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Abstract. The specification and derivation of substitution for the de Bruijn
representation of A-terms js used to illustrate programming with a function-
sequence monad. The resulting program is improved by interactive program
transformation methods into an efficient implementation that uses primitive
machine arithmetic. These translormations illustrate new techniques that
assist the discovery of the arithmetic siructure of the solution.

Introduction

Substitution 1s one of many problems in computer science that, once understood in
one context, is understood in all contexts. Why, then, must a different substitution
function be written for every abstract syntax implemented? This paper shows how
to specily substitution once and use the monadic structure of the specification to
instantiate it on dilferent abstract syntax structures. It also shows how to inter-
actively derive an efficient implementation of substitution from this very abstract
specification.

Formal methods that support reasoning about free algebras from first principles
based on their inductive structure are theoretically attractive because they have
stmple and expressive theories. However, in practice they often lead to inefficient al-
gorithms because they [ail to exploit the “algebras” implemented in computer hard-
watre. This paper examines this problem by giving a systematic program development
and then describing a series of (potentially) automatic program transformations that
may be used to achieve an efficient implementation.

The particular program developiment style employed is based on the categorical
notion of a monad. This approach to specification has been advocated by Wadler[8]
and is strongly influenced by Moggi’s work on semantics[6]. The substitution algo-
rithm for A-calculus terms represented with de Bruijn indexes serves as the primary
example. The development of the specification is a refinement of an example in Hook,
Kieburtz and Sheard[5]. It is noteworthy because a non-standard category is used;
the earlier work did not identify this category.

The specification is transformed into first-order equations using techniques im-
plemented in the partial evaluator Schism[4]. It is then refined to an equivalent first-
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The first thing to observe about the sequence is that its general shapeis g;110 =0
and 0;41(n + 1) ~ o;n. To make it exact it is necessary to increment all global
variables in o;n without incrementing the local variables. This is done by another
sequence of functions:

fon=n+1 f10=0 f20=0
filn+1)=n+2 fl=1
fan+2)=n+3

Observe that in the example a single application of f to the body of 011 accounts
for X.01 being adjusted to A.0 2. In general the f; are generated by fi410 = 0
and fiy1(n+ 1) = (fin) + 1. So, assuming a map that applies a family of functions,
the family of substitution functions, (o9, 01, ...}, is given by the initial substitution,
09, and the recurrence ¢;410 = 0 and gi41(n + 1) = map (fo, f1,...) (gin). Given
the sequence of functions, (g, 71, . ..), mapping indexes to terms, the map function
for sequences can be used to apply the sequence of substitution functions. This,
however, results in terms of terms, since every variable has replaced its index by a
term. This is not a problem, however, because the Term type constructor developed
below is designed to be a monad; monads have a polymorphic function, mult, which
performs the requisite flattening.

2 Monads

A monad is a concept from category theory that has been used to provide structure
to semantics[6] and to specifications[8]. In the computer science setting a monad is
defined by a parametric data type constructor, T, and three polymorphic functions:
map : (& — f) — Tow — TH, unil : @ — Ta, and mall : TTo — Ta. The map
function is required to satisly map idy = idrq and map {f og) = map fomapg. The
polymorphic functions unit and mult must satisfy mull, o unily, = idro, mully o
(map unity) = idrq and mull, o mullp, = mully o (map mully). A simple example
of a monad is list. For lists, map is the familiar mapcar [unction of Lisp, unil is
the function that produces a singleton list, and mull is the concatenate function
that flattens a list of lists into a single list. Other examples of monads are given by
Wadler(§].

Several categorical concepts are implicit above. The functional programming cat-
egory has types as objects and (computable) functions as arrows. {Values are viewed
as constant functions—arrows from the one clement type.) The requirements on map
specify that the type constructor T and the map function together define a func-
tor. The polymorphic types ol unit and mull implicitly require them to be natural
transformations. The three laws given for them are the monad laws.

Monads have been used to structure specifications (and semantics) because it
is often possible to characterize interesting facets of a specification as a monad.
Algorithms to exploit the particular facet may f{requently be expressed in terms of
the map, unit and mull functions with no explicit details of the type constructors.
Finally, the many facets are brought together by composing the type constructors.
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3 The Term Monad

The development in Sect. 1 suggests that the specification of the substitution opera-
tion will be straightforward in a monadic data type with an appropriate map. To be
monadic, the data type must be parametric. The following simple type declaration
is sufficient?:

datatype Term(a) = Var{a)
| Abs(Term(a))
| App(Term(a) * Term(a))

Using techniques developed in earlier work, it is possible to automatically gen-
erate map, mull -and wunit functions for this type realizing a motiadic structure[5].
Unfortunately, the map function obtained with those techniques does not work with
families of functions.

