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A b s t r a c t .  We extend the classical theory of term rewriting systems to 
infinite and partial terms (i.e., to the elements of algebra CT2), fully 
exploiting the complete partially ordered structure of CTE. We show 
that redexes and rules, as well as other operations on terms, can be re- 
garded as total functions on CT~. As a consequence, we can study their 
properties of monotonicity and continuity. For rules, we show that non- 
left-linear rules are in general not monotonic, and that left-infinite rules 
are in general not continuous. Moreover, we show that the well-known 
Church-Rosser property of non-overlapping redexes holds for monotonic 
redexes. This property allows us to define a notion of parallel application 
of a finite set of monotonic redexes, and, using standard algebraic tech- 
niques, we extend the definilion to the infinite case. We also suggest that 
infinite parallel term rewriting has interesting potential applications in 
the semantics of cyclic term, graph rewriting. 

1 I n t r o d u c t i o n  

Term Rewriting is a model of computat ion that  is employed in various areas 
of computer  science, including symbolic algebraic computat ion,  functional and 
logic programming,  au tomated  theorem proving, and execution of algebraic spec- 
ifications. The ' computa t ions '  of a term rewriting system consist of repeatedly 
replacing subtenns  of a given expression with equal terms, until the simplest 
form possible is obtained. The theory of rewriting systems is nowadays well es- 
tablished within Theoretical  Computer  Science, at least for what  concerns the 
rewriting of finite terms (see [DJ90, K191] for two recent surveys). 

For a long t ime (at least to our knowledge) the extension of term rewriting to 
infinite terms has not been considered in the literature, probably because of the 
lack of motivations and/or  interesting applications. Only recently this topics has 
become the target  of an intense research activity, carried on by many  research 
groups ([FRW88, FW89, DKP89, DK89, KKSV90]). The main motivat ion for 
the recent interest in infinite term rewriting is undoubtedly the need of extending 
the theory of term rewriting in order to provide a satisfactory interpretat ion for 
cyclic term. graph rewriti~g. 
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ing Group n. 7183 
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Acyclic term graph rewriting (i.e., the issue of representing finite terms with 
directed, acyclic graphs, and of modelling term rewriting via graph rewriting) has 
been addressed in a number of places [Ra84, BvEGKPS87, Ke87, HP91, CR93], 
and is now well understood. The main advantage of this approach (with respect 
to classical term rewriting) is that  the sharing of common subterms can be 
represented explicitly in the graph. Therefore the rewriting process is speeded 
up, because the rewriting steps do not have to be repeated for each copy of an 
identical subterm. For example, the rewrite rule R :  f ( x )  --+ g(x)  can be applied 
twice to term t = k ( f ( a ) ,  r ( f ( a ) ) ) ,  yielding in two steps ternl t '  = k(g(a),  r(g(a)) .  
If instead t is represented as a graph, and the two identical subterms are shared 
(as in graph G of Fig. 1), then a single application of the rule is sufficient to 
reduce it to graph G' of Fig. 1, which clearly represents term t'. Thus a single 
graph rewriting step may correspond to n term rewriting steps, where n is the 
'degree of sharing' of the rewritten subterm. 

i r R 
f z g 

a ,, G a , ,  G ,  

Fig. 1. An example of term graph rewriting 

During the last years, many authors considered the extension of term graph 
rewriting to the cyclic case, allowing (finite, directed) cyclic graphs as well. 
The first consequence of this extension is that infinite terms (or, more precisely, 
rational terms, i.e., infinite terms with a finite number of distinct subterms) can 
be represented as well, exploiting cycles. The second effect is that  a single graph 
rewriting step may now correspond to some infinite term rewriting. Consider for 
example rule R above: by applying it to graph H of Pig. 2 one obtain graph 
H'  (in any reasonable definition of graph rewriting). Clearly, H represents the 
infinite term f ~  - f ( f ( f ( . . . ) ) ) ,  while H '  represents term g~O. There are (at 
least) two possible ways of interpreting the rewriting of term fw to term g~O via 
some number of applications of rule R: 

H H '  

Fig. 2. An example of cyclic term graph rewriting 

1. g~O is the limit of an infinite seqnence of applications of R, i.e., fw --+n 
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2. g~0 is the result of the simultaneous application o f /7  to an infinite number 
of redexes in f~': in a single step all the occurrences of f in f~ are replaced 
by g. 

The relevant fact is that,  unlike tile example of Fig. 2, there are cases where 
these two interpretations lead to different results. This happens, for example, 
when collapsiug rules are considered, i.e., rules having a variable as right-hand 
side. The most famous collapsing rule is the rule for identity,/7I : I(x) --+ x, and 
the pathological case (considered already by many authors) is the application of 
/ 7 / t o  I ~. Using the first interpretation above, we have that  I r176 --+R, I ~ -+R~ . . . ,  
and clearly the limit of this sequence is I ~~ itself. On the other hand, if we follow 
the second interpretation, all the occurrences of I in [~ are deleted in a single 
step, and thus we should obtain as result a term not containing function symbols, 
i.e., some sort of 'undefined' term. It is worth stressing that both interpretations 
are meaningful from the point of view of cyclic term graph rewriting, and they 
correspond to two different choices of the graph rewriting algorithm. 

In fact, if one uses the term graph rewriting model defined in [BvEGKPS87], 
the 'circular-/ '  (i.e., graph G r in Fig. 3, representing I ~~ rewrites via Rx to itself: 
therefore the first interpretation must be used. This is the approach followed 
in [FRW88, FW89, DKP89, DK89, KKSV90], where they elaborated a theory 
of transfinite term rewriting, showing its adequacy for modelling finite, cyclic 
graph rewriting. In essence, a finite graph derivation has the 'same effect' of a 
converging transfinite term rewriting sequence: for the notion of convergence they 
used the well-known topological structure of (possibly infinite) terms, which, 
equipped with a suitable notion of distance, form a complete ultra-metric space 
[AN80]. 

If instead one uses as term graph rewriting model the so-called 'algebraic' or 
'double-pushout '  approach [EPS73], as done for the aeyclic case in [HP91, CR93], 
the circular- /rewrites via./7I to a graph consisting of a single node. The situation 
is summarized in the lower part of Fig. 3. This is the approach taken by the 
author in a forthcoming paper with Frank Drewes. In order to explain this result 
from the perspective of term rewriting, the second of the above interpretations 
must be used. Ill this case the theory of transfinite term rewriting is no more 
helpful, because it cannot justify this result. ~re need instead some notion of 
'infinite parallel rewriting', that  could explain the fact that  all the occurrences 
of the operator I in I ~ are deleted in a single step. 

