec-
ture, 1989.

