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Abstract .  An introduction to (first-order) Ehrenfeucht-Fra~ss~ games 
is presented, al~.d three applications in theoretical computer science are 
discussed. These are concerned with the expressive power of first-order 
logic over graphs, formal languages definable in first-order logic, and 
modal logic over labelled transition systems. 

1 Introduction 

The Ehrenfeucht-Frgiss6 game is a convenient and flexible method to determine 
the expressive power of logical formalisms (involving boolean connectives and 
quantifiers). It was first introduced for first-order logic, but exists now in a 
multitude of variant~ covering other logics occurring in computer science, such 
as process logics, query languages, logics that capture complexity classes, and 
regular-like expressions. 

In this short note, we are not able to survey the recent developments in 
sufficient detail. Instead we give an introduction to the nonspecialist, explaining 
the basic case of first-order logic, and discuss three applications within first-order 
logic that are relevant to computer science. Some selected references concerning 
extensions of first-order logic are also mentioned. (The applications and the 
subject of extended logics are treated in more depth in the full paper.) 

The expressive power of a logic is measured by its ability to distinguish 
between structures (of a form admitted by the respective semantics). Thus, 
evaluating the expressive power of a logic means to describe the equivalence 
between structures that holds if they are indistinguishable by formulas of this 
logic. Instead of keeping track of all the formulas that could play a role in this 
equivalence, one looks for a description of it which refers directly to the "alge- 
braic" properties of the structures and thus is easier to handle. Since the logical 
systems to be considered here cannot distinguish between isomorphic structures, 
an algebraic formulation of logical indistinguishability will lead to a weakening 
of isomorphism (or to isomorphism itself). 

* The present work was supported by EBRA Working Group "Algebraic and Syntactic 
Methods in Computer Science (ASMICS II)". 
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It was 1~. Fra'iss~ [Fr54] who introduced an algebraic notion (weakening iso- 
morphism) which captures indistinguishability by first-order formulas of a rela- 
tional signature. A. Ehrenfeucht [Ehr61] reformulated Fra'issd's algebraic treat- 
ment in game theoretic terminology and extended the method to weak monadie 
second-order logic (analyzing its power to distinguish between countable ordi- 
nals). Ehrenfeucht's paper helped much to spread the idea. Today we speak of 
"Ehrenfeucht-Fra'iss~ games". The game theoretic formulation is more intuitive, 
but in many concrete applications it is useful to work in an Mgebraic framework 
as Fra'iss~ originally developed. 

The Ehrenfeucht-Fra'iss~ technique is one of the few methods from model the- 
ory which is applicable to finite structures, hence to many definability questions 
in computer science. Presently, in the rapidly developing area of finite model the- 
ory, Ehrenfeucht-Fra'fss~ games play a central role. Perhaps the method is used 
so frequently in theoretical computer science because it is applicable in a very 
transparent way over relational structures with relations of arity 1 and 2 only, 
like graphs, linear orderings, and partially ordered structures. Structures of this 
type are predominant in many fields of computer science (e.g., formal language 
theory, data base theory, semantics of concurrency). 

In classical model theory, the emphasis is different: Its cornerstones are the 
the L6wenheim-Skolem Theorem and the Compactness Theorem, both meaning- 
ful only when infinite structures are admitted, and the algebraic applications (to 
groups, fields, etc.) require relational signatures involving higher arities. This 
may be a reason why there are relatively few textbooks where Ehrenfeucht- 
Fra'iss~ games are treated. We mention [EFT84, Chapter 11], [Ro82, Chapter 
13], [Mo76, Chapter 26]; for (model theoretic) extensions of first-order logic see 
the survey volume [BF85]. 

In Section 2 we summarize basic facts on first-order Ehrenfeucht-Fra'iss~ 
games, guided by the exposition in lEFT84]. In Section 3, applications are out- 
lined on the expressive power of first-order logic over graphs, on logical definabil- 
ity of formal languages, and on a system of modal logic over labelled transition 
systems. 

