
Reachability Analysis on Distributed Executions

Claire DIEHL, Claude JAItD, Jean-Xavier R.AMPON

IRISA,
Campus de Beauheu,

F-35042 Rennes, FRANCE.
tel: (33) 99 84 71 00

(jard,rampon)@irisa.fr

Abstract . The paper presents basic algorithms for trace checking of dis-
tributed programs. In distributed systems, detecting global properties re-
quires a careful analysis of the causal structure of the execution. Based on
the on-the-fly observation of the partial order of message causality, we show
how to build the lattice of all the reachable states of the distributed system
under test. The regular structure of this graph makes it possible to build it
with a quasi-linear complexity, which improves substantially the state-of-the-
art.

1 I n t r o d u c t i o n

1.1 P r o b l e m s t a t e m e n t

Progress in computer technology brings up parallelism and data distribution to an
unavoidable level. However this is not a painless way: parallel and distributed pro-
grams are still complex objects. All the aspects of their development are not well
mastered; observing their behaviors often reveals unexpected situations.

This motivates the interest of the scientific community on parallelism for distributed
program debugging. Actually, we deal with verification techniques based on execu-
tion traces that we call "trace checking". For the goal of verification, the expected
behavior or the suspected error of the system under test, is described by a global
property (basically a global predicate on variables, or the possible occurrence orders
of observable events). The problem is to verify whether this property is satisfied or
not during the execution.

In the general context of asynchronous parallelism on distributed architectures that
we are considering, the correct evaluation of global properties requires a careful
analysis of the causal structure of the execution. The causal structure, induced by
the message exchanges between processes in the distributed system, forms a par-
tial order, as Lamport remarked in 1978. As a consequence, numerous questions
about distributed executions refer to the notions of linear extensions and order ide-
als (also called consistent cuts). These consistent cuts define the notion of global
state (snapshot) for a distributed execution. This allows to view the trace checking
as a standard model checking of the set of reachable global states. Actually, one can
based the testing method on a kind of teachability analysis which exactly builds the

630

covering graph of the ideal lattice of the causality relation. In that context, testing
must be performed on-the-fly, i.e. in parallel with the execution of the application
under test.

1.2 P roposed approach

Trace checking rises several problems that must be solved:

- At the lowest level the runtime mustprovide the basic services of timestamping
the communication actions. This gives information to decide causality between
particular observable events. We use the classical Lamport's definition of message
causality [15] and its "on the fly" coding given by Mattern and Fidge's vector
clocks [9, 19]. Although all the communication events are modified at runtime,
just a few significant observable events have to be traced for the goal of analysis.
We slightly modify the timestamping mechanism to deal with observable events
only.

- Deciding causality between events is not the most convenient way to represent
the causality order. We show that in fact the covering relation (i. e. the transitive
reduction of the order) can also be computed on the fly. For the goal of producing
the immediate predecessors of an event when it occurs, we extend the vector clock
with a bit array.

- Finally we show that the graph structure of the reachable states can be computed
step by step at each event occurrence.

The last two algorithms are new. They allow to perform a reachability analysis
in parallel with the considered computation. The time complexity is quasi-linear in
the size of the state graph. Moreover, provided that observation preserves message
causality, the construction is performed strictly on ttle fly: event by event with no
additional delay. Thanks to the theory of orders which provides a good basis to
deal with these problems. Trace checking is a particular case of model-checking.
The reachability analysis builds the transition system associated to the considered
distributed execution. Due to the lattice structure of these transition systems, reach-
ability analysis can be performed almost linearly in time. Moreover, no doubt that
existing methods to reduce the state explosion problem in standard model-checking
(see [11] for example) will also apply in the near future.

1.3 Re la t ed work

Message causality is fundamental to many problems on distributed traces. Actually,
it has been studied for different goals:

- determining consistent snapshots or consistent recovery points in the field of
distributed debugging or distributed database management [4, 19];

- execution replay [16, 17];
- verifying logical properties in order to detect unexpected situations [7];
- getting performance measurements on global indicators [12, 5].