To accommodate the function sequences a new category, 'UNSEQ, is used. The
objects are data types, as before, but the morphisms are sequences of functions
(formally HoM(A, B) = (B4)"). Identities are constant sequences of identities from
the underlying category; composition is pointwise, i.e. (fi)iew o (¢i)icw = (fiogi)icw-

The map function for Term exploits the new structure by shifling the series of
functions whenever it enters a new conlext. lis definition is given as a functional
program:

map (fo, f1,...) (Varz) = Var((fo, f1,...) )
map {fo, f1,...) (Abst) = Abs(map (f1, fo,...) 1)
map (fo, f1,...) (App(t,1')) = App(map (fo, f1,...)t, map (fo, f1,...) 1)

It is easily verified that (Term, map) satisfy the categorical definition of a functor.

Looking at these definitions, it is clear how to insert an ordinary function or value
into the category, and it is straightforward to insert the families of functions needed
for the example by giving the initial clement of the sequence and the functional that
generates all others. However, it is also necessary to define the mapping that pulls
a computation from FUNSEQ back into the category of funciional programs. This
is accomplished by taking the first element of the function sequence. Thus, one way
to realize the map function of FUNSEQ in a funclional programming setting is with
the map_with_policy function introduced in Hook, Kieburtz and Sheard[5):

map_with_policy Z f (Varz) = Var(fz)

map_with_policy Z f (Abst) = Abs(map_with_policy Z (Z ) t)

map_with_policy Z f (App(L,t')) = App(map_with_policy 7 ft,
map_with_policy Z [ 1)

In this encoding Z is the functional that generates the sequence and f is the seed
value. That is, (map (f,Zf,Z2f,...))o = map_with.policy Z f. Note the projection

2 This is a simplified form of the Term data type in Hook, Kieburtz and Sheard[5]. An
anonymous referce has pointed out that an alternative structure can be used instead.
The argument 1o Abs may be given the type Term(1l + a) (where + is interpreted as
a discriminated union). While this structure is very interesling, it is not possible to
express the map function for this type in the Standard ML type system. Preliminary
results indicate this structurc can be used to specify substitution.
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of the first element from the family of functions on the left hand side indicated by
the subscript 0.

The unit and mull functions automatically generated for Term can be lifted to
FuNSEQ. Simple inductions show that they satisfy the monad laws.

With these definitions in place the complete definition of substitution is given in
Fig. 1. Note that the algorithm makes no explicit mention of the data constructors. It
only uses the information about the type implicit in the definition of map_with_policy,
unit and mull.

fun apply_substitutionog M =
let funsuccz =z +1
fun transform_index f
= An.ifn = 0thennelsel+ f(n —1)
fun trensform_substitutiono
= An.ifn = 0 then unit 0
else map_with_policy transform_index succ (o(n — 1})
in  mult(map_with_policy transform_substilutionao M)
end

Fig. 1. Substitution function

4 Transformation to a First-Order Set of Equations

To obtain a practical algorithm, the substitution function apply_substilution in Fig. 1
must be made more cfficient. This section shows how this transformation can be
done automatically. Program transformation systems operate on systems of first-
order equations. To apply them to the specification of substitution the higher-order
facets must be translated into first-order structures. A partial evaluation system is
used to accomplish this.

The software allowing a complete automatic transformation is not yet written.
The transformations below have been performed with the Schism partial evaluator [4]
and the Astre program transformation system [1], which are not yet integrated and
do not use the same language.

4.1 Transformation of the map_with_policy Operator

The first step is to rewrite the program using the map_with.policy operator for
the type Term(a) as a system of first-order functions. A partial evaluator can
be used to specialize higher-order functions decreasing their order level. For ex-
ample, consider the particular function ¢y in the example in Sect. 1, and the call
apply_substitulion aq. A partial evaluator produces a program that does not contain
apply_substituiion in its full gencrality; it specializes the definition of apply_substitution
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for the particular constant og. This specialization, called apply_substilulion_gg, does
not have a function as an argument, so it is first-order.