2 Basics 

2.1 m-Equivalence 

In the sequel we consider a first-order language with equality and a simple 
signature S, consisting of unary relation symbols P1, . . . ,  Pk and binary re- 
lation symbols RI, . . . ,  /~z only. The restriction to unary and binary relations 
is inessential for the results but saves notation and covers all applications to 
be discussed below. Letters P and R will indicate unary, resp. binary relation 
symbols from S. Relational structures for this signature (S-structures) are of 
the form .4 = (A, pA . . . ,  pA, RA,... , /~A) where A is the structure's universe, 
pA C A  for 1 < i <  k a n d R  A C A x A f o r  l _ < j ~  l. Sometimes we expand 
such a structure by designated elements from its universe. 
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First-order formulas for the signature S (S-formulas) involve variables Xl, 
x2 , . . . ,  and are built up from atomic formulas of the form xi = xj,  Pxi ,  and 
l~xixj by applying the boolean connectives -~, V, A, -% ~ and the quantifiers 9, 
V. For a tuple ~ = ( x l , . . . ,  xn) of variables, the notation ~(~) indicates that 
is a formula in which at most x l , . . . ,  xn occur free. As a measure of complexity 
for formulas we use quantifier-depth: Define qd(~) inductively by setting 

- qd(9) = 0 for atomic ~, qd(--,~) = qd(~), 
- qd(~ V r = qd(~ A r = qd(~ -~ r  = qd(~v ~ r = max(qd(~v), qd(r 
- qd(gx~) = qd(VzW) = qd(~v) + 1 

Given an n-tuple ~ = ( h i , . . . , a n )  of elements from the universe A of the 
S-structure ,4 and a formula ~(~), one writes (`4, 7) ~ ~(5) if ~ holds in .4 
when interpreting xi by ai for 1 < i < n (as well as symbols P and R by pA 
and R A, respectively). 

Let .4, B be S-structures with universes A, B, and let ~, b be n-tuples of 
elements from A, B, respectively. Given m > 0 we say that (.4, 7) and (B, b) are 
m-,qui al  t (short: (.4, 7) 

(.4, (& V 

for all S-formulas 9(;F) of quantifier-depth < m. For the case of empty sequences 
and b this means tlhat the two structures satisfy the same sentences (formulas 

without free variable:s) of quantifier-depth m. 

2.2 m - I s o m o r p h i s m  

Our aim is to describe =m as a weakening of isomorphism. First we do this for 
nt = 0, where the notion of "partial isomorphism" turns out appropriate. Given 
S-structures .4 and B with universes A and B, we indicate a finite relation 
{(al, b l ) , . . . ,  (an, bn)) C A • B by ~ ,-+ b. Such a relation is called a partial 
isomorphism if the assignment a~ ~ bi determines an injective (partial) function 
p from A to B (whose domain consists of the elements in ~), which moreover 
preserves all relations pA,  RA under consideration, in the sense that 

FAn .~==:~ PBp(a) and J~Aaa ' ~ nBp(a)p(a ') 

for all symbols P, R from S and all a, d in the domain of p. 
Let us verify that  partial isomorphisms characterize -0-equivalence: We have 

(.4, 7) =0 (& b) 

iff any boolean combination of formulas zi = z j, Pz~, and Rz~xj is satisfied 
in (.4, ~) iff it is satisfied in (B, b) 

iff (by boolean logic) any of the atomic formulas z~ = zj,  Pzi ,  and R z i z j  is 
satisfied in (A, 7) iff it is satisfied in (B, b) 

iffa~ = aj r b~ = bj and pAai r pBbi and RAaiaj r RBbibj (1 < i , j  < n). 

Hence (.4, ~) - 0  (B, b) iff ~ ~-~ b is a partial isomorphism. As we may expect, 
this characterization does not extend to ~'m for m > 0. Consider, for example, 
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the linear orderings (JR, <~)  and (77, <Tz) of the integers, resp. the real numbers. 
Then P0 : (2, 3) ~ (3, 4) is a partial isomorphism (i.e., order preserving) but 
does not preserve truth of the formula 3z3(xl < z3 A x3 < x2), which states that 
between the two considered elements there is a third one. In the terminology of 
partial isomorphisms, this means that P0 : (2, 3) ~ (3, 4) cannot be extended 
to a new partial isomorphism having for example 2�89 in its domain. The idea in 
Frgiss~'s Theorem is that the possibility of extending partial isomorphisms m 
times (in both directions) characterizes the m-equivalence -m.  

To describe this extension property, we introduce sets/1, I2 , . . . ,  Im of partial 
isomorphisms such that Ik contains partial isomorphisms which allow k-fold 
extension. Call (A, ~) and (B, b) m-isomorphic (short: (.4, ~) --'m (B, b)) if there 
are nonempty sets Io, . . . ,  Im of partial isomorphisms, each of them extending 

~ b, such that for all k = 1, . . . ,  m 

- (back property) Vp EIk Vb E B qa E A such that p U {(a, b)} E Ik-1 
- (forth property) Vp E I~ Va E A qb E B such that pU {(a,b)} E Ik-1. 