631

Most work in progress on the fundamentals of traces are based on the partial or-
der defined by the causality relation [15]. To our knowledge, Cooper and Marzullo [7]
were the first to perform a teachability analysis on the state space associated to a
distributed execution. Their work however gives rise to the problem of the paral-
lelism between the analysis process and the distributed computation. They require
events to be considered level by level (the "level" is the number of predecessors).
The analysis must then be blocked awaiting an event: in the worst case, where an
isolated event occurs at the end of the trace, the analysis is postponed to the end
of the trace. The basis of their algorithm is to enumerate all the possible nodes of
the largest state space (pn where p is the number of events per processor and n
the number of processors), and then to remove nodes that are not reachable for the
considered trace (by considering vector timestamps associated to the events).

We considerably improve the technique in allowing the analysis event by event: any
linear extension can be processed. It can be referred as the "on the fly teachability
analysis". This is made possible by actually computing on line the covering relation,
rather than considering only vector stamps and makes best use of the lattice structure
by a direct construction. More recently, a few algorithms have been published [10,
20, 18, 6] to detect some restricted classes of global properties. We think they could

gbe explained and proved using the lattice structure of the state space.

2 A b s t r a c t c a u s a l i t y o r d e r

2.1 Message c a u s ~ i t y b e t w e e n observab le events

From an abstract point of view, a distributed program consists of n sequential pro-
cesses P1, ..-, Pn communicating solely by messages. The behavior of each process
is completely defined by a local algorithm which determines its reaction towards
incoming messages: local state changes and sending of messages to other processes.
A distributed computation is the concurrent and coordinated execution of all these
local algorithms. A standard way to deal with distributed computations is to con-
sider that local actions are defined as events. Only a few of them are significant for
the purpose of verification.

We will denote by E = X ~)(~ O the finite set of events occurring during a compu-
tation. X contains all the sending events, X the corresponding receipts and O the in-
ternal.events defined as observable by the user. We also consider that E is partitioned
into disjoint subsets Ei of local events occurred on process Pi: E = ~J1<_i<,, Ei.

Arguing from the fact th&t the only mean to gain knowledge for a process in a general
distributed system is to receive messages from outside, one considers the receipt of
a message as causally related to the corresponding sending. The causality between
local events is defined by the local algorithm: a simple way is to consider the total
ordering induced by the local sequentiality (denoted by -gi). The causality relation
(defined by Lamport in [15]) in E 2 is the smallest relation -4 satisfying:

1. Vi E {1. .n},Vx,yE Ei, x-gi y ~ x-~ y

2. V x E X , x - 4 2
3. -4 is transitive

632

(~ the corresponding receipt of the sending event x)

2.2 Def in i t ions and p re l iminar ies on pa r t i a l ly o r d e r e d sets

A set P associated with a partial order relation (i.e. an antisymmetric, transitive
and reflexive or irreflexive binary relation on P) is called a partially ordered set or a
poser. If the relation is reflexive such a poset is written P = (P, <~) else P = (P, <,y).

Let z and y be two elements of P:

We say that z and y are comparable in P, when either z <~ y or V -<~ z. Otherwise,

z and y are said to be incomparable in P. If z <~ y holds, then z is a predecessor of

y in P and y is a successor of z in P.

We say that x is covered by y in P, and we write x - < f y, if x <~ y and Yz E P,

(x < f z < f y) ::~ (z = y); x is an immediate predecessor of y in j5 and y is an im-
mediate successor of x in /3. The directed graph associated of this covering relation
(i.e. the transitive reduction of < f) is the covering graph of P and is denoted by

Coy(if') = (P, Ee).

Let A be a subset of P:

- Ep(A) is the set of the edges corresponding to the subgraph of Cov(P) on A.

- The subposet of P on A, P /A = .A = (A, <p) is the poset induced by P on A.
- For IAI_> 2, if all elements of A are pairwise comparable(resp, incomparable) in

P, A is a chain (resp. an antichain) in P. The heifltt of P, h(P), is the maximum
cardinality minus one of a chain in P. The width of P, w(P), is the maximum
cardinality of an antichain in P. A chain decomposition of fi is a partition {Pi}iel
of P where each Pi is a chain in

- Maz(A,~ ') = {a E A,Vx E A, (a <~ x) =~ (a = z)} is the mazimalelements

set of A in P. Analogously, Min(A, P) = {a E A, Vz E A, (x <~ a) =~ (a = x)}

is tile minimal elements set of A in P.
- ~ A] = {z E P, 3a E A, x <~ a} (resp. T~AI= {x E P, 3a E A, a <-~ x}) is the

predecessor set (resp. successor sct) of A in P.
~ A [=&fAl \ A (resp. ~fAt~T '~A] \ A) is the strictly predecessor set (resp.

strictly successor set) of A in P.