The notion of infinite parallel rewriting can be defined in a satisfactory way 
(as shown in this paper) by exploiting the well-known algebraic structure of (pos- 
sibly infinite, possibly partial) terms over a signature Z,  which form a complete 
partial ordering (CPO) denoted CTz. CTz. has a least element denoted _L (the 
undefined term), and the order relation is defined as t < t '  if ~ is a partial term 
that  is 'less defined' than t'. CTr enjoys several nice algebraic properties, which 
are studied in depth in the seminal work by the ADJ group, [ADJ77]. 

We show informally how the algebraic strncture of CT5 can be exploited 
to show that  I ~ rewrites via. R1 to • (by the way, this also gives a precise 
interpretation of the unlabelled node of Fig. 3: it. denotes the undefined term 
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R I  

Fig. 3. The two possible results of applying Rz to the 'circular-/' 

•  The infinite term I ~ is tile least upper bound of an infinite chain of finite, 
part ial  terms of CT~: in fact, I(_L) < I ( I ( •  < . . .  < In(_l_) < . . .  "~,o I ~ 
Now, if we apply rule RI  to each term of the chain as many  times as possible, 
all those terms reduce to _L (in particular, I '* ( •  reduces to • in n steps, or, 
and we prefer this interpretation, ill a single finite parallel step, where the rule 
is applied simultaneously to the n occurrences of I) .  Therefore, after applying 
rule RI  as many  times as possible, the above chain is reduced to • < • < . . .  : 
we define the least upper bound of this chain (i.e., • itself) as the result of the 
infinite parallel rewrhing of I ~' via RI.  

The last example shows that  the CPO structure of ( infnite)  terms can be 
exploited fruitfully in the framework of term rewriting systems. But, as far as 
we know, the algebra.ic structure of CT~ has never been taken into account 
in the term rewriting literature. Therefore one of the goals of this paper  is to 
revisit some definitioi~s and some results of the classical theory of term rewriting, 
extending them to the case of infinite or partial  terms, and taking care of the 
CPO structure of C7~ .  

As expected, except for the original definition of infinite parallel rewriting 
in Section 5, no really new results come out from this reworking of well-known 
notions. Nevertheless., we think that  our presentation sheds new light on some 
concepts which are a bit obscure ill the term rewriting literature, like, for exam- 
ple, the real nature of non-left-linear rules, and why they behave so badly with 
respect to Church-Rosser properties. Moreover, the presence of partial  terms and 
the CPO structure of CT~ allow us to define rewrite rules, redexes, and also ba- 
sic operations like subterm selection and subterm replacement in an original way 
as total functions operating on terms. Like for every function on a CPO, we can 
ask ourselves if those functions are monotonic or continuous: in this way we can 
classify the rules of a term rewriting system w.r.t, to their algebraic properties. 
An interesting result shows that  the classical Church-Rosser property of inde- 
pendent redexes always holds for monotonic rewrite rules; continuous rules are 
instead required for a correct definition of infinite parallel rewriting. These re- 
sults are reconciled with the traditional Church-Rosser properties of orthogonal 
(i.e., left-linear, left-finite, non-overlapping) term rewriting systems by a propo- 
sition that  shows that  all left-linear rules are monotonic, while all left-linear and 
left-finite rules are col]tinuous. 

The paper  is organized as follows. In Section 2 we introduce the CPO strut-  
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ture of terms and some basic operations on terms, regarding them as (continu- 
ous) total  functions. Next in Section 3 we introduce term rewriting of (possibly 
partial)  terms: the main contribution here is a.n extension of the definition of 
redex and of redex application which takes into account the possibility that  the 
left-hand side of a rule matches just  partially the term to be rewritten. In Sec- 
tion 4 we study the properties of monotonicity and continuity of rewrite rules, 
showing, among other things, that  the customary discrimination against not left- 
linear rules is fully justified in this clean algebraic setting, because they are even 
not monotonic (at least in general). Furthermore, we present the natural  exten- 
sion of the Church-Rosser theorem for orthogonal TRS ' s  to the case of partial,  
infinite terms, showing that  it holds for all monotonic rules. The Church-Rosser 
theorem is then exploited in Section 5 in order to define the notion of finite 
parallel rewriting via the application of two monotonic rules to two independent 
redexes in a term. In the same section we introduce our original definition of in- 
finite parallel rewriting for continuous rules, which is defined via a suitable limit 
construction: the well-definedness of the definition and its consistency with the 
finite case are the main results of the section. Finally, Section 6 summarizes the 
main results of the paper  and suggests some topics for future research. Because 
of space limitations, most of the proofs are not included in the paper. 

2 The complete partial ordering of partial, infinite terms 

We introduce here the notion of possibly partial, possibly infinite terms, borrow- 
ing their definition from [AD.J77], where t.hey are called ~-trees.  

D e f i n i t i o n  1 ( o c c u r r e n c e s ) .  Let ~* be the set of al[ finite strings of natural  
numbers.  Elements of a~* are called o c c u r r e n c e s .  The empty  string is denoted 
by ~. The set a~* is equipped with a binary relation (which is obviously a partial  
ordering), defined as u _< tv iff u is a prefix of 'tu. Two occurrences u, w are 
called disjoint (written utw ) if they are incomparable w.r.t. _<. The length of an 
occurrence w, denoted [u,I, is defined as [al = 0 and Itvi] -- Iwl § 1 for w �9 ~* 
and i � 9  

D e f i n i t i o n 2  ( t e r m s ) .  Let, E be a (one-sorted) signature, i.e., a ranked alpha- 
bet of operator  symbols ~ = v~ Un~,~, and let. X be a. set of variables. A t e r l n  
o v e r  (Z ,  X)  is a partial function t : ~* ~ ~ U X, such that  for all w C w* and 
all i �9 a), the domain of definition of t, O(t), satisfies the following: 

Set O(t) is also called the se t  o f  o c c u r r e n c e s  of t. We will denote by Ox(t)  
the set of occurrences of variables of t, i.e., Ox(t)  = {v C O(t) I t ( v )  C X}, 
and by O~( t )  the set of occ~rre,,ces of opera, tots of t, i.e., O~(t) = {v 6 0 ( t )  t 
t(v) e ~}.  The set of variables of a term t, va, '(t), is defined as va~(l) = {z E 
x 13~ �9 o(~) . t (v )  = x}. 
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A term t is f in i t e  if C0(t) is finite. The d e p t h  of a term t is defined only 
if t is finite; in this case, depth(t) - max{lw I I w E O(t)}. A term t is t o t a l  
if t(w) E Z,, ~ wi E O(t) for all 0 < i _< n. The set of terms over (~,  X) is 
denoted by CT~(X) (with the convention that CTx stays for CTx(O)). 