Pralss~'s Theo rem.  Form > O: (A,-d) =-m (B,-b) iff (A,-d) "~m (B,'b). 

2.3 The  G a m e  Theore t i c  View 

In the game theoretic view due to Ehrenfeucht, relations (such as partial iso- 
morphisms) are configurations in a two-person game, and moves in this _game 
perform extensions of relations. Consider two structures (.4, ~)_and (B, b). A 
play of the associated Ehrenfeucht-Frai'ssg Game Grn((A,'ff), (B, b)) consists of 
m rounds and is carried out as follows: The initial configuration is ~ ~-+ b. Given 
a configuration r, a round is composed of two moves: first player I picks an 
element a from A or b from B, and then player II reacts by choosing an el- 
ement in the other structure, i.e. some b from B, resp. some a from A. The 
new configuration is r U {(a, b)}. After m rounds, player II has won if the final 
configuration is a partial isomorphism (otherwise player I has won). Instead of 
asking for a partial isomorphism at the end of the play, one may as well require 
partial isomorphisms during the whole play (because the final configuration is 
a partial isomorphism iff all configurations during the play are). While player 
II aims at a partial isomorphism at the end, player I tries to avoid this. (To 
emphasize this, [FSV92] introduce the suggestive names "spoiler" and "dupli- 
cator" instead of Ehrenfeucht's names 'T' and "II".) We say that II wins the 
game Gm((.A,-d), (B,-b)) if II has a strategy to win each play (we skip a formal 
definition of "strategy"). 

Ehrenfeucht~s Theo rem.  For m > O: 

iF 

The proof is straightforward, because sets of configurations which allow 
player II to win with k rounds ahead correspond to sets Ik in the definition 
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of m-isomorphism, and the possibility for player II to stay within "winning" 
configurations corresponds to the assumption that the two extension properties 
(back and forth) hold. 

2.4 D i s t r i bu t ive  Norma l  Form 

The proof of Frg/ss~'s theorem proceeds by induction on m in both directions. 
The proof of m-equivalence given m-isomorphism is not difficult. For the converse 
direction 

(x, -m (8, (x, (8, 

it is sufficient to describe the -m-classes by formulas of quantifier-depth m. So we 
have to present for any structure (C, ~) a formula ~('~,z)(~) of quantifier-depth m 
which is satisfied exactly by the structures which are m-isomorphic to (C, ~). The 
suitable inductive definition is built on a formalization of =0-equivalence and of 
the two extension properties. Let, for a structure (C, ~) with ~ = (c i , . . . ,  c.) 

0 

~(~) atomic, (C,~)~r @(~) atomic, (C,E)~--~(~) 

cEC cs 

To justify this definition in case the structure C is infinite, one has to observe 
that (due to the finite signature) there are only finitely many atomic formulas 
involving variables from zl,  . . . ,  x,,  and that (as verified by induction on m) the 
number of logically nonequivalent formulas ~(~,~)(~) is finite (for any given length 

of tuples ~). Thus the disjunction and the conjunction (over c 6 C) in the defi- 
nition of ~ + ~ ( ~ )  both range only over finitely many formulas ~('~,z,~)(~, x~+l) 
and thus specify first-order formulas. 

The formulas ~ , z ) ( ~ )  go back to Hintikka [Iti53] and are sometimes called 
"Hintikka formulas". They are the basis oL . . . . .  1 form for first-order formulas. 
Obviously, the class of structures which sati 
depth m must be a union of -m-classes, i 
~m-classes. Each of these is defined by a Hi: 
equivalent to the (finite!) disjunction of tt 
these ~m-classes. This representation is ca] 
first-order logic. For more details, variants ot 
see e.g. [F174], [Sc79]. 