Unfortunately, this technique is insuflicient for processing calls of map_with_policy,
which is called twice in the program in Fig. 1. The specialization of map_with_policy
for a particular policy function K and seed function go gives the following function
Muwp_g:

Muwp_g (g, Var(n)) = Var(g(n))
Muwp_g (g, Abs(t)) = Abs(Muwp-g(K g¢,1))
Muwp-g (g, App(1,t")) = App(Muwp_g(g,1), Mwp_g(g,1"))

The function Mwp_g has a function as an argument. But if it is specialized for
a particular function gg, the partial evaluator has to specialize the internal call
Muwp_g(K g,t); it loops on this attempt. Fortunately, the partial evaluator is able
to detect this circumstance, allowing it to select another technique. The alternative
technique transiates the higher-order functions into a system of first-order functions.
This standard encoding, which is due to Reynolds [7], is outlined below.

1. The first step constructs a data type that encodes how the higher-order argu-
ments are manipulated and applied. In this case the functions to be encoded are
g0 and K g. For the constant function, gg, a constant C' is introduced as a sum-
mand in the data type Func. The argument K g cannot be encoded by a simple
constant value because it contains g as a {ree variable. Since g is a higher-order
parameter, it will already be represented by a value of type Func. Hence the new
constructor, F', representing the application of I, must have type Func — Func.
This gives the data type Func, defined datatype Func = C'| F(Func).. The in-
troduction of this type is a rediscovery of the sequence of lunctions gg, g1, ...
because it encodes each function in the family. The function gq is encoded by C,
and the function gz, for example, is encoded by F(F(F(C))), which is writlen
F3,

2. The functions appearing as actual arguments are replaced by their encodings.
The argument functions do not exist anymore—they are replaced by first-order
data. In the call Mwp_g(qgo, M), go is no longer a {function but a first-order value,
[g0], of type Func. The definition of Mwp.g leads to the new function Mwp_g':

Muwp_g'([g], Var(n)) Var([g1(n}))
Muwp_g'([g], Abs(1)) Abs(Muwp-g'(F([4]),1))
Muwp_g'([¢], App(t,V')) = App(Muwp-g'([g],1), Mwp.g'([g],1'))

11

]

But since [g] is not a lunction, the application [¢](n) is nonsense.

3. To make sense of the applications of functional parameters in the original pro-
grams “application” functions are introduced. Specifically the function apply_g,
defined below, decodes applications of the form [g](n).

apply_g(C,n) = go(n)
apply-g(F([g]),n) = (X In . applyg([q],n))(n). 4)

Note that apply_g is a first-order function because its argument, [g], is an element
of the type Func. The partial evaluator unfolds the definition of the policy
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function K to get a first-order expression of apply.g(F([g]), n). The definition
of Mwp_g' can be completed into:

Muwp_g'([g], Var(n)) = Var(applyg([g],n))
Muwp_g'([g], Abs(t)) = Abs(Mwp_g'(F([g]),1))
Muwp_g'([g], App(t,t')) = App(Mwp_g'([g] 1), Muwp.g'([4],1"))

Recall that this encoding is done with respect to a specific call of map.with_policy
Z go M. In the program in Fig. 1 there are twosuch calls. If the partial evaluator suc-
ceeds in the transformation of (4), then the new functions corresponding to Mwp_g
and apply_g will constitute a’first-order program equivalent to the funclions gener-
ated by map_with_policy. This step of the transformation can be automated using a
partial evaluator.

4.2 Application to apply_subsliiution

Using the preceding techniques, the function apply_substitution is successfully trans-
formed into the firsi-order program in Fig. 2. The data Lype Subst and the data type
Fseq are introduced using the techniques above for the encodings of {ransform_index
and transform.substilution.

datatype Subst = S0 datatype Fseq= SUCC
| SUBST(Subst) | FSEQ(Fseq)

fun apply_substitution_oo(M) =
let fun apply f(SUCC, n)
| apply-f(FSEQ([), n)

fun Mwp_f(f, Var(n))

| Mwp_f(f, Abs())

| Mwp_f(f, App(L,1'))
fun apply-o (S0, n)

| apply.o(SUBST(c), 1)

s(n)

ifn =0theno

else s(apply-f(f,n — 1))
Var(apply_f(f,»))
Abs(Mup_f(FSEQ(f),1))
App(Muwp_f(f, 1), Mup_f([, 1))
ao(n)

if n = 0 then unit(0)

else Mwp_f(Suce, {apply.c{o,n — 1))}
Var(apply.o(e,n))
Abs(Mwp_a(SUBST(0), 1))
App(Muwp_a(a,t), Mup_o(a,1'))