Throughout  the paper we will often use (for finite terms) the equivalent and 
more usual representation of terms as operators applied to other terms. Partial 
terms are made total in this representation by introducing the undefined term 
J_ (called bottom), which represents the empty function _L : 0 --+ s U X. Thus, 
for example, if x E X, t = f(_k, g(x)) is the term such that  O(t) = {)% 2, 21}, 
t(A) = f E ~2, t(2) = g E ~1, and t(21) = x E X. 

We introduce now the relevant algebraic structure of terms ([ADJ77]). 

D e f i n i t i o n 3  (CTx(X) as w - c o m p l e t e  l ower  s e m i - l a t t i c e ) .  Given two terms 
t, t' E CTr(X) ,  t a p p r o x i m a t e s  t '  (written t < t') iff t is less defined than t '  as 
partial function. In the proofs throughout the paper, we will use the following 
characterization of term approximation: 

_< ~' r  v,,, E O ( , ) . t ( w )  = , ' (w)  

Equivalently, relation '< '  can be defined as the minimal relation such that  
_L _< t for all t; .~ _< x for all x E X; and .f(tl,...,t,,) <_ f(t~,. . . , t ' )  if tt  _< 
t~, . . . , tn  <_ t ' ,  for all f E E , .  

An w-chain  {ti}i<a, iS an infinite sequence of terms to _< . . .  _< t,~ _< . . . .  
Every w-chain {ti}i<,,, in CTs(X)  has a leas t  u p p e r  bound (tub) U~<~{t~} 
characterized as follows: 

t = U i < w { t , }  4=> V w E w * . 3 i < w . V j > _ i . t j ( w ) = t ( w )  

Formally this means that CTr(X)  is w-comple t e .  
Given two terms t and t', their g r e a t e s t  lower  b o u n d  t I"1 t '  is uniquely 

characterized by the property (t 71 t' _< t) A (t D t '  _< t) A (g t" .  (t" _< t) A (t" _< 
t ') ~ t"  _< t M t'). It can be proved that t n t '  exists for all t, t' E CTr(X) ,  and 
that  it is defined as follows. Let D = {w I w E O(t) rq O(t') A t(w) = t '(w)} 
be the subset of the intersection of the domains of t and t '  where their values 
agree, and let D' C_ jP be the largest prefix-closed subset of D, i.e., such that  
wi E D' ~ w E D'. Then t D t' is defined as 

tMt'(u) = { ~i ~) if u E D' 
otherwise. 

Finally, CTs(X)  has a least element w.r.t. <, which is .J_ (bottom).  All this 
amounts to say that C'Ts(X) is an w - c o m p l e t e  l ower  s e m i l a t t i c e .  

D e f i n i t i o n 4  ( m o n o * o n i c  a n d  c o n t i n u o u s  f u n c t i o n s ) .  A function f : D -~ 
D'  between c0-complete partial orderings D and D' is said m o n o t o n i c  if d _< 
d' ~ f(d) <_ f(d'). It is aa-cont i ,mous  if for all a~-chain {di}i<w C_ D, Ui<~{f(dl)} = 
f(Ui<co{d~}), i.e., the lub of w-chains are preserved. 
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In the rest of the paper we will omit  the 'co-' qualification of chains, com- 
pleteness, and continuity. We introduce now two well-known operations on terms, 
namely subterm selection and subterm replacement. We  define them in an origi- 
nal way: by exploiting the existence of partial terms, we can turn them into total 
funct ions on terms. We also state that,  as functions on C T x ,  both operations 
are continuous. 

D e f i n i t i o n 5  ( s u b t e r m  se l ec t i on ) .  Given an occurrence w C w* and a te rm 
t E C T 2 ( X ) ,  the s u b t e r m  o f  t a t  (Occurrence) w is the term t / w  defined as 
t / w ( u )  = t (wu)  for all u C co*. Using the alternative representation of terms, 
t / w  is equivalently defined by the following clauses: 

- •  = _J_ 
- tl ,~ = t 
- x / i w = •  i f x E X  
- f ( t l , . . . , t n ) / i w  = t i / w  if f E Z,, and i _< n 
- f ( t l , . . . , t , ) / i w = •  i f f E ~ ,  a n d i > n .  

It is easy to check that  t / w  = • iff w ~_ O(t) .  

P r o p o s i t i o n 6  ( s u b t e r m  s e l e c t i o n  is c o n t i n u o u s ) .  For a l lw E co*, the func- 
tion _/w : C T z ( X )  --~ C T z ( X )  mapping t to t / w  is continuous. 

D e f i n i t i o n 7  ( s u b t e r m  r e p l a c e m e n t ) .  Given terms t , s  C C T s ( X )  and an 
occurrence w E w*, the r e p l a c e m e n t  o f  s in t a t  (occurrence) w, denoted 
t[w ~-- s], is the term defined as t[w ~-- s](u) = t (u)  if w ~ u or t / w  = _1_, and 
t[w ~-- s](wu) = s(u) otherwise. Equivalently, it can be defined as follows: 

- t [ w  ~ s] = t i f t / w  = _L (i .e . ,  if  w ~ O ( t ) )  
- t[A ~ s] = s i f t r 1 7 7  
- f ( t l , . . . , t , . ) [ i w  ~-- s] = f ( t l , . . . , t i [ w  +-- s ] , . . . , t ~ )  i f i < n .  

The first clause also implies that  •  ~-- s] = • for all w, s (even if w = A). 

P r o p o s i t i o n 8  ( s u b t e r m  r e p l a c e m e n t  is c o n t i n u o u s ) .  For all w E co*, the 
funct ion _[w *--- _] : F T , ( X )  x C T ~ ( X )  - -  C T N ( X )  mapping (t, s) to t[w *--- s] 
is continuous, lhat is, il is continuous in lh.e lwo arguments separately. 