,en formula T(~) of quantifier- 
'rgiss~'s Theorem, a union of 
~rmula. Thus T(~) is logically 
ltikka formulas which define 
distributive normal form for 
;a formulas, and applications 

3 T h r e e  A p p l i c a t i o n s  

3.1 D i r ec t ed  Graphs  of  B o u n d e d  Degm _ 

An S-structure A = (A, pA,.  A A .., P~,  RI , . . .  , RA), where the pA form a parti- 
tion of A and the R A are disjoint relations, may be considered as a graph with 
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labelled vertices and edges. The edge relation is E = Uj/~A, and the indices 
i, j represent the labels for the vertices, resp. edges. In the sequel, "graphs" are 
meant to be S-structures of this kind. A graph is of degree < d if for any vertex 
a there are at most d vertices b with Eab or Eba. We want to determine the 
expressive power of first-order logic over graphs of bounded degree. 

For ,4 as above, a E A, and r E IN, the "sphere with radius r around a in 
A" is the induced subgraph of ,4 with vertices of distance < r from a. (Here 
we assume that edges may be traversed in both directions.) This subgraph with 
designated center a is denoted r-sph(A,  a). Since we consider graphs of degree 
< d, there are, for any r > 0, only finitely many possible isomorphism types of 
r-spheres. For an isomorphism type cr of r-spheres, let occ(cr, .4) be the number of 
occurrences of spheres of type ~r in .4. We shall see that any first-order formula 
is equivalent (over graphs of degree < d) to a statement on these occurrence 
numbers for finitely many types e. Moreover, for any given formula the values 
occ(~, ,4) are relevant only up to a certain threshold t E IN. 

Formally, define A "~r,t/3 if for any isomorphism type ~ of spheres of radius 
r the numbers occ(~, A) and occ(c5 B) are either both > t or else coincide. The 
following "sphere lemma" states that ,.%t-equivalence (for suitable r, t) is fine 
enough to capture m-equivalence over graphs of degree < d. 

Sphe re  Lemma.  For any m >_ 0 there are r, t > 0 such lhat for any two graphs 
A , B  (of degree < d) we have: I rA  "~r,t 13 then .4 =-m B. 

The proof, due to Hanf [Hf65], uses Frgiss@'s Theorem: It suffices to en- 

sure ,4 ~m /3 for suitable r, t. Set r = 3 m+l and t = m �9 d a'~+l. The required 
sequence of sets I0 , . . . ,  Im of p~rtial isomorphisms is defined as follows: Let 
p : (a l , . . . ,am-h)  ~ (bl , . . . ,bm-k)  belong to Ik iff 

r n - k  r n - k  

U 3 -sph(`4, ai) u U 
i----i i=1 

i.e., the two induced subgraphs formed from the 3~-spheres around the a~, resp. 
the bi, are isomorphic. To verify e.g. the forth property, assume this condition 
holds for p and let a(= am-(k-1)) E A. We have to find b(= b,~-(~_l)) E B such 
that 

,~-(~-I) ,~-(k-1) 

[J U �9 
i = 1  i=I 

If a C 2" 3k-sph(`4, ai) for some ai, we may choose b from ~. 3~-sph(`4, bi) cor- 
respondingly; note that 3k-~-sph(`4, a) is contained in 3k-sph(`4, ai) and thus 
3~-~-sph(`4, b) in 3k-sph(`4, bi). So 3~-l-sph(`4, a) - 3k-~-sph(B,b) holds. 
Otherwise, 3~-l-sph(`4, a), say of type a, is disjoint from all 3~-l-sph(`4, ai), 
and it suffices to find a sphere of type a in B which is disjoint from all spheres 
3k-l_sph(B, bi). This will be possible if the number of occurrences of spheres of 
type ~ in B is large enough. But this is guaranteed by the assumption .4 "~r,t/~. 

By the Sphere Lemma and the Distributive Normal Form, any first-order 
formula is equivalent (over graphs of degree < d) to a boolean combination of 
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statements "there are > k occurrences of spheres of type e". So first-order logic 
can express only "local" graph properties and hence is too weak for many ap- 
plications. (In the terminology of formal language theory, a first-order definable 
set of graphs of bounded degree is "locally threshold testable"; see [Th91].) This 
fact, which has also been shown by a different method (quantifier elimination) 
in [Ga82], has motivated the consideration of several extensions of first-order 
logic over graphs. Suitable extensions of the Ehrenfeucht-l~'giss~ game serve to 
analyze their expressive power. Such an analysis has been carried out, for exam- 
ple, for existential monadic second-order logic ([Fag75], [FSV92]), for transitive 
closure logic (e.g. [Gr92]), and for different kinds of fixed point logic ([Bo92]). 

