
Type Reconstruction with Recursive Types
and Atomic Subtyping

Jerzy Tiuryn*
Institute of Informatics

Warsaw University
Banacha 2, 02-097 Warsaw

Poland
tiuryn@mimuw.edu.pl

Mitchell Wand t
College of Computer Science

Northeastern University
360 Huntington Avenue, 161CN

Boston, MA 02115, USA
wand@flora, ccs. northeastern.edu

Abstract

We consider the problenl of type reconstruction for)~-terms over a type system
with recursive types and atomic subsumptions. This problem reduces to the problem
of solving a finite set of inequalities over infinite trees. We show how to solve such
inequalities by reduction to an infinite but well-structured set of inequalities over
the base types. This infinite set of inequalities is solved using Biichi automata. The
resulting Mgorithm is in DEXPTIME. This also improves the previous NEXPTIME
upper bound for type reconstruction for finite types with atomic subtyping. We
show that the key steps in the algorithm are PSPACE-hard.

1 Introduction
John Mitchell, in his seminal paper [8, 9], considered a system for type reconstruction for
A-terms in whidl the set of types is augmented with a partial order (the subtype order),
and the type inference rules are augmented with the subsumptiou rule

A } - M : s s < t

A F - M : t

In this case the type reconstruction problem reduces to the problem of solving a set of
inequalities over the set of types. Mitchell showed that if tile partial order is generated
by a set of atomic coercions on the base types, it reduces to the problem of solving a set
of inequalities over the base types [9].

This paper has been the source of a considerable body of work [5, 7, 17, 14]. Such a
system is an important component of a type-dmcking system for object-oriented program-
ming. Itowcver, a good model of object-ori.ented programming must include recursive
types, which correspond to infinite trees [2, 3], but Mitcbell's algorithm applies only to
well-founded types, whidl correspond to finite trees.

*This work was paa~ly supportexl by NSF Ip'ants CCR-9002253 and CCR-9113196 and by Polish KBN
grant No. 2 1192 91 01

tWork supported by the Nation'.d Sdence Foundation under gra.nlz GCR.9002253 emd CGR-9014603.

687

In this paper we show how to extend Mitchell's algorithm to handle recursive types.
Instead of solving inequalities over finite trees, we will need to solve inequalities over pos-
sibly infinite trees. Instead of reducing tree inequalities to a finite set of "flat" inequalities
over the base types, we will get an infinite but regular set of flat inequalities. Instead of
solving these inequalities in the base order (as in [17] or [7]) by nondeterministic dmice,
we solve them by reducing to the emptiness problem for B/ichi automata. The resulting
algorithm is in DEXPTIME. By contrast, the best previously-known upper-bound for
type reconstruction with a~omic subtyping, in the case of well-founded types, is NEXP-
TIME; our algorithm can be used for this case also. Last, we show that the key steps in
the algorithm are PSPACF,-hard.

Definitions are given in Section 3, along with the basic properties of the order on
infinite trees. The decision problems are posed in Section 4. Then, in Section 5, we
begin the development of the algorithm. The algorithm has four main steps:

1. Reduce the type reconstruction problem to a set of inequalities over finite trees.
This is the same as for the finite case. We sketch this familiar reduction in Section 5.

2. Find the shapes of the solutions via unification. The algorithm is presented in
Section 6.1.

3. Enumerate the frontiers of the shapes to generate an infinite but regular set of flat
inequalities. This step is presented in Section 6.2.

4. Solve inequalities over the partial order on the base types. This is done in Section 7
by reduction to Biichi automata, whose emptiness problem is solvable in polynomial
time [15].

We note that our definition of types includes non-regular as well as regular trees; we
obtain as a corollary that if an expression has any typing at all then it has one in whidl
all the types are regular.

The resulting algorithm is in DEXPTIME, as all the steps are polynomial except for
the reduction to Bfichi automata, which is 2 ~ On the other hand, when C is discrete,
then C-TR reduces to unification on infinite trees and is therefore in PTIME.

We then present some lower bounds in Section 8. We show that C-REG-SAT is
PSPACE-hard for every non-trivial poser C by reduction from quantified boolean for-
mulas to the termination problem for a class of automata called autonomous reading
pushdown automata (ARPDA), and then from ARPDA termination to C-REG-SAT.

2 R e l a t e d W o r k

Mitchell [8, 9] introduced the problem of type reconstruction with coercions, including
atomic coercions, and sketched the main algorithms for the case of well-founded types.
This work concentrated on generating the set of atomic coercions that must hold among'
the base types. Fuh and Mishra [5] expanded these algorithms and introduced the variant
in which the set of atomic coercions was either fixed or was part of the input.

Wand and O'Keefe [17] showed that type reconstruction when the set of atomic
coercions was part of the input was NP-hard if certain constants were allowed in the

688

terms to be typed. Mitchell and Lincoln [7] improved this result by establishing NP-
hardness without constants, and by systematically considering the various versions of
the problem.