([ 1 O T

fun Mwp_o(o, Var(n))
| Mwp_o(o, Abs(t))
| Mwp_a(a, App(L, "))
in  mult(Mwp_(o)(50,M))
end

Fig. 2. First-order Program

These two data types are isomorphic to the data type Naf® which is implemented
efficiently in the hardware. However, the specialized function Mwp_o does not exploit

* The constructors for the data type Nal are 0 and s, i.e. datatype Nat = 0 | s(Nat).
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the efficient implementation since it uses the (essentially unary) representation of
the data type instead. Thus, the function apply.c must peel oll all of the data
constructors each time Mwp_o is applied to Var(n). For example, after three levels
of abstraction, o3 is represented by SUBST(SUBST(SUBST(S0))). (The same is
also true of the function Mwp_f.) To eliminate this inefliciency, which was present in
the calling behavior of the original specification, the data types Subst and Fseq must
be changed to the uniform data type Nei. This transformation can be performed
automatically by Astre. Ultimately the explicit use of Nal will facilitate the use of
primitive arithmetic in the program.

5 Simple Transformations

The following two simple transformations are performed automatically by Astre after
introducing new function symbols. The first one introduces indexes to count the level
ol abstractions. The second replaces the composition of Mwp with the function mult
by a single function. The order of these Lransformations does not matter; theéy can
be done simultancously.

For technical reasons recursive definitions of the form g(n) = ifn = Othene;elsee,
are manipulated more eflectively by Astre in the equivalent form ¢(0) = e;[0/n] and
¢(s(n)) = ea[s(n)/n]. The notation efe’/z] denotes Lhe substitution of expression ¢
for x in e. This restriction of the form of equations ensures the termination of the
rewriting used by Astre Lo unfold the definition of g.

5.1 Introduction of Indexes

The isomorphism belween the automatically generated type Subst and the natural
numbers is made explicit by introducing the function iso.o : Nal ~— Subst:

fun fun ise_e(s(i)) = SUBST(is0-0(i))
| is0.0(0) S0

The functions apply-c and Mwp_g are replaced by the new functions &(%,n) (for
oi(n)) and Mwp_o’, respectively. These lunctions satisly o (i, n) = apply-o(iso_o(i),n)
and Mwp_o'(i,n) = Mwp_a(iso_o(i), n). Using these new equations, the Astre system
implements the dala type Subst using the dala type Neil. New functions to imple-
ment the data type Fseq using Nail are also provided to the Astre system which then
gives the program in Fig. 3. The program in Fig. 3 does not improve the perfor-
mance of the program in Fig. 2. [lowever, its explicit use of numbers is key to the
improvements presented in the next section.

5.2 Composition Step

The transformation continues with a simple (automatic) step that replaces the com-
position of mull with Mwp.o’ by a single funclion.? This is accomplished by intro-
ducing a function symbol, Fwp, which is equated to the composition of mull with

* Tlis composition is ofteu called the Kleisli star or natural cxtension. Ewp is a muemonic
for extension with policy.



321

fun apply_substitulion oo (M) =

let fun f(0,n) s(n)
| S(s(3),0) 0
| £(s(3), s(n)) s(f(i,n))
fun Mwp_['(i, Var(n)) Var(f(i, n))

| Mwp_f'(i, Abs(1))
| Mwp_f'(i, App(t, 1))

Abs(Mwp_f'(s(:), 1))
App(Muwp_f'(i, ), Mwp_f'(i,1"))

fun o(0, n) oo(n)

| o(s(i), n) unil(0) .

| #(3(3}, s(n)) Muwp_f'(0,0(i, n))
fun Mwp_o'(i, Var(n)) Var(a(i, n))

| Mwp_a'(i, Abs(t))

| Mwp.o'(i, App(t,1'))
in  mult(Muwp_o'(0, M))
end

Abs(Muwp_a'(s(i), 1))
App(Mwp_o'(i, 1), Mup_o'(i,1'))

(1 T [ O I

Fig. 3. Program with indexes

Muwp_d’', i.e., Ewp(0, M) = mull(Mwp.o'(0, M)). Astre gives a program which uses
neither mull, nor Mwp_o’ that includes the [ollowing definition of Fwp:

fun Swp(i, Var(n)) a(i,n)
| Bwp(i, Abs(l)) Abs( Bwp(s(i), 1))
| Bwp(i, App(t, 1)) = App(Ewp(i,t), Ewp(i, 1))
The main body of the function is then replaced by Ewp(0, M). The functions mult

and Mwp._o’, which have become useless, are removed. Since the Mwp.s' has now
been eliminated, Mwp.f’ is renamed Muwp to simplily the nomenclature below.