~ A = Max(IrA[, P) (resp. I"~A = M in(T fA[, /~)) is the immediate predeces- -e
sot set (resp. immediate successor set) of A in P.

- If A is a singleton {z}, we shall simply write 1 ~xl, ~f ~xl, .~ fix[, ~ .~z[, 1 L'mx
P

and "t/~mx. - p

633

A linear exlension of a poset /5 is a chain C on P that preserves fi, i.e.:
x <_~y =C, x <_~ y.

A is an ideal of P iff it contains all its predecessors I~A] = A. I (P) is the set of all

ideals of P and I(P~) is this set ordered by inclusion 1

A has an infimum (resp. a supremum) in i ~ if [Max({z 6 P, z < ~ y Vy 6 A}, ,5)1= 1

(resp. IMin({x 6 P, y <F . Vy e A}, P)[= 1).

is a lattice iff any of its two elements subset has a supremum and an infimum
in P.

2.3 O n t h e fly c o m p u t a t i o n o f c a u s a l i t y

In order to characterize on the fly the message causality, Fidge and Mattcrn [9, 19]
have developed a mechanism of logical clocks. Each event is s tamped by a vec to r
of ~W n and the s tamps ordering exactly codes the causality: it is an embedding
of the causality order in (Hvn,<nv,) 2. Formally, the t imestamping is defined by
the map [8]:

:E ;IN"

c, , ([~ c l n Edh<~<,,

and we have the fundamental property:

Ve, f 6 E , e -4 f ~ 6(c) < ~ - 6(f) .

We modify the algori thm proposed by Fidge and Mattern to s t amp only observ-
able events. We compute the map:

6 : O ,JA r"

e , , (I l a e l n Eil)a_<i_<.

which obviously codes (9. S tamps are growing slower because they count less events
and, as we will see ill the next section, computing the covering graph of (9 also
simplifies our on the fly algorithm. Tile t imestamping mechanism follows:

- Each processor Pi owns a logical clock ci 6 SV n. Each ci is initialized to (0...0).
- Each message sent by Pi is s tamped by the current Value of ci.
- When Pi receives a message s tamped by cm, Pi updates its clocka: ci := max(el, cm).
- When an observable event e occurs on Pi, Pi increments the i th component of

its clock: ei := ci + (0..1i..0) (only the i th component is incremented), and e is
s t amped by ci: 6(e) := ci.

For any 1~, 12 in I(P), 1, u12 and 1~ n lz belong to I(P). Moreover, I~ UIz (resp. I~ n lz)
is the smallest (resp. greatest) element of I(P) including (resp. included in) both 1~ and
I2. Thus I(P) is a lattice.

z <~v- is the canonicM order on M": Vx, y 6 / N n, x <~v: y r Vi 6 {1..n}, x[i] < y[i]
~nd ~j e {1..,,}, ~F] < YD']

a Vz,y 6 / N n Vi 6 {l..n}, max(x, y)[i] = max(x[i],y[i])

634

P3

Fig. 1. Computation of message caus~dity

The figure 1 shows an application of this algorithm. We only put the events tamps
and the message stamps. This execution is used throughout the paper.

2.4 On the fly c o m p u t a t i o n of t he cover ing

We now present an algorithm based on the vector clock mechanism which computes
on the fly the covering relation of the message causality order on observable events.
It avoids an expensive computation stage: the computation of the covering relation
from the vector stamp trace.

This new algorithm is based on the following remarks :

1. ve e o n z i , v f e o \ E~, e--~ f ~ 6(f)[i] = ~(e)[i]
(When f occurs on Pj, the last event which Pj knows on Pi is necessary the
6(f)[i] th on Pi.)