Tiuryn [14] considered the problem of satisfiability of subtype inequalities (what we
call C-TREE-SAT, but over finite trees only) and showed that for some classes of posers,
the problem is PSPACE-hard, but for others it is polynomial-time.

All this work concerned well-founded (finite) types only. Amadio and Cardelli [1]
considered a related problem for infinite types. They considered the validity problem
for expressions denoting regular types, but with a rather different order, in which there
were elements 2_ and T which were bounds for all types. This order may be related to
the "partial types" of Thatte [13], which have a top (but not a bottom element). The
decidability of type reconstruction for this type discipline was shown for the well-founded
case by O'I(eefe and Wand [10]. Kozen, Palsberg, and Schwartzbach [6] gave an O(n a)
dgori thm both for finite types and for recursive types under the partial-type ordering.

3 D e f i n i t i o n s

3.1 Trees

Given a set C of labels, the set Treesc is the set of binary trees with leaf labels chosen
from C; that is, the set of non-empty partial functions t : {0, 1}* ~ (Ct.J {---,}) suda that

1. the domain of t is prefix-closed,

2. i f t (a) = "--." then ~(c~0) and t(c~l) are both defined, and

3. if t(~) G C then neither l(~0) nor t(c~l) is defined.

Given a tree, its shape is its domain, that is, the set of nodes or paths in the tree. We
will occasionally refer to a string in dora(i) as a "path" or an "address". We say 7r is a
leaf o f t if it is in do,n(t), but neither ,'tO nor 7rl is in dom(Q.

We will write t lw for the subtree of t rooted at address w, that is the tree defined
by dorn(t~w) = {Tr I w~r E dora(t)} and (t~w)(Tr) = l(w~r). The set Reglreesr of regular
trees is the set of trees with only finitely many distinct subtrees t~w. Such trees can be
thought of as being generated by a finiLe automaton.

3.2 Par t i a l O r d e r on Trees

We assmne we are given a partial order _<c on the label set C. This relation is extended
to trees as follows:

1. t <or ~ for all t , l ~.

2. For each n __ 0, _<,+1 is defined as follows:

e _~C Ct

c _~t~+l ct

sl < n S t _~n t 1

(s -~ ~) < . + 1 (s ' --* t')

689

3. s < t iff s < . t for all n > O.

This definition replaces the usual "bottom up" definition for < on finite trees by a
"top-down" definition. The subscripts essentially require that s <~ t iff s _< t down to n
levels; by quantifying over n, we require that s < t for all levels. This intuition is made
precise by the following lemmas.

The same-shape property, familiar from finite trees, extends to infinite trees as well:

L e m m a 1 / f t < t ' , lheu dora(t) = dom(t').

Proof: This is done by induction on the length of addresses, using the following
lemma: for all n > 0, if t < , t ' and I~1 < n, then ~ E dora(t) ifr ~ ~ dom(t'). This is a,,
easy induction on n. The base case uses the fact that tree domains always contaili e. []

Let P O S denote the regular set of strings in {0, 1)* with an even number of O's, and
let N E G denote the corresponding set with an odd number of O's. The following easy
lemma will also be useful:

L e m m a 2 Let ~ < t' and rc E POS (resp. NEG). If ir E dora(t) then ttlr < t ' t~ (resp.
t 'br < t l~).

L e m m a 3 ~ < t' iff dora(t) = dom(t') and for every leaf ~r o f t either

1. ~ ~ P o s and t(~': < c t'(~)

2. ~ e ~ZO a,,d t'(r) < c t(~)

4 T h e d e c i s i o n p r o b l e m s

4.1 C - T R

Let the set of types be Trcescux for somc set C of base types and some set X of type
variables.

The problem C - T R has as input a I, riple (A, M, t), where A is a map from a finite
set of variables of the h-calculus to regular types (represented as non-deterministic finite
automata), M is a ,~-term, and t is a type. The problem is to determine whether there
exists a map B and a substitution ~r : X --* Treesc sudl that B D A and B~r ~- M : ta is
deducible in the following system:

A t- x :A(x)

A I - M : t - - + t I A ~ - N : t

A ~- (M N) : t'

A l- (,~x.M) : t ~ ~'

690

A] - M : t t < t ~

A b M :t '

Here t and t ' range over Treesc, and A and B range over maps from a finite set
of variables of the A-calculus to regular types (represented as non-deterministic finite
automata).

This version of the problem does not include constants in the A-terms. The problem
including constants can be'reduced to C-TR by including the types of the constants
in A. When C is a discrete order (c < c c' implies c = d) , this is the ordinary type
reconstruction problem over infinite trees. Another variant of this problem has as input
only A and M, and asks whether t exists; this problem reduces to C-TREE-SATsimilarly.

All these questions can be asked when the types are finite trees (i.e. simple types)
only; we denote the finite-tree version of C-TR by C-TRF.