6 Transformation of the Sequence of the o Functions

The transformations in this section exploit the arithmetic arguments introduced
above to replace the expeunsive and redundant recursive calculations in o and Ewp
with index arithmetic.

The function o(i,n) of the transformed program is a rediscovery of the series
of functions ¢;(n) of Sect. 1. To further refine this program a specific instance of
apply_substitution o9 must be specified. In what follows, the substitution function
09, needed for the contraction described in Sect. 1, is used to illustrate the special-
ization. Recall that oy replaces variables of index 0 with the term A .01, which is
represented by Abs(App(Ver(0), Var(1))). Thus, a¢(0) = Abs(App(Ver(0), Var(1)))
and og(s(n)) = wnit(n). Unlolding these equations yields a complete definition of
a(i,n):

a(0,0) = Abs(App(Var(0), Var(1)))

a(0,5(n)) = unil(n)

a(s(),0) = unit(0)

o(s(7), s(n)) = Mwp(0, o(i, n)) (5)
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Since the equational program is complete with respect to Natx Nat, the computation
of any instance of ¢(Z, n) results in a ground constructor term. For example, o(4,2)
yields:

a(s(s(s(s(0)))), 5(s(0))) — (6)
Muwp(0, a(s(s(s(0))), s(0))) — (7
Mwp(0, Mwp(0, 0(s(5(0)), 0))) —* Var(s(s(0)))

Rewrites (6) and (7) are unfoldings by equation (5). Computation of any instance
of o(¢,n) by naturals can begin with unfoldings using (5) until a subterm, o(u, v),
in which u and/or v are equal to 0 is obtained.

This suggests a target program of the form:

o(i,n) = ifi > n thene; elseif i = n then ey else ez

where e, €2, and e3 are expressions. The transformation will be beneficial if these
expressions are ellicient. This step introduces a form of function definition by a
conditional (instead of structural induction) that violates the technical restriction on
programs used to assure termination of rewriting as required by the Astre system.
Presently, Astre does not perform this part of the transformation. Moreover, the
transformation does not directly generate tlie conditional; instead it generates the
complete definition: o(s(7) + &k, k) = w1, a(k, k) = up and o(k,s(n) + k) = ua.

6.1 First Transformation Step

The general strategy of the two transformation steps that follow is to discover arith-
metic operations implicit in the recursion structure of programs. The first step in
this process is a definition that makes the iteration structure of functions explicit.

Definitionl. Let x be a variable of Lype «, let y; be a term of type g; for each
i=1,.-+,n,and let ¢ be a function of type By #--+* a*---* 3, — a. The function
@ of type Nal* () - xa*x---% ;) — o is defined by:

95(3(]3),(!/1,'"J"a"‘,yn)):90(1/11"',Sz’(k,(yl,"‘y-”,“',yn)),"',yn)
95(0,(!/1,"',-1',"',.’/1;))=-l'

Proposition 2.

‘)5("71(3/1: ot ',<P(.l/1, el -,y,,,), . ‘)yll)) = (p(ylyt"l‘tb(k"(ylv'"1%"'1.’/’!))!"';!]")
Proof. By induction on k.

An immediate consequence of Definition 1 is (1, 2) = (), where 2 : B #- -+ a
ek ﬁn-

Having made the iteration structure of functions explicit, the next theorem helps
program transformations exploit that structure. To simplily the exposition, consider
the case in which ¢ : & — a. In this case ¢ : Nat*a — o and p(k, n) = @*(2), where
of denotes k applications of p. Suppose now that f : Nat+ Nat — o satisfies the
equation: f(s(7),s(n)) = o(f(i,n)); then f(4,7) = ¢*(J(0,3)) = ¥4, f(0,3)). More
generally, f(i-+k,n+k) = @(k, f(i,n)), whicl is the result expressed by Theorem 3.
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Theorem 3. Assume [ of lypc Nal® — a, lel y; be a term of lype B; for each
i=1,.--,n, and let @ be a function of type By *---xa*---*f,, — a. The following
are equivalent:

1. f(S(l’l),"',S(.‘L’n)) :So(yla"',f(mla"')xn)y"',ym)
2. ¢(k,(y1,"',f(l'1,"',17"),"',3/1;))zf(l'l+k,"‘,xn+k)

Proof. That 1 implies 2 is obvious by instantiating k to 1. The converse is proved
by induction on k.