3.2 Labe l led  Linear  Orders  and  Congruence  Lemmas  

A word w over an alphabet Z = {sa, . . . ,  sk] can be represented by the structure 
w = ({1, . . . ,  ]w[}, <, P ~ , . . . ,  P~') with unary relations P~, where j e pw iffthe 
j- th letter of w is si. A formal language L C ,U + is called first-order definable if 
there is a first-order ,'~entence ~ (in the signature {<, P1, . . . ,  Pk}) such that L "-- 
{w E Z + [ w__ ~ ~o}. Ehrenfeucht-Frffiss~ games have been useful in clarifying the 
relation between first-order logic and definability notions from formal language 
theory, in particular concerning star-free regular languages. A language L C Z + 
is called star-free if it can be constructed from finite languages by applications of 
boolean operations and concatenation. By a well-known result of McNanghton, 
a language is first-order definable iff it is star-free. The difficult direction is 
from left to right, and usually proved by induction on quantifier-depth (e.g. in 
[Lad77]). It turns out that the essential point of the induction step (concerning 
the existential quantifier) is the following claim: 

C o n g r u e n c e  Lemraa.  If u_u_ --m u~ and v_ - m  v~, then u.  v -m u' �9 v'. 

The proof is straightforward if we refer to _-__,~ instead of - ,~ and think 
in terms of the Ehrenfeucht-Fra'iss4 game: The assumption tells us that player 
II has winning strategies for the games G,~(u_,u') and G,~(v_,v'). An obvious 
composition of these two strategies ("on the segments u and u' use the first 
strategy, on the segments v and v' use the second strategy") guarantees her or 
him to win also the game Grn(u" ~, u'. v'). 

Congruence lemmas are a typical application of Ehrenfeucht-Frgiss@ games; 
they have been proved also for other logics and over more complex structures 
than words. A congruence lemma states that properties of a structure as a whole 
are determined by (land hence can be composed from) properties of its parts. 
In [Th84], [Th87a], Ehrenfeucht-Frgiss4 games are applied to obtain congru- 
ence lemmas for two modified versions of first-order logic: first-order formulas 
in prenex normal form with a fixed quantifier prefix type, and star-free regu- 
lar expressions. A small but interesting difference between first-order logic and 
star-free expressions is worked out in [LT88], also via the game method. 

Highly intricate examples of congruence lemmas were given by Shelah [Sh75], 
concerning the the monadic second-order theory of (arbitrary) linear orderings, 
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and obtained by an extension of the Ehrenfeucht-Fra'iss& technique. Later, con- 
gruence lemmas were proved also for tree structures, e.g. in [GS83] for rnonadic 
second-order logic or in [Th87b] for path-oriented logics. The extension of first- 
order logic over trees by "modulo counting quantifiers" was analyzed in [Pot92], 
again using appropriate Ehrenfeucht-Fra'iss~ games. 

3.3 Label led Trans i t ion  Sys tems and  Modal  Logic 

The notion of bisimulation was introduced by Park [Pa811 and related to modal 
logic by Hennessy and Milner ([HM85], [Mil90]). There is a close connection 
between bisimulations and Ehrenfeucht-Fra'/ss~ games, although they were de- 
veloped quite independently. Here we describe some aspects of this connection, 
but to avoid technical overhead we consider only a very restricted form of bisim- 
ulation and observational equivalence, in which the special role of the so-called 
"silent transition" is suppressed. (For a different approach to treat behavioral 
equivalences in first-order logic see [O992].) 

We refer to structures A = (A, RA,. . . ,  R~), which serve as the model the- 
oretic representation of "labelled transition systems" ([Mil90]): The elements 
of A are "states", and RA,. . . ,  R A are "transition relations". Hennessy-Milner 
Logic is a system of modal logic to be interpreted over labelled transition sys- 
tems. We introduce this logic here directly as a fragment of first-order logic, 
given by special "admissible" formulas. An admissible formula has exactly one 
free variable. As basic atomic formulas we allow only tt(xi) (always true). Bi- 
nary boolean connectives are applicable only to formulas with the same free 
variable, negation is always applicable, and quantifiers are allowed only in "R i- 
relativized form", observing certain conditions on the indexing of variables: 
Given ~($i4-1) one may proceed to r of the form 3z~+i(R.jz~xi+i A ~(zi+i)) 
or Vxi+i (Rj x~ zi+i --+ ~(z~+i)). To normalize the indexing of variables, we finish 
the construction of a formula always with x0 as free variable (to be interpreted 
by a designated element of a labelled transition system). In this framework, a 
formula such as 