4.2 C-TREE-SAT

Given a partial order C on the constants, the problem C-TREE-SAT is: Given a finite
set of inequalities of the form t _ t ' where t and t ' range over terms of the form

t : = c [z [t ~ t '

is there a valuation a : Vars ~ Treesc that satisfies all the inequalities? When C is
discrete, this is just unification on infinite trees, and it is well-known that it is decidable
in polynomial time, and i f a solution exists, then there is a solution in which all the trees
are regular.

We will use E as a symbol to range over instances of C-TR E E -SA T and similar
problems. We use z, y, z as metavariables ranging over the variables in the inequalities.
For C-REG-SATbelow, we will introduce x~ as subscripted variables, and we will identify
z and z~.

Let us consider an example, which we will use throughout to illustrate the pieces of
the algorithm. Consider the inequality

x _< y ~ (c --, x)

By repeatedly applying Lemma 2, it is easy to deduce that in any solution a, we will
have

ou _< (o,~)1o
c < (crz)ll0
(,~)~0 < (~x)1110
(~x)110 < (~)11110

etc. Furthermore, since x and Xl are known to be interior nodes, all of these addresses
must be in the domain of any solution, and all of (~x)J.ll* 10 must be leaves comparable
to c, forming an increasing chain. In general,, we have

{(~z)~.0 < (ax) l~110 I a C 1"}

By more complex initial conditions, one can generate quite complex sets of constraints,
with many interlocking chains of inequalities. Our goal is to reduce C-TR E E -SA T to an

691

infinite (but structured) set of constraints to be solved in the partial order C. This leads
us to C-REG-SAT.

4.3 C-REG-SAT

Def in i t i on I A set of constraints is regular iff it can be expressed as a finile union of
sets of inequalilies of the following forms:

(I) { ~ <- w,~ I ~ ~ R} for some r~guUr s~t R.

(Z) {x~ < c} for some cons*ant c

Note that a regular set of constraints is a "fiat" system: it contains no arrows, so we
may consider solving it over C, not Treesc.

The problem C-REG.SAT is: Given a regular set of constraintsi with the regular sets
R represented by nondeterministic finite automata, is there a valuation (T : Vars --* C
that satisfies all the inequalities?

We will show the decidability of C-REG-SAT by reducing it to the emptiness problem
for Biichi automata.

The fragment of C-REG-SAT in which all the regular sets R are finite is denoted
C-FIN-SAT.

5 Reducing C-TR to C-TREE-SAT

The reduction from ordinary type reconstruction to unification on finite trees is well-
known (e.g. [16]). The same process can be used to reduce C-TR to C-TREE-SAT.

Given an instance (A, M, t) of C-TREE-SAT, assign a type variable to every subex-
pression of M and every binding occurrence of a variable in M. We write tlv for the
type variable associated with subexpression N; technically we should distinguish different
occurrences of N, but this will be clear from context.

Since < is a partial order, consecutive occurrences of the subsumption rule may be
merged. Therefore, if a is any solution to (A, M, t), then A(r P M : t(7 has a derivation
tree in which each "structural" step is followed by exactly one subsumption step. For
example, for all application, the tree would look like:

A ~ z b M : t M a A c r I - N : t N a
Act ~" (M N) : t t ~_ g(MN)O"

Aft P (M N) : f(MN)O"

where t is some type. We can summarize this information by generating the inequalities

l~M = f N --~ L
t <_ t(M~V)

where t is a fi'esh type variable.

Extending these considerations to the other cases gives the following set of rules:

692

ffor each] generate
x I tA(~) < t .
Ax.M [tx ""+ tM < tAx.M
(M N)] tM = iN ~ ll

, I tl < ttMN) '

where tA(x) is the type variable associated with the binding occurrence of x and tl is a
fresh type variable.

Each solution to the generated set of inequalities corresponds to a type inference tree,
and vice versa. Hence C - T R reduces to C - T R E E - S A T .

6 Reducing C-TREE-SAT to C-REG-SAT

6.1 F i n d i n g t h e s h a p e o f t h e s o l u t i o n

By Lemma 1, we can determine the shapes of any solution to C - T R E E - S A T by reducing
to the familiar problem of unification over infinite trees. More precisely, given an instance
E of C - T R E E - S A T, we can produce an instance Shape(E) of unification over infinite trees
as follows:

1. geplace every constant appearing in E by a single constant e0. For each term t,
ca!l the resulting terl-n t-

2. geplace every inequali W t _< t ~ in E by the equality [= t-~.

L e m m a 4 f f (~ is any solution lo E, then the map ~' defiued by

co if (~x)(~r) e C
(~'x)(Tr) = (~x)(~r) otherwise

is a solution to Shape(E).

Proof." Obvious from Lemma 1. [3

We say E is shape-consistent iff Shape(E) is solvable.

L e m m a 5 I f E is not shape-consistent, then E is unsatisfiable.