2. V i E { 1 . . n } , V j E iN, j< lOnEi l=:v . 9 ! e e O n E i , 5(e)[O=j
(Vf ~ O fq Ei, f is the 5(f)[i] th observable event on Pi, hence it 's unique.)

Therefore, in order to know the immediate predecessors of an event e, we only
have to know both its stamp 5(e) and the processors where they occurred. Tiros, in
addition to 5, we have to compute the map:

verifying:/~(e)[i] = (home fq Ei # O)

: 0 ~ { T , . .L}"
e .: =;/~(e)

Computation of tt goes with computation of logical clocks ci. This is performed
on the fly according to the following rules (see figure 2 for an example):

- Each processor Pi owns a boolean vector ml E {T, .L} n which indicates where the
events currently covered occurred. For instance, if ml [j] = T then all observable
event currently covered by 1~ occurred on Pj. Each mi is initialized to (3_..3_).

- Each message sent by Pi is stamped by the current value of mi.

635

p~ 5 ~ - 1 /

Fig. 2. On the fly computation of the covering

- When Pi receives a message stamped by cm 6 Fr and m m 6 { T , / } n, Pi
updates mi. The new value of mi depends on ml, ci~ m m and Cm.

V j e {1..,~} if cr,[j] > ci[j] then mi[j] := mmlj]
else if ci[j] = cm[j] then mi[j] := (mi[j] ^ mmL/]) (A: logical and)

- When an observable event c occurs on Pi, e is stamped first (#(e) := mi) and
then Pi updates mi: ml := (-L...'l-i.../) (only the i th component is equal to T:
the only covered event is e).

f e g

a b

Fig. 3. The covering graph of Our example

3 Associated state graph

3. l S t a t e g raph and the ideal l a t t i ce

Building the state graph associated to a distributed trace consists ill "replaying" the
trace, recording the changes of a globM state vector. The only constraint during the

636

replay is the causality preservation. We adopt the standard interleaving semantics
for parallelism which considers only one move at a given time. The local state of a
process Pi is picked up between two local events. In order to capture in the state all
the messages in transit, we can identify the local state with the set of all the local
events which have been already considered in the past of the process. To define the
initial state, one can consider a minimal event 0 in the past of all the observable
events. The global state is the union of the local states for each process.

Notice that the causality constraint only produces global states being closed by
the causality relation: the set of global states is isomorphic to the ideal lattice of the
causality order. See figure 5 to have a look of the state graph of our example.

3.2 F u n d a m e n t a l s

Studies of correlations between poser properties and lattice properties are always of
interest since the well known result of Birkhoff [1] on finite distributive lattices and
posets. In the infinite case, an extension of this result and interesting properties can
be found in Bonnet and Pouzet [2]. In the finite ease, one of the most recent studies
with an algorithmic point of view has been done by Bordat [14]. In this paper, we
are only concerned by finite posers.

Since our goal is to compute on the fly the state graph of a distributed execution,
we studied correlations between ideal lattices yielded by a poser and by one of its
subposet when the missing vertex is a maximal one. Theorem 1 gives a complete
characterization of correlations between these two lattices assmning that the initial
poser has at least a maximal element.

For the proof of Theorem 1, we need tile following lemina, saying that the ideals
grow by adding one element at a time:

L e m m a 1 Lel Q be a posel,
VI, J E I(Q), I "<I~) J ~ I C J and]J \ I]" 1

Proof: (i) Assume that I C J, then I <~-p~ J. The result follows directly from the fact

that YZ, K e I(P), Z < ~) K ==r Z C 1(.
(ii) Assume that 1 - < ~ J, then 1 C J. If J \ 1 = ~ then 1 = J which contradicts
I - < ~ g. If IJ \ I1~ 2, let x, y E J \ I with x r y. Without loss of generality, we can

assume that y ~ - x, then I < ~ IU ~'xl < ~ J which contradicts again I - < ~ J.
[]

J \ I is called the label of the edge I - < ~ J.