The next s ta tement  collects some equalities relating subterm selection and 
subterm replacement. They follow directly from the definitions. The names are 
taken from [HUB0]. 

P r o p o s i t i o n 9  ( p r o p e r t i e s  o f  s u b t e r m  r e p l a c e m e n t  a n d  s e l e c t i o n ) .  The 
following equalities hold for  all occurrences w, v, and for all terms t, s, and st: 

[commutalivily] t[w ~ s ] [ v  ~-  s ' ]  = t [v  .--  J ] [ w -  s] i fw[v; 
[dominance] t[wv --- s ] [ w  ~ s ' ]  = t [u ,  ~ s ' ] , '  
[distribulivity] t[wv ~ s]/w = t /w[v +- s]. 
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D e f i n i t i o n  10 ( s u b s t i t u t i o n s ) .  Let X and Y be two sets of  variables.  A s u b -  
s t i t u t i o n  (from X to Y )  is a funct ion ~r : X ~ CTx(Y)  (used in postf ix nota-  
t ion).  T h e  collection of all subs t i tu t ions  f rom X to Y is denoted by Subsx(X,  Y). 
A subs t i tu t ion  cr E Snbsx(X, Y) uniquely de te rmines  a f r a c t i o n  (also denoted 
by o-) f rom CT$(X)  to C T x ( Y ) ,  which extends  ~r as follows 

- _ 1 _ ~ = _ 1 _ ,  

- f ( t l ,  . . . , t n ) o "  = f(t lO' ,  . . . , tno') .  

T h e  par t ia l  ordering on t e rms  can be extended to e lements  of  Subsz (X, Y) as 
follows: c~ _< c~' iff for all x E X,  xc~ <_ xcr'. Subsx(X, Y) is an w-comple te  lower 
semi la t t ice  under  this ordering.  I f  ~r E Subsx(X, Y) and c~ C Subsx(Y, Z), then 
their  compos i t ion  cr'cicr is a snbs t i tu t ion  f rom X to Z defined as x(a'oc~) = (xa)a' 
for all x C X.  

If  X is finite, a subs t i tu t ion  ~r C S~bsx(X, Y) will be represented some t imes  
as a finite set of the form {x~/t~ ..... x,,/t,,} with t~ = :c~a for all 1 < i < n. 

P r o p o s i t i o n  11 ( s u b s t i t u t i o n  is c o n t i n u o u s ) .  Every substitution ~r from X 
to Y,  regarded as a function from C T r ( X )  to CTx(Y) ,  is continuous. Moreover, 
for all sets of variables X,  Y, aT~d Z, the composition of substitutions _ o _ : 
Subsx (X, Y) x Subsx (Y, Z) ~ Subsx (X, Z) is continuous, i.e., it is continuous 
separately on both arguments. 

Proof. See [ADJ77]. 

3 T e r m  r e w r i t i n g  s y s t e m s :  b a s i c  d e f i n i t i o n s  

In this section we int::odnce some basic definitions abou t  t e rm  rewri t ing sys tems,  
like rules, redexes, a.nd the appl ica t ion of a redex to a te rm,  tak ing  into account  
the rich algebraic  s t ruc ture  of C'Tx. 

D e f i n i t i o n  12 ( r e w r i t e  r u l e ,  t e r m  r e w r i t i n g  s y s t e m ) .  A r e w r i t e  r u l e  R = 
(l, r)  is a pair  of  t e rms  of CTr(X) ,  where v a r ( r )  C_ var(1), and l is not  a vari- 
able. Te rms  I and r are called the left- and the r igh t -hand  side of  R, respectively.  
A rule is called left-Ill, ear if no var iable  occurs more  t han  once in I. A rule is 
left-finite if 1 is finite, and it. is total if I and r are to ta l  t e rms  (see Definit ion 2). 
In the pape r  we will consider to ta l  rules only. A t e r m  r e w r i t i n g  s y s t e m  R is 
a finite set of  rewrite rules, R = {Ri}i<,~. 

A redex (for REDucible EXpressioT~) is usually defined in the l i te ra ture  as an 
occurrence of the lef t -hand side of  a rule in a given t e rm at  a certain occurrence.  
We will use a slightly different definition, which does not  involve any term:  a 
redex is jus t  a pair  A = (w, R) where w is an occurrence and R is a rewri te  rule. 
Then  given any t e rm  t, a redex A = (w, R) can be total in t (if the sub t e rm  
of t at  w ma tches  the lef t-hand side of  R), or partial in t (if the ma t ch ing  is 
only par t ia l ) ,  or 7~ull in t (if there is no ma tch ing  at  all). This  definit ion allows 
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us to regard a redex as a total function from terms to terms, whose behaviour 
on a te rm is determined by its type w.r.t, that  term. More precisely, when a 
redex A = (w, R) is applied to a term t, there are three possible effects: if A is 
total  in t, then the result is the usual one, i.e., the application of rule R to t at 
occurrence w; if A is null in t, then the result is t itself; and finally if A is partial  
in t, then the result of the application of A to t is the best approximation we 
can determine of the actual result. For the sake of simplicity (and without loss 
of generality) we consider just  the rewriting of ground terms (i.e., elements of 
C T x ) :  the same definitions can be applied to the rewriting of terms of C T x ( X )  
as well, because the variables in the term to be rewritten play no role during 
rewriting. 

D e f i n i t i o n  13 ( r e d e x ) .  Given a term rewriting system R, a r e d e x  A (w.r.t. 
R )  is a pair A = (w, R) where w E w* is an occurrence, and R : 1 --+ r E R is a 
role. Given a term t E C T z ,  a redex A = (w, R) can be of three kind w.r.t, t: 

- A is t o t a l  in t if there exists a substitution 0- : var(1) --+ C T $  such that  
t / w  = Icr. In this case we say that  substitution cr makes A total in t. 

- A is p a r t i a l  in t if there is no er such that  t / w  = l~, but there exists a 
term l' < I and a substitution or' : var(l ')  --, C T 2  such that  t / w  = l' ~'. In 
this case we say that  the pair (l',~r ~) makes A partial in t. 

- A is nu l l  in t if it is neither total nor partial in t. 

For a given rule R, we will ofl.en denote the redex (A, R.) improperly by R 
itself. 