Proof.." Immediate from Lemnla 4. []

By the familiar algorithm ([4], Theorem 4.9.2), we can determine if Shape(E) is solv-
able and, if it is, we can construct, a principal solution to Shape(E), that is a map
~ : Pars --~ Reglreescu x for some flnit,e set X of new variables, such t,hat the solutions
to Shape(E) are precisely the maps of the form o" o T, where T is any map X --~ "l}'eesc.

Therefore, for each variable x appearing in E, we can construct regular sets L:~(x),
ln i~(x) and C~(x) with t,he following properties.

693

7r E L~(z)
for every solution a of Shape(N), ~r E dom(crx)

r162 for every solution a of Shape(E), (az)(Tr) = --+

e c ~ (~) (~) (~) = co
for every solution ~ of Shape(E), (crx)(Tr) = co

Let us further define Leavesz(z) = L~(z) - Intz(x). Furthermore, any solution or,
and the functions L~, Inl~, etc., can be extended to act on finite terms instead of just
on variables by setting L~(s --+ t) = L2(s) ---+ Lp.(t), etc. Then, if (s = t) C P., we have
Lz(~) = L~(~), etc.

For our example, we have nz (x) = 1" U 1"0, Int~.(x) = 1", Leaves~(x) = 1"0, and
C~(z) : (11)'10.

L e m m a 6 Lcl E be a shape-consistenl instance of C - T R E E - S A T . Then:

1. If r E Lr.(x), lhen in any solution ~r of E, 7r e dom(a(z)) .

Proof." We will do part 3; the others are similar. Let 7r C C~(x) and a be any
solution of E. Form cr ~ as in Lemma 4. Since cr ~ is a solution to Shape(}]), we know that
(~r'z)(r) = co. But this implies that (ax)(Tr) = c for some c C C, by the construction of
0 J. []

6.2 E n u m e r a t i n g t h e l e a f i n e q u a l i t i e s

Now we can give the reduction from C-TREE-SAT to C-REG-SAT. For a shape-consistent
instance E of C-TREE-SAT, we build an instance Flal(E) of C-REG-SAT by the follow-
ing process. We start with the set E of inequalities with variables x, y, etc., and build
a new set of inequalities E over subscripted variables x~ for w E {0, 1}*; we identify x
a n d X e .

1. For each inequality (s < t) E E, consider each pair of strings (w,w') such that w is
a leaf of s and ww' is a leaf of t.

2. Consider the case in which s(w) is a variable (say z) , and ww' is a leaf (either
t(ww') = c or t(ww') = y). If ww' is positive, insert in E the inequality x,~, < c or
z,o, < y. If ww' is negative, insert, in E the inequality e < r or y < z,0,.

If s(w) is a constant c, it must be that w' = e (otherwise E would not be shape-
consistent) so t(w) = c' or t(w) = y. If w is positive, insert in E the inequality
c < d or c <: y. If w is negative, iusert in E that inequality d _< c or y < c.

694

4. Similarly for each pair of strings (w, w') where w is a leaf of t and ww' is a leaf of
S .

This gives us a set of inequalities of the form xw < y, x < Yw, xw < c, c < x,o, and
C ~< C t.

For our example, this process generates Z = {y < xo, c < xio, xi i < x}.

L e m r n a 7 If Z is shape-consistent, then Z is satisfiable iff ~ is satisfiable.

Proof: If 13 has a solution g, define ~(z~o) = ((rx)lw. If & is a solution to ~, define
crx to be the smallest tree such that (az)(ww') = (gx~,)(w'), by marking every prefix of
w with --*. []

The instance Flat(~) of C-REG-SAT is defined as follows:

�9 For each inequality of the form xw < y, include the regular constraints

(x ~ <__ y~ I ,~ E c(u) n POS}

and
{y~ < z~o, I 7r E C(y) A NEG}

�9 Include each inequality of the form xw < e or c < xw.

For our example C~(x) = (11) '10 _C NEG, and C~z(y) = I~, so we get Flat(Z) = {e _<

xi0, {z~ < zii~ } ~" E (11)*10}}

T h e o r e m 1 If13 is shape-consistent, then E is satisfiable iff Flat(E) is satisfiable.

Proof: (=~): If a satisfies ~ and ,'r E Cs (x) , then fax)Or) is a constant. Hence
the variables in Flat(13) are all assigned values in C, and it is easy to see that all of the
constraints in Flat(13) are satisfied.

(r Given a solution ~r to Flat(N)~construct a solution a ' to E as follows:

1. For each var iable x in Z , let dom(~r'x) = dom(crr.x) = L ~ (x) .

2. If ~ e I ,a~(*) , let (a '~) (~) = - ~

3. If x E C~(~'), let (cr'x)0r) = a(x~) We will prove that x~ is a variable in I"lat(13).

4. Choose a co E C. I f 7r E Leaves (z) - C(x) , let (a 'x)(~r) = co.

Since 13 is shape-consistent, it follows that D~ts(z) A Cr.(x) is empty, so it is easy to
see that this assigns a label to every address ~r E L~(x).