O~a~(Ojtt A <>~tt) 
of Hennessy-Milner Logic is written as the following admissible formula #(z0): 

3xl(_  0x  A A tt( 3)) A A 

Define (M, a0) =m (B, b0) in the same way as (A, a0) ---0~ (B, b0), however re- 
ferring to admissible formulas of quantifier rank < m. By the lack of equal- 
ity and because of the restricted use of the symbols /~j, the appropriate no- 
tion of "partial isomorphism" is weaker than before; in particular, we do no 
more require that it represents an injective function: Let us call a relation r : 
(ao , . . . ,  a,~) ~ (bo, . . . ,  bn) C_ A x B a correspondence if RAa~ai+l tee l:tBbibi+i 
for i = 0 , . . . ,  n -  1 and j = 1 , . . . , l .  Finally, define (~1, a0) ~,~ (B, bo) in the 
same way as (A, a0) ~rn (B, b0), with correspondences replacing partial isomor- 
phisms. Now the proof of Fra'iss6's Theorem, adjusted to this context, shows 

(.A, a0) --m (B, b0) iff (r a0) -m  (B, b0). 



567 

This equivalence may be regarded as a restricted form of the Hennessy-Milner 
characterization of bisimilarity (as formulated, for example, in [Mil90, Theorem 
5.2.5 (1)]). Two points should be mentioned: Usually, in semantics of concur- 
rency one deals with one transition system only, i.e. one considers equivalences 
between structures (A, a0) and (A, b0). More important, in the theory of bisimu- 
lations one does not refer to the existence of some sequence (I0, �9 �9 Irn) of sets of 
correspondences (as one does in the definition of "m-isomorphism"), but works 
with a fixed canonical sequence (J0, . . . ,  Jra) of correspondence sets: J0 contains 
just the universal relation, and Jk+l contains all relations which allow back and 
forth extensions in Jk. This does not change the equivalence result above, but it 
prevents the definition of specific winning strategies by the correspondence sets. 

In the general framework of bisimulations and observational equivalences (see 
[HM85], [Mil90]), the considered "actions" in transition systems are more com- 
plex, consisting of sequences of Rj-transitions and depending in different ways on 
occurrences of a designated "silent" transition. This general situation suggests 
to include infinite signatures. A corresponding extension of first-order logic is 
the system L ~ allowing infinite disjunctions and conjunctions (however only ( :~oJ ,  

finitely many variables in each formula, which are reusable within a formula). 
The appropriate extension of the Ehrenfeucht-Frffiss6 technique has been devel- 
oped and applied in other fields of computer science, e.g. in complexity theory 
(Immerman [Im82]) ~md data base theory (Kolaitis and Vardi [KV90]). The 
topic of reusable vari.~bles is treated, using special Ehrenfeucht-Fra'iss6 games, 
in [IK89] and [F192]. 

References  

[BF85] 

[Bo92] 

[EFT84] 

[Ehr61] 

[Fag75] 

[FSV92] 

[F174] 

[F192] 

[Fr54] 

J.Barwise, S. Feferman (eds.), Model-Theoretic Logics, Springer-Vedag, 
Berin-Heidelberg, New York 1985. 
U. Bosse, Art "Ehrenfeucht-Fralss6 game" for fixpoint logic and stratified 
fixpoint logic, manuscript, Math. Inst., Universit~t Freiburg, 1992. 
H.D. Ebbinghaus, J. Flum, W. Thomas, Mathematical Logic, Springer- 
Verlag, New York 1984 (revised and extended edition to appear 1993). 
A. Ehrenfeucht, Art application of games to the completeness problem for 
formalized theories, Fund. Math. 49 (1961), 129-141. 
R. Fagin, Monadic generalized spectra, Z. math. Logik u. Grundl. Math. 21 
(1975), 123-134. 
R. Fagin, L. Stockmeyer, M.Y. Vardi, A simple proof that connectivity sep- 
axates existential and universal monadic second-order logic over finite struc- 
tures, IBM Rep. R~I 8647, 1992. 
J. Flum, First-order logic amd its extensions, in: Proc. ISILC Logic ConL, 
Kiel, Springer Lect. Notes in Math. 499 (1975), 248-310. 
J. Flum, On bounded theories, in: Computer Science Logic (E. Bbrger et al., 
eds.), Springer LNCS 626 (1992), 111-118. 
R. Fraiss6, Sur quelques classifications des relations, bas6s sur des isomor- 
phismes restreints, Publ. Sci. de l'Univ. Alger, S6r. A 1 (1954), 35-182. 