Example I (redexes). Given the rule R :  f ( g ( x ) ,  y) - -  h.(x), the redex ..4 = (1, R) 
is made total  in k ( f ( g ( 4 ) ,  b)) by substitution {x/_l_, ~]/b} and in f(g(_l_), 4 )  by 
substi tut ion { x / •  9/_I_}; it is made partial  in k ( f ( •  4 ) )  by pairs (f(_L, _1_), {}) 
and (f(.l_, y), { y / •  and it is null in k ( f (k (a ) ,  b)). Notice that,  by the definition, 
A is also made partial  in term c by the pair (4 ,  {}). 

Consider now the redex A'  = (A,R') ,  where R' : f ( g ( x ) , x )  --+ h(x)  is a 
non-left-linear rule. Then A'  is made total in . f (g(k(Z)) ,  k ( Z ) )  by substi tut ion 
{ x / k ( 2 ) } ;  it is made partial  in .f(_l_, k ( Z ) )  by pair ( f ( 4 ,  x), { x / k ( Z ) } ) ;  and it is 
null in f ( g ( k ( 2 ) ) ,  k(a)) .  

P r o p o s i t i o n 1 4  ( c h a r a c t e r i z a t i o n  o f  t h e  k i n d  o f  r e x e d e s ) .  Let A = (w, R :  
l---* r) be a redex and t E CT~  be a term. 

1. The kind of A in t (i.e., total, partial, or null) is uniquely determined. 
2. A is total in t ~ff the followiT~g two conditions are satisfied: 

(a) for  each occurrence v E Oz( l ) ,  t(wv) = l(v). 
(b) for  each. pair of disti~Tct oecurreT~ces of variables v, v' E O x  (I) such that 

l ( v )  : l ( v ' ) ,  t/w , = 

Moreover, the unique substilutio~ cr : var(l)  ~ C T 2  making A total in t 
(i.e., such that lcr = t i w )  is determi,,ed as xcr = t / w v ,  i f  x E vat ( l )  and v 
is any occurrence in O x ( l )  such that l(v) = x. 
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3. A is partial in t "~ the following three couditioT, s are satisfied: 

(a) for each occurrence v G Ox(1),  either t (wv)  -- l(v) or t (wv)  = _L; 
(b) for each pair of distinct occurrences of variables v, v' E Ox(1)  such that 

l(v) = l(v'), e;ther t / w v  = t / w e ,  or t / w v  = •  or t l ,vv '  = •  
(c) there erists aa occurrence v E O~r(I) such that t (wv)  = _1_, or there exist 

two occurre,,ces v, v' G Ox(1) such that l(v) = l(v'),  and t / w v  7s t / w v ' .  

As a consequence, for every occurrence w a ,d  rule R, i f  w ~ O(t)  then the 
redex (w, R) is partial in t. 

~. A is null in t i f f  one of the following conditions hold: 

(a) there exists an occurrence ~, C O~(l)  such that t (wv)  r _L and t (~v)  7s 
l(v), 

(b) there exist two distinct occurre.ce~ v,v' e Ox( t ) ,  with l(v) = 1(r 
t/~,,v r •  t /wv '  r •  a ,d  t /w~  r t /wv ' .  

It is worth stressing that  the conditions characterizing total, partial,  and 
null redexes can be simplified in the case of left-linear rules. In fact, if R is 
left-linear then the second condition of the characterization of total  and partial  
redexes always holds (it is vacuous), while condition 4.b and the second par t  of 
condition 3.c cannot be satisfied. Exploiting this fact it is possible to prove the 
following lemma. 

L e m m a  15 ( p r o p e r t i e s  of  l e f t - l i n e a r  r u l e s ) .  Let R be a left-linear rule. I f  
t <_ t ~, then 

1. if  (w, R)  is total in t, then it is total m t~ ; 
2. if  (w, R)  is ~ull in t, then it is null i~ t~ ; 
3. if  (w, R)  is partial i7~ f ,  then it is partial in t. 

We define now what does it mean to apply a redex to a term t. As expected, 
the result of this operation depends on the kind of the redex in t. 

D e f i n i t i o n 1 6  ( r e d e x  a p p l i c a t i o n ) .  Given a redex A = ( w , R  : 1 ---* r), the 
result of its a p p l i c a t i o n  to a term t, denoted A(t ) ,  is defined by the following 
clauses: 

- A( t )  = t[w ~-- rcr] if o" makes ~ total in t (i.e., I. = t /w) ;  
- A(t) = t[w - -  (l' D r)~] if (/',or) makes _A partial  in t (i.e., l' < I and 

l'~ = t /w);  
- z2(t) = t if A is null in t. 

We also write t ---~ s to mean A(t) = s, and we say that  t r e w r i t e s  to  s v i a  
A. Recalling that  R also denotes the redex (A, R) (see Defni t ion 13), it follows 
that  R(t )  denotes the result of the application of R to the topmost  operator  of 
t. 
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The second clause of the last definition may be not obvious. The idea is that 
as far as we have just a partial matching of the lhs of a rule with a term, we 
cannot specify completely the term resulting fi'om the application of the redex: 
we should wait for additional information ahout the term, which can either 
complete the matching successfully (and then the first clause is applied) or can 
cause a clash (in this case the third clause is applied). Thus if the matching is 
just partial, we can specify the result just as far as the first and the third clauses 
agree: this is expressed by the term (1' n r)cr obtained by applying the matching 
substitution to the largest term included both in the approximation I' of the 
left-hand side, and in its right-hand side r (see Definition 3 for the definition of 
t N tl). 

In order to prove the well-definedness of the last definition, we need the 
following technical lemma. 

L e m m a 1 7 .  Let l', l" be two terms aT~d let ~r' : var(l ')  ---, C T 2 ,  ~r" : var ( l " )  --+ 
C T 5  be two substit~ttions. I f  l'~r' <_ l"~r" a~d I r and l" h.ave a common upper 
b o ~ a  (i.e., l' <_ l a,,a I" < I for so,,,~ I), ~1,~.,, fo~ ~acl, t~r,,~ r it holds ( r n r > '  <_ 
( l" n r )~" . 

P r o p o s i t i o n 1 8  ( r e d e x  a p p l i c a t i o n  is we l l -de f ined ) .  The application of  a 
redex A to a t e rm t is well-defined, that is, A ( t )  is uniquely determined. Thus 
A is a total funct io~ A �9 C T 5  ---. C.'T2. 