We mast show that ~ is a solution to Z. Let (s < 1) E ~. Then (g = ~ E Shape(13), so
by tile construction of a ' , dom((r's) = dom(~g) = dom(azt) = dom(a't). By Lemma 3,
it is enough to show that for every leaf ~r of dom(c/s), (Ms)(Tr) and (a't)Or) are appro-
priately related.

695

If 7r E Leaves~ (s) - C~ (s), then (a 's)(70 = (att)(Tr) = co, so the condition of Lemma 3
is satisfied regardless of whether rr is positive or negative.

The remaining case is that 7r e C~(s) = C~(t). Then there must be paths w~, w2,
lrl, lr2 such that ~r = wlTrl and Wl is a leaf of s, and lr = w21r~ and w2 is a leaf of t.

Is s(wl) is a constant (say e), then ~rl = c. So t(w2) must either be some constant d,
in which case 7r2 = e, or some variable y. Consider the case in which 7r = wl is positive.
Then Flat(~) includes c < c' or c < y ~ . Since ~r is solution to Flat(E), we have c < e c ~
or c _< (~ry~). In either gase we have (a's)(Tr) < (a't)(Tr) as required. The case for ~r
negative is symmetrical.

So assume that s(wl) is some variable x, and t(w~.) is some variable y. Then we have
(~'~)(~) = (~ '~) (~) and (~'t)(~) = (~'V)(~).

Without loss of generality, assume that wl is a prefix of w2, say w2 = WlW. Then we
h a v e w lTr 1 : 71" : w27i" 2 == Wll /)~2~ s o 71" 1 =- ~071" 2.

We now have four cases, depending on the parity of w and rr We will do only
the case where both are positive. Since w is positive, ~. must contain the inequality
x,o < y. Now 7r e C~(s), so 7r2 e C~(y), w~r2 e C~(z), and (x~o,2 <_ Y~2) e Flat(Z).
Therefore a assigns a value from C to each of these variables, as desired. Furthermore, we
observe (~rs)(~) = (~'~)(~1) : (~ ' x) (w ~ 2) = (a x ~) < (~ V , ~) : (a ' y) (~) = (~ '0 (~) ,
establishing the necessa::y relation between (a's)(rr) and (~'t)(r). The other cases are
similar, reversing the si~;ns as needed. []

7 R e d u c i n g C - R E G - S A T t o B f i c h i a u t o m a t a

A Biichi au tomaton is a aondeterminist ic au tomaton which walks down a possibly infinite
tree in which every node has a label chosen from some alphabet A. A run associates each
node with a state. The state at any node may depend non-deterministically on the state
of the machine at the parent node, the label at the parent node, aud the direction (0 or
1) taken from the parent node to the current node.

Formally, the au tomaton is specified by a tuple (Q, q0, A, F) , consisting of a finite
set of Q states, an initial state q0 E Q, a transi t ion relation A C Q x A x {0, 1} x Q
and a set F C Q of final states, a run on a tree t is a labelled tree t r with the same
domain as t, such that l~(c) --= q0 and for any address 7r in the interior of t, the tuple
(t'(Tr), t(Tr), a, t'(~ra.)) is in the set for a e {0, 1}. The run is successful if on each path,
some finM state occurs infinitely often. It is well-known that the emptiness problem for
B~chi au tomata is decidable, and is in fact decidable in polynomial time [12, 15].

Given a regular set of inequalities over C, we will construct a B/ichi au tomaton whose
language is non-empty iff the set of inequMities is satisfiable. Our machines will in fact
be deterministic.

The first step is to reverse all the indices in ~. This gets us to a finite set of families
of inequalities of the form

for some regular set 1~ represented as a nondeterminist ic finite automaton. This transfor-
mat ion clearly preserves satisfiability. We call such a set of inequalities reverse-regular.

696

T h e o r e m 2 Given any reverse-regular set of inequalilies ~, one can construct a Biichi
automaton M such that the set of trees accepted by ,A is non-empty iff Z is salisfiable.

Proof." Without loss of generality, we consider only families of the form

and
{x~ _< y,.., [~ e n }

The constraints constructed in the preceding reduction are of this form~ in general, any
set of the form {x~,o < Y~w' I ~r E R} can be replaced by {x~,o _< z~ I ~r E R}, and
{z~ < y~t~, [r E R}, for some new variable z.

Assume that there are n unsubscripted variables x 1, x ~ , . . . x n in Z, that is, the vari-
for some / E {1 . . .n} . We will run our automat6n over ables in ~ arc of the form xto

complete binary trees labelled by elements of C%

Such a tree will correspond to a solution of the set of inequalities. These trees are
not quite solutions to the original set of inequalities over trees, because the indices have
been reversed.