Let P be a poset and x one of its maximal element. As one can see in Figure 4,

I (P) is structured in three different parts. The upper part 1P(x) is formed with the
ideals containing x: IP(x) = {1 e l (P) : I n {x} r 0). The medium part I(x) is
formed with the ideals containing the immediat predecessors of x and not containing
x: I(x) = ~ (l ~ x [)] \ IP(x) . I(x) and IP(x) are two isomorphic sublattices. The

lower part is formed with the remaining ideals. This is formalized by Theorem 1.

637

Co, , (~)
(x) or Q

Fig. 4. Illustration of theorem 1

T h e o r e m 1 Let P be a poser, let x e Max(P, P), let e'-")~ be the subposet P \ {'-"~z}
and
Cov(I(P')) = (I(P'), EKp,)). Let I(x) -=Tj_K~)(I~x[)]. Lel G(Q) = (Q, EQ) be an

acyclic direcled graph isomorphic to Cov(I(x)) by a map r
T/ten, the acyclic directed graph G(Z) = (Z, Ez) where Z = Q w l (P') and Ez is
defined by:

1. Vql,q2 e Q x Q : qlq2 E Ez ~ r162 e El(p,)

2. Yp, q e I(P') x Q :: pq e Ez ~ q = r

3. Vpl, p2 E I(P') x](pt) : PlP2 e EZ ~ PIP2 E EI(p,)

is isomorphic to Cov(I(P)) by the map ~o:

,, .1" r u {.} il z e Q
a i , t z otherwise

638

Proof : Since/% is a subposet of P it is clear that ~o(Z) C I(P). For the same reason, for
all I e I(P), if x ~ I then I E I(P'), otherwise I \ {x} e I(x) (moreover when Ii # I~
we have It \ {x} # 12 \ {x}). Thus l(P) C_ ,p(Z) and then ~o is a bijection from Z to

I(P). It remains to show that V is a morphism from G(Z) to Cov(l(P)).
Let us denote by IF(x) the set {iU{x}, I E I(x)} (remark that I(P) = I(P')~IP(x)).
u E IF(z) we have K ~I~) I, VI E I(e') (since x t~ I). It is then clear that the

subgraph of G(Z) o nl(P') is isomorphic by the corresponding restriction of ~o to the
subgraph of Cov(I(P)) on I(P').
Let ~b be a map from I(x) to IP(x) such that 0(I) = I tJ {x}. Since r is bijective
aaid since Yl, J E I(x), I C J r r C r the subgraphs of Cov(I(P)) on l(x)
respectively on 1P(x) axe isomorphic.
In order to conclude tile proof it remains to study the edge connections between the
subgraphs of Cov(l(P)) on I(P') and IP(x). First we are going to show that Vl E
IP(x), 3!1' E I(P') such that I ' - < ~ I and that I ' = I \ {x}. By definition of

IP(x), Yl E IP(x), 1 \ {x} E I(P') thus by Lemma 1 l ' -<l~-~ I. For the unicity

I1,I2 E of I ~, assume that for I C IP(x) there exists ' ' I(P ~) covered by I. Since x E I
and x is neither in I I nor in I~ then by Lemma 1 II = I \ {x} and I~ = I \ {x}. Thus
I~ = I~. It remains to show that we have no other edge connections: since /~' is a
subposet of P it is clear that V I e I(P') \ I(x), 3K e l(x) such that I <i~7) g and

thus I <x~P-) g < ~ K U {x}.
12

To give an idea of the overall construction, let us take an example of poser P, whose
covering graph is given by Figure 3. We also suppose that elements are successively
read in the order b, c, d, a, g, f , e which forms a linear extension of P. For each ele-
ment, we know its predecessor set.

The algorithm is illustrated in Figure 5. Black nodes denote nodes containing
l/2~x and which will be duplicated when incorporating a new event x. Doted edges

P
denote edges added between the duplicated subposet of I(P) and its corresponding

copy. Assume that the first three steps have been performed. We haven lattice I(P)
on {0, {b}, {b, c}, {b, d}, {b, c, d}} and the new incoming vertex for P, labeled "a",
has for immediate predecessor set D(a) = 0. Thus we have to:

I. duplicate the subposet of I(P) on all elements in I(P) containing D(a) (here
the wlmle lattice). A new vertex "y" obtained from a vertex "x" has for label:
tabet(y) = (tabd(x) U {a}) \ n (a) .