568 

[Ga82] 

[Gr92] 

[GS83] 

[nf65] 

[~M85] 

[m53] 

[Im82] 

[IK89] 

[KV90] 

[Lad77] 

[LT88] 

[Mil90] 

[Mo76] 
[Og92] 

[Pa81] 

[Pot92] 

[Ro82] 
[Sc79] 

[Sh75] 
[Wh841 

[Th87a] 

[ThS7b] 

[Wh91] 

H. Gaifman, On local and non-local properties, in: Proc. of the Herbrand 
Symposium, Logic Colloquium '81 (J. Stern, ed.), North-Holland, Amsterdam 
1982, pp. 105-135. 
E. Grs On transitive closure logic, in: Computer Science Logic (E. B6rger 
et al., ads.), Springer LNCS 626 (1992), 149-165. 
Y. Gurevich, S. Shelah, Rabin's uniformization problem, 3. Symb. Logic 48 
(1983), 1105-1119. 
W.P. Hanf, Model-theoretic methods in the study of elementary logic, in: The 
Theory of Models (J.W. Addison, L. Henkin, A. Tarski, eds.), North-Holland, 
Amsterdam 1965, pp. 132-145. 
M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency, 
J. Assoc. Comput. Much. 21 (1985), 137-161. 
J. ttintikka, Distributive normal forms in the calculus of predicates~ Acta 
Philos. Fennica 6 (1953). 
N. Immerman, Upper and lower bounds for first-order expressibility, J. Corn- 
put. System Sci. 25 (1982), 76-98. 
N. Immerman, D. Kozen, Definability with a bounded number of bound 
variables, Inform. Comput. 83 (1989), 121-139. 
Ph. Kolaitis, M. Vardi, On the expressive power of Datalog: Tools and a case 
study, Proc. 9th ACM Symp. on Principles of Database Systems, 61-71. 
R.E. Ladner, Application of model-theoretic games to discrete linear orders 
and finite automata, Inform. Contr. 33 (1977), 281-303. 
D. Lippert, W. Thomas, Relativized star-free expressions, first-order logic, 
and a concatenation game, in: Seafigroup Theory and Applications (H. 
Jfirgensen et al. eds.), Springer Lect. Notes in Math. 1320 (1988), 194-204. 
R. Milner, Operational and algebraic semantics of concurrent processes, in: 
Handbook of Theoretical Computer Science (J. v. Leeuwen, ed.), Vol. B, El- 
sevier Science Publ., Amsterdam 1990, pp. 1201-1241. 
D. Monk, Mathematical Logic, Springer-Verlag, New York 1976. 
H. Oguztiizfin, A fragment of first-order logic adequate for observation equiv- 
alence, in: Computer Science Logic (E. BSrger et ai., eds.), Springer LNCS 
626 (1992), 287-291. 
D. Park, Concurrency and automata on infinite sequences, in: Theoretical 
Computer Science (P. Deussen, ed.), Springer LNCS 104 (1981), 167-183. 
A. Potthoff, Modulo counting quantifiers over finite trees, in: CAAP'92 (J.C. 
Raoult, ed.), LNCS 581 (1992), 265-278. 
J.G. Rosenstein, Linear Orderings, Academic Press, New York 1982. 
D. Scott, A note on distributive normal forms, in: Essays in Honour of Jaakko 
Hintikka (E. Saatinen et al., eds.), Reidel, Dordrecht 1979, pp. 75-90. 
S. Shelah, The monadic theory of order, Ann. Math. 102 (1975), 379-419. 
W. Thomas, An application of the Ehrenfeucht-Fraiss6 game in formal lan- 
guage theory, Bull. Soc. Math. France, Mere. 16 (1984), 11-21. 
W. Thomas, A concatenation game and the dot-depth hierarchy, in: Com- 
putation Theory and Logic (E. B6rger, ed.), LNCS 270 (1987), 415-426. 
W. Thomas, On chain logic, path logic, and first-order logic over infinite 
trees, Proc. 2nd LICS, Ithaca, N.Y. 1987, 245-256. 
W. Thomas, On logics, tilings, and automata, in: Proc. 18th ICALP, Madrid 
(:l. Leach Albert et al., ads.), Springer LNCS 510 (1991), 441-454. 