Each family of inequalities

can be represented by the tuple (i , j , w , + , 12). Similarly, each family of inequalities
{x~w'i < x~' I 7r C R} can be represented by the tuple (j, i, w, - , /~) . In each case the first
element of the tuple indicates the variable with the shorter subscript. The sign indicates
whether the "later-found" element is larger or smaller than the "earlier-found" one. We
refer to these as the original ilems.

i Each inequality c < x w can be represented by the tuple (c, i, w, +), and each inequality
< c can be represented by the tuple (c, i, w , -) We refer to these tuples collectively ~w

as iLems.

We construct an automaton .A whose states are either (a) a distinguished failure state
or (b) a finite set of items. The initial state will be the set of items corresponding to the

'i and .i < c. The accepting states will be all sets other constraints of the form c < x w x w
than the failure state.

Once in the failure slate, the machine will stay in the failure state forever. Otherwise,
at every node the machine splits into two states, one for each branch. We refer to these
states as the 0-successor state and the 1-successor state, respectively.

To construct the set of items for the two successor states, add items according to the
following rules, beginning with the empty set:

1. For each original item (i, j , aw, +, R), if the current address is in R then put the
item (c ' , j , w , +) in the a-successor state. Similarly for each item of the form
(i, j , aw, - , n) .

2. For each orig.inal item (i , j , r R), if the current address is in R then check to
see if c i < ca. If not, then make each a-successor state (a --.= 0 or 1) the failure
state. (If c i <_ c 1, then this constraint is satisfied at this address, so no item need
be inserted.) Similarly for the original item (i, j , e , - , t~).

697

3. For each item (e,i, aw, +) in the state, then the item (c,i, w,-I-) will be in the
a-successor state (a = 0 or 1).

4. I, b r ead~ item (c,i, a w , -) in the state, then the item (e , i , w , -) will be in the
a-successor state.

5. For each item (c,i, e, +) in the state, let e i be the i-th component of the label at
the current node. If c i /~ c, then make both successor states the failure state. (If
c i < c, then the constraint coded by this item has been satisfied, so the item can
be deleted). Similarly for each item (c, i, e, -) .

For each family of inequalities, represented by (i, j , w, :t:, R), the automaton A keeps
track of the current address in the tree and check to see whether it is in the regular set
R. If the current address; is in R, then we create an item (e , j , w, 4-) that will walk down
along the path w and check to see if the j - th component at that location satisfies the
necessary inequality.

Each item (c, j , w, 4-) walks down the tree from its creation point ~r, following path w
to the tree address 7rw. It then compares the value of the y component at 7rw to c and
either succeeds or fails, depending on the value of the -I-. If the constraint is violated,
then the machine enters a failure state and rejects the input. Otherwise, the machine
continues.

We next count the number of possible items (e,j,w,-4-). Let the system E have k
groups of inequalities, each of the form {c < x~,}, {x~, < e}, {x, < y~,~, [7r E R}, or
{Y~ol < x , I 7r E R}. Then the number of possible items obtained from one such group
is at most ICI. Iw, I. So the total number of items is at most

Icl' (Iw~l + . . . + Iwkl) ___ ICl" I~1

Tlms the number of possible items is o(1~1), so A h ~ at most 2 ~ states.

We next show that this machine accepts some tree iff the reverse-regular set E of
inequalities is satisfiable. If ~ : Vats(E) ~ C is a solution to v construct a tree

.i Vars(~) and t : {0, 1} ~ C" by setling l(Tr) = (c l , . . . c ,) , where ci = a(xi~) if x~ E
ci = Co (some fixed constant) otherwise. This tree will be accepted by .4, since it will
never send A to the failure state.

, i Conversely, if l : {0, 1} --* C '~ is accepted by .4, then for each x~ E VarsE let cr(x~)
be the i-th component of t(~r). Since no run of A on ~ enters the failure state, it follows
that all the partial-satisfaction conditions together with the component inequalities are
satisfied, that is, this is a solution of ~. []

T h e o r e m 3 1. Giwn a reverse-regular sel of inequalities ~, it is decidable in deler-
rninistic exponenlial lime whether ~ is salisfiable.

2. C-REG-SAT is decidable in DEXPTIME.

Proof: By the polynomial decidability of the emptiness problem for Bfichi automata
and the observation that the size of A is 2 ~ [:3

Note by contrast that C-FIN-SAT is in NP, tbr every C.

We call smnmarize the sequence of reductions as follows:

698

T h e o r e m 4 1. The problem C-TREE-SAT is decidable in deterministic ezponential
time.

2. The problem G-Tt{ is decidable in deterministic exponential time.

3. I rE is an instance of C-TR that has a solution, then it has a solution in which all
the types are regular trees.

Proof: (i) Use nondeterministic finite automata to represent the regular sets in the
solution of Shape(E); then all the reductions except the last are polynomial.

(it) All the reductions except the last are polynomial.