2. add a new edge xy between unconnected vertices x and y checking that y was
obtained from x.

3.3 O n t h e fly c o m p u t a t i o n o f t h e s t a t e g r a p h

Assuming that the number of processes involved in a distributed computation is
finite, using our previous theorem, we are now able to give an algorithm for an on
the fly computation of a distributed execution state graph (assuming the knowledge
of the covering eausahLy relation).

639

o - ; ~ ~- . , ~ , b 4
b(.) c(b) bI ~ c d ~

~%. le' ./TN P ~'xJ_ ./q"'. f,~ 4 . { . / ~ - c

"1 <1

~[) o,cd) b ') lead) bY
ua /a Ua

Fig. 5. On tile fly computation of the state graph

Let P be an order, let {Pi}l<i<.k be a chain decomposition of P and let A be tile
map (which extends the vector clock coding of causality) defined by:

A : I (p) ~ z ~ rk
I , , (I t n Pi I)l_<~_<k

This map embeds the lattice into the (W k, <~k) lattice.

Proposition 1 YI, J E I(P), the following properties are equivalent:

60 z~(1) <zk z~(J)
(iii) All maximal chains from 1 to J in I(P) have length

lg(1, J) = ~ = l (a (J) [i] - A(1)[i]). Vie {l , . . . , k}, zS(J)[i]- A(1)[,] > 0. And
there is at least one maximal chain.

640

Proof: Obviously (iii) ~ (ii).
(ii) ~ (i): For any ideal A E I(P) and for any i E {1 k}, if] AClP, I = a, # II then
AMPi is a maximal subchain in Pi with ai elements and containing the smallest element
of Pi. Thus, for any i e {1 , k} we have: A(I)[i] <~v A(J)[i] ==, I 0 ei _C J n Pi.
Consequently, I ---- (I n (U,_<,<k Pi)) C: (Jr3 (U,_<i_<k Pi)) = J.

(i) ~ (iii): Since I <~-~ J, there exists a maximal chain from I to 3 in I(P). Let

(xo = l ,x , x,~_t,xr = J) be such a chain. Front Lelnma 1 we have I J [=l I [+a .
Since I and J are ideals, Yi E {1 , k} we have InP~ C JnP~ and then, Vi E {1 , k}
we have A(I)[i] _<~v A(J)[i] and thus A(J)[,] -- A(1)[i] > 0. Then since {P~}~<~<, is
a partition of P, it is clear that It(l, J) = a. Moreover, since I(P) is a distributive
lattice, it is modular and thus graded. So all maximal chains have the same length.
[]

T h e " g r a n u l a t i o n a l g o r i t h m "

I n p u t :

(1) The transitive reduction of P with a chain decomposition 4{Pi}Ki<k.
(2) For any y E P, 5@) = (I ~ Y l n Pd),<i<k (same definition as in paragraph 2.3)

and i(y) such that y E Pi(u).
(3) A vertex z E Maz(P, F') and the set D(z) = l ~ z .

"P
(4) When P ' = P \ {z} and F'/P, = p'-5, Cov(l(P')), such that:

(a) Each y E P ' is directly re la ted to its corresponding ~.~Yl in Cov(I(P')).
(b) Each edge yz in Cov(l(P')) is labeled by Iz \ I~ where /~ (rasp. I~) is the

ideal of P ' corresponding to the vertexAt_(resp, z) in I(P').
(c) Outgoing edges of any vertices in Cov(I(P')) are stored ordered by increasing

index of the chain their label belong to.

B o d y :

(1) Find ~F,D(z)] in Cov(I(P')).

(2) Build a directed graph G(Q) isomorphic to Cov(I(J,x[)), by a map ff (where
l(~x[) = 1I �9 I(P'), ~7,D(x)] <,~-F7) I}).

(3) For any I E l(~x[), create the directed edge (I ,~b- l (I)) with label x and store
this edge according to the storage order.

(4) Create a link between x and r).

O u t p u t :

The transitive reduction of I(PO, such that:

(a) Each y E P is directly rel___ated to its corresponding I~'Yl in Cov(I(P)).
(b) Each edge yz in Cov(l(P)) is labeled by Iz \ I u where /u (resp. Iz) is the

ideal of fi corresponding to the vertex y (rezp. z) in I(P).