P r o @  By Proposition 14.1 the three clauses of Definition 16 are applicable in 
mutually disjoint cases. The fact. that  A(t) is uniquely determined is obvious if 
,4 is total or null in t (if it is total, the substitution cr making it total is unique, 
as stressed in Proposition 14.2) 

If the second clause is applied, we have to show that if (l', or') and (t", a")  
make _4 partial in t, then (l' N r)~'  = (l" n r ) r  But the fact that  (l', ~r') and 
(l", or") make A partial in t means that if, l" < 1 and that the two substitutions 
or' : var( l ' )  --+ C T ~  and cr" : var ( l " )  --+ C T 2  are such that  l'cr' = t / w  = 1"r 
Then (l' n r)(r' = (l" n r)c/ '  follows by two applications of Lemma 17. Therefore 
A(t) is well-defined also when A is partial in t. 

The following statement stresses some properties of rule application which 
will be helpful later on. The listed properties can easily be checked by a careful 
inspection of the corresponding definitions. 

P r o p o s i t i o n  19 ( p r o p e r t i e s  o f  r u l e  a p p l i c a t i o n ) .  The following properties 
hold for  every rule R,  for  all t, s E C T 5 ,  and ~:, w E ~* .  

1. (vw, R) ( t )  = t[v ~-- (w, R) ( t / v ) ]  
g u ,  = ~, this si,,,pli~es to (v, R)(t)= t [ v -  R(t/,,)]. 

2. ( ~ v ,  R ) ( t [ ~  ~-  s]) = ~[w - (~,, R ) (~ ) ] .  
3. I f  A = ( w , R )  a,,d vl~; the,, ~( t ) /~ ,  = t / t , .  
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4 O n  l n o n o t o n i c i t y  a n d  c o n t i n u i t y  o f  r u l e s  

Since redexes are just functions froll] CT.,r to itself (as shown in Proposition 18), 
it makes sense to talk about monotonic  and continuous redexes. These notions 
may be extended to rules in an obvious way. 

D e f i n i t i o n 2 0  ( m o n o t o n i c  a n d  c o n t i n u o u s  ru l e s ) .  A redex A is monotonic  
(continuous) if so is the corresponding function A : CT~  -* CT~ .  A rewrite 
rule R is m o n o t o n i c  ( c o n t i n u o u s )  if for every occurrence w E w*, (w, R) is 
monotonic (continuous). 

The following proposition shows that in order to check the continuity (or 
monotonicity) of a rewrite rule, it is sufficient to examine its effect when applied 
at the topmost occurrence of a term. 

P r o p o s i t i o n 2 1  ( ru les  a n d  t o p m o s t  r e d e x e s ) .  A rewrite rule R is mono- 
tonic (co,, t inuous) iff rede~, ()~, R) is monotonic  (continuous).  

Pro@ The only if  part is obvious. For the ff part, by Proposition 19.1 we have 
that  for every occurrence w E ~s*, (w, R)( t )  = t[w ~ (~, R ) ( t /w) ] .  Therefore 
(w, R) is a suitable composition of subterm selection (_/w),  of subterm replace- 
ment (_[w +-- _]), and of the redex (A, R). Then the thesis follows by observing 
that  for all w E w*, functions _[u, - -  _] and _/w are continuous (see Propositions 
6 and 8). 

The next interesting result shows that  the classification of rewrite rules (re- 
garded as functions) with respect to their algebraic properties is consistent with 
the usual classification based on the properties of the left-hand side. In fact, 
left-linearity and left-finiteness of rules are proved to be strictly related to mono- 
tonicity and continuity. 

T h e o r e m  22 ( c h a r a c t e r i z a t i o n  o f  m o n o t o n i c  a n d  c o n t i n u o u s  ru le s ) .  Let 
t~ : 1 ---* r be a rewrile rule. Then 

I. If R is left-linear then it is moT~oto~ic. 
2. I f  R is left-linear aT~d left-finite then it is continuous. 
3. I f  R is not lefl-hnear, then it is monotonic iff l = r. 
~. I f  R is not lefl-fi~ite, the~ it is co~di~uous iff l = r. 

Example 2 (no,~-mo,~otonic and noT~-conti,~uous rules). Let R = f ( x , x )  --~ k 
be a non-left-linear rule. C.onsider the terms tl  = f(g(_l_),g(_l_)) and t2 = 
/(g(b),g(c)). Clearly, < k and --'R /(g(b),g(c)), but k 
f (g(b) ,  g(c)). Thus R is not monotonic. 

Let R = f ( f ( f ( . . . ) ) )  ~ k be a left-infinite rule, let f'*(_l_) = f ( f ' * - t (_k ) )  
for each 1 < n < a~, and let if(_1_) = f ( •  Then f'*(_l_) --+n _1_ for all n, but 
f~ ---~n k,. Thus R is not continuous. 
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We restate now the well-known Chm'ch-Rosser theorem for independent, fi- 
nite set of redexes (see for example [Ros73, K191]). We show that  the Church- 
Rosser property holds for monotonic  rules. It  is worth stressing that ,  as for 
redexes, also the definition of independe,.ce of  redea:es presented below is given 
in a way which is independent of the actual term to be rewritten, unlike the 
related literature. The Church-Rosser theorem will allow us to define in the next 
section the parallel rewriting of a term via a finite set of independent redexes. 

D e f i n i t i o n  23 ( i n d e p e n d e n t  r e d e x e s ) .  Two redexes (w, R : 1 - -~  r) and (w' , /~ '  : 
1' --+ r ' )  are i n d e p e n d e n t  if their left hand sides do not overlap on occurrences 
of operators,  that  is, if w .  COx(l) A w' �9 COx(F) = 0 (if V is a set of occurrences 
and w is an occurrence, by w.  V we denote the set. {wv  Iv  E V}). 