(iii) Because if the language accepted by a Bfichi automaton is nonempty, then it
includes some regular tree. []

T h e o r e m 5 The problem C-TRp is decidable in deterministic exponential time.

Proof: To use this algorithm for type reconstruction with atomic subtyping in the
case of well-founded types, merely test each set L~(x) for finiteness. This can be done
in polynomial time. []

This result improves the upper bound for C-TRF from NEXPTIME to DEXTIME.

8 L o w e r B o u n d s

We show that if G is any nontrivial partial order (ie it has two unequal but comparable
elements), then C-REG-SAT is PSPACE-hard. We will do this by defining a class of
automata called autonomous reading PDA's (ARPDA's). Then we show that the AI~PDA
termination problem is PSPACE-hard, and thai, ARPDA termination reduces to G-REG-
SAT over any nontrivial partial order.

An ARPDA consists of a finite se~ Q of states and a pushdown stack over the alphabet
{0,1}, so an instantaneous description of a machine state is a pair (q, w) with q E Q and
w E {0, 1}*; we depict the top of the stack as being at the right-hand end of w. The
machine has an initial state q0 and a final state qS and its behavior is specified by a set
A of transitions. Each transition is of one of two forms:

1. A pds lransilion ((p, a) ~ (q, b)), where p, q E Q and a, b E {0, 1, r

2. A pds query ((p,R) ~-, q), where p,q E Q, and /g _C_ {0,1}* is a regular set,
represented as a nondeterministic finite automaton.

An ARPDA is a nondeterministic nmchine. Its behavior relal, ion --~ is defined as
follows:

�9 If ((p,a) ~ (q,b)) E A, then (p, ua) --~ (q, ub) for any u G {0, 1}%

�9 If ((p, a) ~ q) e A, the,, (p, ~) ~ (q, u) wl,e,,eve, n e r~

The AI~PDA termination problem is: Given an ARPDA M, does (q0, e) -~ (ql, e)?

699

T h e o r e m 6 The ARPDA termination problem is PSPACE-hard.

Proof: By reduction from evaluation of quantified booleau formulae. Let (Q lx t) . . . (Qnxa)a2
be a quantified boolean formula; that is, each Qi is a quantifier (V or 3) and (I) is a
boolean formula in disjunctive normal form over the variables { z l , . . . z ,} . We construct
a ArWDA M that terminates iff this formula is true. The machine works by traversing a
backtracking search tree over { z l , . . . z~}. It maintains its position in the tree by keeping
the values of Xl, �9 �9 z~ on the stack. It keeps track of its direction of travel (down or
up) and its current level in {0 n + 1} in its control state Q. The initial state is (down,
1), and the final state is (up, 0).

The machine maintains the invariant that in state (up, i), the stack contains a valu-
ation z x , . . . , zi that makes the formula (Qi+lzi+l) . . . (Q , z ,) ~ true.

We next describe what happens at each state (d, i), when the machine is at level i
travelling in direction d, and at the same time show that the machine maintains th is
invariant.

(down, i) On tiffs visit, the machine is searching down in tile tree. If i _< n and Qi is
V, push a 0 Oll the stack. If i < n and Qi is 3, nondeterministieally choose a value
for xl and push it on the stack. In either case go to state (down, i + 1).

I f i > n, we have a complete set of values for {x l , . . . xn } on the stack. Evaluate the
formula (I) using these values; this is possible by encoding (I) as a nondeterministic
finite automatou and using the ability of M to check whether its stack matches an
arbitrary regular set. If the formula is true, go to state (up, n). If not, then loop.

(up, i). According to the invariant, the stack contains a valuation x l , . . . , xi that makes
the formula (Qi+lxi+l) . . . (Qnx ,) r true. If Qi is 3, then the current value of xi is
the witness that shows that x l , . . . , xi-1 makes (Qixi)(Qi+lXi+l). . . (Qnxn)q2 true.
So pop the stack and go to state (up, i - 1).

If Qi is V and xi = 0, this is the "infix" visit to this node: set xi = 1 (by changing
the topmost cell on the stack from 0 to 1), and go to the state (down, i + 1). If
Qi is V and xi = 1, this is the "postfix" visit to this node; at this point we have
succeeded in evaluating the formula at this node, so go to state (up, i - 1).

Hence if we reach the state (up, 0), the stack will be empty and the original formula
must have been true. Furthermore, it is clear that the machine M explores the entire
subtree, so if the formula is true, all the needed witnesses will be found. El

T h e o r e m 7 Th.e ARPDA f.erminaliou p~vblem is polytinie reducible to C-REG-SAT
over any nontrivial poscl C.

Proof: Let M = (Q, q0, q], A) be an ARPDA. We denote the initial and final states
with superscripts to avoid conflicts with the subscripted variables of C-REG-SAT. Let
C be a non-trivial poser with a < b, a # b holding in C. We will construct an instance
EM of C-R.EG-SAT such that Em is unsatisfiable iff M halts.