To apply this theorem to (5),‘1et Muwpl(z) be Mwp(0, 2) and introduce the equation:
Muwp0(k,o(i,n))) = i + k,n+ k). This gives the equational definition of o(i, n):

o(s(i) + k, k) = Muwp0(k, unit(0))
a(k, k) = Muwp0(k, Abs(App(Var(0), Var(1))))
o(k,s(n) + k) = Muwp0(k, unit(n))
This definition can be rewritten in the conditional form described at the beginning

of the section with ey = Muwp0(n, unil(0)), ez = Muwp0(i, Abs(App(Var(0), Var(1))))
and e3 = Mwpl(i, unit(n — i — 1)).

6.2 Second Transformation Step

The second transformation step transforms the expressions ey, ez and eg. The def-
inition of M/w\pﬂ of type Term — Term, obtained by Definition 1, refers to the
(ineflicient) function Afwpl. To get an eflicient program an alternative (but equiva-
lent) definition of MTU‘;)O that does not refer to Mwp0 must be generated. Theorem 4
addresses this issue.

To introduce Theorem 4, consider the function upto. Informally, upto(i,n) =
[i,i+1,--+,n). The function upto satislies upto(s(i), s(n)) = map s uplo(i,n). Let
map.s be the specialization of the definition of map by s:

map_s [ =
map.s (& = xs) = s(x) :: (map_s xs)

The operators [] and :: are the constructors of the data type Lisi(a). By Theorem 3,
(m;p\_s) (k, upto(i,n)) = (map_s)* (upto(i, n)) = upto(i + k,n + k)

Theorem 4 will yield the following recursive definition of (mmap_s)¥, (that is of niap_s);
it does not refer to map_s.

(map_s)* [| =]
(map_s)® (x :: xs) = s¥(x) :: ((map-s)® zs)

Note, in this definition (map_s)* is the function being defined. It is to be regarded
atonmically; map.s is neither defined nor referred to.
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Theorem4. Lely; be a lerm of lype B; for eachi=1,---,n, let ¢ be a function of
lype Br*---xa*--x 0, — a, and lel C be a constructor of type a. The following
are equivalent:

1L So(yla o '1C(x11 e -,z,,), e ';3/11) = C((Pl(zl)y' . ',<pn(l'n))
2, 9'3(/»‘,(3/1»“ '10(1"1:' ‘ '11“11)) o ')yn)) = C(a(kaml)i .t '1@(‘7:3371))

Proof. That 1 implies 2 is obvious by instanciating k to 1. The converse is proved
by induction on k.

If C is a constructor of arity zero, Theorem 4 degenerates to the iwo equations
So(yl,"',C,"',Un) = C and ¢(k1(yly"',03"')yn)) =C.
To apply this result to Mwp0, recall that Mwp0(z) = Mwp(0, z) and that:

Muwp(i, Var(n)) = Var(f(i,n))
Muwp(i, Abs(t)) Abs(Mup(s(i), 1))
Muwp(i, App(L,t")) = App(Mwp(i, 1), Muwp(i, t')).

Introduction of the specializations fo(z) = f(0, z), and Mwpl(z) = Mwp(l, z) allows
the application of Theoremn 4, producing:

M‘u/i\p(l(k, Var(n)) = Var(Jo(k,n))
Muwp0(k, Abs(t)) = Abs(Mwpi(k,1))
M/(\up()(k, App(s,1)) = App(MwpO(k, s}, Mwp0(k,1)).