T h e o r e m  24 ( C h u r c h - R o s s e r  p r o p e r t y  fo r  m o n o t o n i c  r e d e x e s ) .  Let R :  
1 ---+ r and R'  : l' ~ r' be two monotonic rules, and let A = (w,t~) and A I = 
( w ' , R ' )  be two indepeude . t  redexes. For every term t E C'Tr  there exist two 
natural numbers  1 <_ n , ~  < w and occurrences "vl , . . . ,v , . ,v~, . . . ,v~,  such that 
( V l , / ~ )  o . .  o ('vn, R )  o/-.~"(t) = (v~ , /~" )  o . . . o  " �9 (%, ,  I ~ ' ) o A ( t ) .  Moreover, i f w  }l. w'  
(i.e., w lw '  o r w  < w',  because w r w' by independence of  A and A ' ) ,  then the last 
s ta tement  holds for  n = 1 and vl = w (lhat is, there ea:isls a number  1 <_ n' < w 

I I ' ' a o a ' ( t )  = (":1, n ' )  o . . o  n ) o zX(t)). a n d  o c c u r r e d ,  des v 1 ~ ...~ Vnr 

5 Infinite Parallel Rewriting 

Exploiting the Church-Rosser theorem presented in the last section, it is easy 
to define a notion of parallel term rewriting. To this aim, we need to stress that  
the theorem not only shows that  one can build the classical 'd iamond '  when 
two different (monotonic,  independent) redexes are applied to a term, but it 
also shows that  the term 'closing the d iamond '  can be characterized easily as 
A o A:( t ) ,  provided that  wi'w' or w < u/  (symmetrically, if instead w > w', 
then the term c]osing the diamond is A'  o A( t ) ) .  W e  will use the Church-Rosser 
diamond to define in an obvious way the parallel application of two redexes 
to a term. Actually, we consider the parallel application of any f inite set of 
independent, monotonic redexes. 

D e f i n i t i o n  25 ( p a r a l l e l  r e d e x e s ) .  A p a r a l l e l  r e d e x  r is a (possibly infinite, 
necessarily countable) set of monotonic ,  mutual ly independent redexes. The set 
of root occurrences of a parallel redex q~ is defined a,s CO,.t(4) = {w E w* I 
3R.  (w, R) E r  A parallel redex q3 is continuous if all the redexes in (b are 
continuous�9 If t E C T 5  and q~ is a parallel redex, then the parallel redex �9 f3t is 
defined as the subset of q~ including all redexes whose occurrence is an occurrence 
of t, i.e., r n t  = {A E rb { A = (w, ,2) A w E C0(t)}. 

D e f i n i t i o n  26 ( a p p l i c a t i o n  a n d  c o m p o s i t i o n  o f  f i n i t e  p a r a l l e l  r e d e x e s ) .  
Let ~ = {,--41, . . . ,  A,~} be a .finite parallel redex with Ai = (wi, Ri)  for all 
1 < i < n. Then r is also a function (called f inite parallel redex application) 
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05 : CT~p ---+ C T x ,  defined as q5 = Ai~ o . . .  o A i ,  , where (Ai~ , . . . ,  Ai , )  is any 
permutat ion of q5 such that for all 1 _< j < k < n, wij )~ wik (i.e., either wij [wik 
or wi i <_ wik).  If 05 and 05' are two parallel redexes, their parallel composit ion is 
the parallel redex 05[105' = {A I A E ~P or A E 05'}, and it is defined only if all 
redexes in 05 U 05' are mutually independent. 

The well-defiuedness of finite parallel redex application is ensured by the next 
result. 

P r o p o s i t i o n  27 ( f in i te  p a r a l l e l  r e d e x  a p p l i c a t i o n  is we l l -de f ined ) .  Let 4) = 
{ A~, . . . , A, ,  } be a f inite parallel re&a;. Then the finite parallel redex application 
05 : C T ~  --+ C T x  is well defined. That is, i f  ( A t , , . . . ,  A i . )  and ( A h ,  . . ., A l , )  
are two permutatioT~s of  05 such thal for  all 1 <_ j < k < n both wij  ;r wik and 
w b ~ wl~, then Ai~ o .. :o ,Ai, = A h o . . .  o A t  . 

Fact 28 ( m o n o t o n i c i t y  a n d  c o n t i n u i t y  o f  p a r a l l e l  r e d e x e s ) .  I f  05 is a fi- 
nite parallel re&x, then 05 : C T ~  ---, C T ~  is monotonic.  Moreover, i f  all lhe 
redexes in 05 are con li~uous, lhe~7 fu~ct ion 05 is continuous as well. This fol- 
lows direclly f rom the d@'nitious, because 05, regarded as a funct ion,  is a suitable 
composit ions of  all ~he redexes it eo~tains. 

We are now ready to extend the definition of a.pplication of parallel redexes 
to the infinite case. Since in the finite case the application of a parallel redex is 
defined as the sequential application of all contained redexes (in a suitable order), 
a naive extension to infinity wouldn't work, because it would correspond to an 
infinite composition of functions. We propose therefore a definition which makes 
use of a suitable limit construction. The main result of this section (Theorem 32 
below) proves that the definition is well-given and consistent with the definition 
of finite parallel redex application, provided that all the involved redexes are 
continuous. Thus we., restrict the definition to confinuous parallel redexes. 

D e f i n i t i o n  29 (pa ra l l e l  r e d e x  a p p l i c a t i o n ) .  Let 05 be a continuous, possibly 
infinite parallel rede• and let t E C T ~ .  Let {ti}i<~ be any chain of terms such 
that  t = Ui<,,{t l} ,  and such that for all i < w the parallel redex 05i - 0 5 M t i  is 
finite. Then the applieatioT~ of 05 to t is defined as 05(t) = Ui<~{05i(tl)}. 

In order to pro~e the well-definedness of the last definition, we need two 
technical lemmas that state some important  properties of parallel redexes. 

L e m m a  30 ( s o m e  p r o p e r t i e s  o f  pa r a l l e l  r e d e x e s ) .  

1. Le! 05 and 05' be two fi'7~ite, parallel redexes, such that all redexes in 05 U 05' 
are mutual ly  indepe~dent. I f  for  all w E 0,.~(05) and for  all w' E Oft(05') 
w ~ u/ ,  the~7 051105' = 05 o 05'. 

2. I f  05 is a finite parallel rede,v, the,, for  all t E C T ~ ,  05(t) = (~  M t ) ( t ) .  
3. I f  05 is a parallel rede.r, t E C T 2  , and 05 n t is finite, then for" all t '  such that 

t <_ t' a , ,d for  al l f ini te  05' such. lha! 05Mr C_ 05' c_C - 05, it holds (05Nt)(t) _< 05'(t'). 
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L e m m a  31 (a  p r o p e r t y  o f  c o n t i n u o u s  p a r a l l e l  r e d e x e s ) .  Let t ~ CT~ and 
let 95 be a cont inuous parallel redex such that 95 M t is finite. Then for all v 
0((95 n t ) ( t ) )  there exists a f in i te term t.~, < t such that (95 n t ) ( t ) ( v )  = (95 n 
t~)(t~)(v).  