Tile variables of Ej~I are Q. The inequalities are

Pwa <_ qwb

700

for every w E {0, i}* and ((p, a) ~ (q, b)) E A,

pro < qw

for ((p, R) ~ q) E A and w E R, and the two inequalities

b < qO q/ < a

It is clear that in M, (p, w) reduces to (q, u) in at most k steps iff the assertion
Pw <_ qu is deducible from EM in at most k applications of transitivity. Hence M halts
iff qO < q! is deducible from EM.

We claim that M halts iff EM is unsatisfiable. Assume M halts and EM is satisfiable
with solution r Then we have b < ~r(q ~ < ~r(ql) < a, so a = b, contradicting our
assumption that a # b.

If M does not halt, construct a solution a to EM as follows: If (q, w) is reachable
from the initial state (q0, c), assign c~(qt~) = b. Otherwise assign (~(qw) = a. It is easy to
show that this assignment satisfies all the inequalities in EM. []

It should be noted that C-I~EG-SMT exhibits dramatically different behavior than its
fragment C-FIN-SAT which consists of finite instances of C-REG-SAT. As we remarked
earlier, C-FIN-SAT is always in NP. It follows from the results of [11] that there are
finite posets for which C-FIN-SAT is actually NP-complete. Our results of this paper
indicate that C-REG-SAT is always between PSPACE and DEXPTIME, for all posets
C which are not discrete. Over discrete C, C-REG-SAT is clearly in PTIME.

9 Conclusions

We have shown how to extend Mitchell's algorithm for type reconstruction in a type
system with atomic subtyping to handle recursive types. This extension is necessary to
do type reconstruction for object-oriented systems with self. The resulting algorithm
is in DEXPTIME, which also improves the previous NEXPTIME algorithm for atomic
subtyping on tinite types.

R e f e r e n c e s

[1] R,oberto M. Amadio and Luca Cardelli. Subtyping P~ecursive Types. In Co~r Rec.
18th ACM Symposium on Principles of Programming Languages, pages 104-118,
1991.

[2] Kim B. Bruce. A Paradigmatic Object-Oriented Programming Language: Design,
SLatic Typing and Semantics. rl~chnical Report CS-92-01, Williams College, January
1992.

[3] William R. Cook, Walter L. Hill, and Peter S. Canning. Subtyping is not Inher-
itance. In Conf. Rec. 171h ACM Symposium on Principles of Programming Lan-
guages, pages 125-135, 1990.

[4] Bruno Courcelle. Fundamental Properties of Infinite Trees. Theorelical Compuler
Science, 25:95-169,] 983.

701

[5] Y.-C. Full and P. Mishra. Type Inference with Subtypes. In Proceedings European
Symposium on Programming, pages 94-114, 1988.

[6] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient Inference of
Partial Types. Technical Report DAIMI PB-394, Computer Science Department,
Aarhus University, April 1992.

[7] Patrick Lincoln and John C. Mitchell. Algorithmic Aspects of Type Inference with
Subtypes. In Conf. Rec. 19th ACM Symposium on Principles of Programming Lan-
guages, pages 293-304, 1992.

[8] John C. Mitchell. Coercion and Type Inference (summary). In Conf. Roe. 11th
ACM Symposium on Principles of Programming Languages, pages 175-185, 1984.

[9] John C. Mitchell. Type Inference with Simple Subtypes. Journal of Functional
Programming, 1:245-285, 1991.

[10] Patrick M. O'Keefe and Mitdaell Wand. Type Inference for Partial Types is De-
cidable. In Bernd Krieg-Brfickner, editor, European Symposium on Programming
'92, volume 582 of Springer Lecture Notes in Computer Science, pages 408-417.
Springer-Verlag, t992.

[11] Vaughn Pratt and Jerzy Tiuryn. Satisfiability of Inequalities in a Poser. to appear,
1992.

[12] Michael O. Rabin. Weakly Definable Relations and Special Automata. In Y. Bar-
Hillel, editor, Mathematical Logic and the Foundations of Set Theory, pages 1-23,
Amsterdam, 1970. North-tlolland.

[13] Satish Thatte. Type Inference with Partial Types. In Proceedings International
Colloquium on Automata, Languages, and Programming '88, pages 615-629, 1988.

[14] Jerzy Tiuryn. Subtype Inequalities. In Proc. 7th IEEE Symposium on Logic in
Computer Science, pages 308-315, 1992.

[15] Moshe Y. Vardi and Pierre Wolper. Automata-Theoretic techniques for modal logics
of programs. J. Cemp. Sys. Sci., 32:183-221, 1986.

[16] Mitchell Wand. A Simple Algorithm and Proof for Type Inference. Fundamenta
lnformaticae, 10:115-122, 1987.

[17] Mitchell Wand and Patrick M. O'Keefe. On the Cornplexity of Type Inference with
Coercion. In Conf. on Functional Programming Languages and Computer Architec-
ture, 1989.