4 The chain decomposition on fi is an exLension of tile chain decomposition on P', that
is: Vi, i < i < k such that i # i(x) we have {1~ = {P'} and {Pi(x)} is {P[(~)} with x
added as maximal elenmnt.

(c)

641

Outgoing edges of any vertices in Cov(I(P)) are stored ordered by increasing
index of the chain their label belong to.

T h e o r e m 2 The "granulation algorithm" runs in time complexity:

0(((11(P) I - I I (P ') I)+ [P ' [)w(P')).

Proof : The correctness of the "granulation algorithm" is clearly achieved through The-
orem 1. The time complexity analysis of the "granulation algorithm" can be perform
step by step:
For step 1): Choose any y in D(x), it is clear that A(l~Yl) = ~(y) and A(t~,D(x)I)=
~f(x)-(0..li(~)..0). Then from proposition 1, we know there exists a chain in 6'ov((l(P'))
from -[bSYl to I ~..D(x)] with exactly A(], F,D(x)l)[i]- A(I ~;Yl)[i] edges belong-
ing to Pi. Thus starting from ~ Y l , we choose an outgoing edge with label z and
chain index j belonging to lud(y,D(x)) where Ind(y,D(x)) = {i, 7(0 > 0 with
7 (0 = za (l~D(~) j) [i] - A(l~y]) [i]} . Let "r(J) = 7(J) - a, by induction on z we arrive
in 1 ~D(x) l when lnd(y, D(z)) = ~. Since the choice of such an z can be done in
O(w(P')), thus step 1) can be achieved in 0((I P' I)w(P')).
For step 2) and 3): Since the number of outgoing edges of any I E I(P') is bounded by
~(P'), steps 2) and 3) can be aa~ieved ill O((I t (e) I - I I (P ') I) w (P ')) (for example
through a breadth ~arst search algorithm).
Step 4 can be done in constant time during steps 2) and 3).
[]

As consequence of this theorem, we are able to achieve the computa t ion of the ideal
la t t ice of a poset from any of its linear extensions 5

C o r o l l a r y 1 Let P be a poser, 1("if) can be computed in lime complexity:

o((I z(P) I+ I P I~)w(P)).

4 C o n c l u s i o n

Trace checking for dis t r ibuted programs is an impor tan t aspect of dis t r ibuted de-
bugging. The problem is complex since it requires a careful analysis of the causal
s t ructure of executions.

The use of the par t ia l order theory is unavoidable to design efficient algori thms. As
in classical verification methods for concurrent systems, the basis is a reachabil i ty
analysis, i.e an exhaustive enumerat ion of the s ta te space associated to the con-
sidered dis t r ibuted execution. Furthermore, there is a need for the development of

5 When [I(P) [is in 12(1 P 12), the computation of the ideal lattice of a poser from any
of its linear extensions can be performed with the same tinm complexity than with the
algorithm given by Bordat [3]. This last algorithm, which is up to our lulowledge the
most efficient one, is not accurate for the on the fly case (it is based on a depth first
search of the all poser).

642

on-the-fly techniques which allows the trace analysis in parallel with its execution.

In this paper, we have presented such algorithms to build the states of a distributed
execution. Obviously, for the purpose of verification, our algorithm must be coupled
to a verifier which will attribute the states according to the properties that have to
be checked.

Our proposal consists in two new algorithms. The first one builds the covering re-
lation of causality between observable events: when an observable event occurs, we
immediately know what are the observable events that just precede.

The second algorithm takes as input the covering relation event by event (i. e. any lin-
ear extension of the causality order) and gives a way to build (or search dependingly
on the verification method) the state graph. This algorithm is based on theoretical
results on lattices and orders. The regular structure of the graph makes it possible
to build it with a quasi-linear complexity. Its on the fly characteristic and also its
time complexity substantially improve the Cooper and Marzullo's contribution for
detecting global predicates. The lattice seems also a good formal basis to prove spe-
cific algorithms for detecting restricted subclasses of global properties.

We have implemented our ideas in our favorite distributed environment
Echidna [13]. Firstly, we have focussed our attention on visualization the covering
relation and the state graph. Presently we are coupling the building of the graph to
a verifier of properties expressed by automata and temporal logic formula.