T h e o r e m 3 2  ( p a r a l l e l  r e d e x  a p p l i c a t i o n  is w e l l - d e f i n e d ) .  Let 95 be a con- 

t inuous ,  possibly infinite parallel rcdex. 

1. I f  {ti}i<~ is any chain of terms such that t = Ui<~{ti}, and such that for 
all i < a~ the parallel redex 95i = 95 M ti is finite, then {95i(ti)}i<w is a chain. 

2. Definition 29 is well given, i.e., 95(t) does not depend on the choice of the 
chain approximating t. 

3. Definition 29 is consistent u, ith the definition of finite parallel redex applica- 
tion (Definition 26). 

Pro@ 1. We have to show tha t  i f t  _< t '  and both 95VIt and qsr-lt' are finite, then 
(95 fl t ) ( t )  <_ (95 M t ')(t ' ) .  This  follows direct ly f rom L e m m a  30.3, observ ing  
t h a t  (95 n t) c_ (95 n t') _ 95. 

2. Let t E C T x ,  and let {s~}~<,, and {t~}~<~, be two chains a p p r o x i m a t i n g  
t, such t ha t  for all i < ~z bo th  4) M si and 95 M ti are finite. Moreover,  let 
s' = Ui<o~{(95nsl)(sl)} and t' = ui<~,{(95ntl)(ti)} Then  we have to show tha t  
s' = t': we show jus t  tha t  s '  _< t '  (i.e., tha t  s ' (v)  = t ' (v)  for all v E O(s ' ) ) ,  
the converse being symmet r ica l .  
Let v E O(s') .  Since s' = Ui<,,{(95 N si)(s l )} ,  there exists a. k < a~ such t ha t  
v e 0((95 VI s~,)(s~,)) and (q~ VI .%) ( sk ) ( v )=  s ' (v) .  By L e m m a  31, there exists 
a finite t e rm  ~ _< .% _< t such tha t  v E O((qsRi~)(g~))  and (95n.ik)(gk)(v) = 
(95 fl Sk)(Sk)(V) = S'(V). Since &. < t is finite, there exists an n such t ha t  
~k _< t,~, and therefore (95 M .~:)(i '~-)< (95 glt,~)(t~) (by L e m m a  30.3). As a 
consequence,  s'(v) = (95 gl .~, )(.sh,)(v) = (95 V/t , . )( tn)(v) = t '(v).  

3. Let 95 be a finite, cont inuous parallel  redex and let t E CT~ .  Let t = 
Ul<_i<~o{ti}, and t' = U,.'<~{(# n t i ) ( t ; )}  (95 A ti is clearly finite for all 
i). Then  we have to show tha t  t' = 95(t). In fact,  since 95 is finite there 
mus t  exist, a k < ,~ such tha t  for all k _< j < w, 95Vltj = 95Mt.  Thus  
95(1) = ( 9 5 N t ) ( t )  = ( 9 5 N t ~ ) ( U i < ~ , { t l } )  = ( .95ntk)(Uk._<~<~{t i})  = u k < i < ~ { ( 9 5 n  
t~ ) ( t~ ) }  = u~._<~<~{(95 n t,:)(t~)} = u~<~,{(95 n t ; ) ( h ) }  = t'. [] 

T h e  next  example  shows tha t  the cont inui ty  of 95, required in the last  theorem,  
is a necessary condit ion,  at  least for points  2 and 3. 

Example 3. Let 95 = {(A, R)} be a finite parallel redex, where R = f ( f ( f ( . . . ) ) )  --~ 
k is a left-infinite rule tha t ,  as shown in Example  2, is not  continuous.  Clearly, 
95(f,o) = R(fo~) = k using Definition 26. Now, let ti = f~o and si = fi(-l-) for 
all 1 _< i < w. Then ,  obviously,  Ui_<~,{ti} = f~  = Ui_<~{si}, and 95 M tl and 
95 fl sl are finite for all i. Moreover.  for all i < '.~, 95(ti) = k (because R is to ta l  
in t i)  and 95(si) = si N k = _L (because R is par t ia l  in si). As a consequence,  
U~_<,~{95(t~)} -- k, but  U~_<~ {95(s~)} = 2 ,  showing tha t  infinite paral lel  redex ap- 
p l ica t ion is not. well-defined if one wants to extend it. to non-cont inuous  redexes. 
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6 C o n c l u s i o n  a n d  f u t u r e  w o r k  

In this paper we extended the theory of term rewriting systems to infinite and 
partial terms (i.e., the elements of algebra. CT2), fully exploiting the complete 
partially ordered structure of CT2. By regarding redexes and rules, as well as 
the main operations on terms, as total functions, we studied their properties of 
monotonicity and continuity. For rules, we showed that non-left-linear rules are 
in general not monotonic, and that left-infinite rules are in general not contin- 
uous, unless the left- and right-hand sides are identical. Then we showed that  
the well-known Church-Rosser property of non-overlapping redexes always holds 
for monotonic rules. We exploited this property in order to give meaning to the 
parallel application of a finite set of monotonic redexes, and using standard alge- 
braic techniques we extended the definition to the infinite case. Infinite parallel 
term rewriting, which is the main contribution of this paper, is well-defined if 
all the involved rewrite rules are contilmous. 

This paper is just a first step towards a. complete theory of term rewriting 
in CT2. A lot of work remains to be done in many directions. For example one 
should consider the extension of other classical notions of the term rewriting 
literature (like continence and termination, just to mention two of them) to the 
setting described in t.his paper. 

Coming back to the motivating example presented in the introduction, the 
author is currently working with Frank Drewes, Berthold Hoffinann and Detlef 
Plump of Bremen i1~. order to show that infinite parallel term rewriting as de- 
fined here is a.dequa.te with respect to cyclic term graph rewriting. A single 
graph rewriting step would correspond to a single infinite parallel term rewrit- 
ing step, where the same rule can be applied to an infinite ( 'rational ')  number 
of independent redexes. In our view this solution is more satisfactory than the 
one proposed for example in [KKSV90], for at least two reasons. First, finite 
graph derivations can be modelled by fimle term reductions, while in [KKSV90] 
a finite graph derival;ion may correspond to an infinite term derivation. Second, 
the collapsing rules (like I~l in the Introduction) are handled in a completely 
uniform way in our a, pproach, while in the mentioned paper they are treated in 
an ad hoc manner in many definitions and proofs. 
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