A c k n o w l e d g m e n t s

Our understanding of distributed computation has been considerably enlighten by lhe
study of the order theory. We would like to thanks those who stimulated our thoughts:
B.Caillaud, B. Gharron-Bost, M. Habib, F. Maltern and M. Raynal. This work has
received a financial support from the french national project C s on concurrency,
the french-israeli research cooperation and the research center of the french army
(CelaO.

643

References

1. G. Birkhoff. Rings of sets. Duke Math J.3, 311-316, 1937.
2. R. Bonnet and M. Pouzet. Linear extension of ordered sets. In l.RivM, editor, Ordered

Sets, pages 125-170, D.Reidel Publishing Company, 1982.
3. J.P. Bordat. Calcul des id~aux d'un ordonn~ fini. Recherche opgrationnelle/Operations

Research, 25(3):265-275, 1991.
4. K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of

distributed systems. ACM TOCS, 3(1):63-75, 1985.
5. B. Charron-Bost. Combinatorics and geometry of consistent cuts: application to con-

curency theory. In Bermond and Rayiaal, editors, Proceedings of the international
workshop on distributed algorithms, pages 45-56, Springer-Verlag, LNCS 392, France,
Nice 1989.

6. B. Charron-Bost, C. Delporte, and H. Fauconnier. Local and Temporal Predicates in
Distributed Systems. Research report 92-36, LITP - Paris 7, 1992.

7. R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc.
ACM/ONR Workshop on Parallel and Distributed Debugging, pages 163-173, Santa
Cruz, California, May 1991.

8. C. Diem and C. Jard. Interval approximations of message causality in distributed
executions. In Finkel and Jantzen, editors, STACS, pages 363-374, Springer-Verlag,
LNCS 577, Cachan, february 1992.

9. J. Fidge. Timestaanps in message passing systems that preserve the partial ordering.
in Proc. 11 th Australian Computer Science Conference, pages 55-66, february 1988.

10. Vijay K. Garg and Brian Waldecker. Detection of Unstable Predicates in Distributed
Programs. Technical Report TR-92-07-82, University of Texas at Austin, march 1992.

11. P. Godefroid and P. Wolper. Using partial orders for the efficient verification of dead-
lock freedom and safety. In Computer Aided Verification, LNCS 575, pages 332-342,
Aalborg, Denmark, 1991.

12. M. Habib, M. Morva~, and J.X. Rampon. Remarks on some concurrency measures. In
Graph-Theoretic Concepts in Computer Science, pages 221-238, LNCS 484, june 1990.

13. C. Jard and J.-M. J~zfiquel. ECHIDNA, an Estelle-compiler to prototype protocols oh
distributed computers. Concurrency Practice and Experience, 4(5):377-397, August
1992.

14. Bordat J.P. Sur l'algorithmique combinatoire d'ordres finis. Th~se de doctorat d'$tat,
USTL Montpeffier, 1992.

15. L. Lamport. Time, docks and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558-565, July 1978.

16. T. Leblanc and J. Mellor-Crummey. Debugging parallel programs with instant replay.
IEEE Transactions on Computers, C-36(4):471-482, April 1987.

17. E. Leu, A. Schiper, and A. Zramdini. Efficient execution replay techniques for dis-
tributed memory architectures. In Arndt Bode, editor, Proc. of the Second European
Distributed Memory Computing Conference, Munich, pages 315-324, ~pr 1991.

18. Hurfin M., N. Plouzeau, and M. Raynal. Dgtection de sgquences atomiques de prgdicats
locaux dans les exgcutions rdparties. Research report , IRISA, 1993.

19. F. Mattern. Virtual time and global states of distributed systems. In Cosnard, Quin-
ton, Raynal, and Robert, editors, Proe. lnt. Workshop on Parallel and Distributed
Algorithms Bonas, France, Oct. 1988, North Holland, 1989.

20. R. Schwarz and F. Mattern. Detecting Causal Relationships in Distributed Compu-
tations: In Search of the Holy Grail. Technical Report 215/91, University of Kaiser-
slautern, 1991.