It is easy to show that ]E, = § because f(0,2) = s(z), and that 5(k,a) = a + k
by induction on k. Therefore M/'zEJO(k, Var(n)) = Var(ﬁ,(k, n)), which is equivalent
to Var(5(k,n)), which can be rewritten Var(n + k). Although this appears to have
progressed, it is incomplete because M/w\pj is still defined in terms of Mwpl. Attempts
to define Mwp/ by this method, however, will require the function Mwp2; this would
continue forever. Fortunately, there is_another way in which Theorem 3 may be
applied to (5), yielding the equation #wp(k, (0, (i, n))} = o(i+k,n+ k). Applying
the same transformation as above produces another conditional definition of ¢(i, n)
with ey = undt(n), ey = Mwp(i, (0, Abs(App( Var(0), Var(1))))) and ez = unii(n—1).
Application of Theorem 4 produces a recursive definition of Aﬁp that does not refer
to Mwp:

Muwp(k, (i, Var(n))) = Var(f(k, (i, n))) (8)
Muwp(k, (i, App(s, ) = App(Mwp(k, (i, s)), Mwp(k, (i,1)))
Muwp(k, (i, Abs(t))) = Abs(iTwp(k, (s(i),1)))

The transformation is not yet finished. Equation (8) remains to be improved by
finding a recursive definition of f that does not refer to the function f.
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6.3 Transformation of }

Recall the equations for f:

J(0,n) = s(n) 9)
f(s(i),0) =0 (10)
f(s(d), s(n)) = s(f(i, n)) (11)

Applying Theorem 4 to (11) yields:

f(k, (i), s(n)) = s(f(k, (i,m))) - (12)

This suggests attempting a conditional definition for f. Using equations (9), (10),
(11), Theorem 4, Theorem 3, and Definition 1 produces:

f(k,(0,5(n)) = s(5(k,n)) = s(n+ k) (13)
Sk, (s(8),00) =0 (14)
J(k,(0,00) = & (15)

Applying Theorem 3 1o (12) gives: f(k, (i-+p, n+p)) = 5(p, f(k, (i, n))) = f(k, (i,n))+
p. Applying that to equations (13), (14), (15) produces

Sk, (s(@) +pp)) =p
Fk,(pys() +p)) =n+1+k+p

J(k,(pyp)) =k+p
This equational definition is equivalent to the program:

f(k,(i,n)) = ifi > n thenn clseifi = nthenn + kclsen + k.

The program simplifies to: f(k,(i,n)) = if i > n then n else n+ k. By unfold-
ing f and by a wel! known property of the conditional, equation (8) becomes:
A?zz\)p(k,(z', Var(n))) = if i > n then Var(n) else Var(n + &). Including the trans-
formed form of o, which comes from above, produces the program in Fig. 4 which
does not perform redundant computations for o; and f;. The transformation in-
volved in this section has been done manually. However the transformation process
is systematic and involves equational reasoning using Theorem 3 and Theorem 4. It
shows implicitly how to automatically transform a function of type Nai+ Nat — Nat
into a more eflicient conditional form.

7 Directions

The paper has presented a clearly motivated and correct specification for a subtle
representation of A-terms, the implementation of which has, in the second authors
experience, been prone to “ofl by one” errors. It has taken this abstract specification,
with its extensive use of higher-order concepts, reduced it to a first-order program,
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fun apply_substitution_oo(M) =
let fun Muwp(k, (i, Var(n)))
| Mup(k, (i, Abs(1)))
| Mwp(k, (5, App(t, 1))
fun o(s, n)

ifi > n then Var(n) else Var(n + k)
Abs(Muwp(k, (s(3),1)))
App(iwp(k, (i, 1)), Mup(k, (i, "))
ifi > n then unil(n)
else ift = n then

Mwp(i, (0, Abs(App( Var(0), Var(1)))))
else unit(n — 1)

nn

fun Bwp(i, Var(n)) = o(i,n)
| Ewp(i, Abs(t)) = Abs(Ewp(s(i),1))
| Bwp(i, App(t,1')) = App(Ewp(i,t), Bwp(i, ')
in  Ewp(0, M))

end

Fig. 4. Final result

introduced index arithmetic and produced an efficient algorithm that exploits com-
puter arithmetic. i

This development illustrales several new techniques. First, it makes the monadic
structure in the development of the specification explicit by showing that it is a
monad in FUNSEQ. It supports this structure with new program transformation
techniques which allow the implicit use of arithmetic to be “rediscovered” [ormally.
Finally, it demonstrates the feasibility of integrating tools for monadic programming
and specification, which tend to be higher-order, with relatively standard program
transformation technology, which is strictly first-order. The importance of partial
evaluation technology in bridging this gap cannot be overstated.

7.1 Technology

Currently our technology is a tower of Babel. Automatic support for monadic pro-
gramming, including automatic program generation, exists in CRML, a Standard
ML derivative developed by Sheard. The partial evaluator, Schism, uses its own
(typed) dialect of Scheme as its object language. Astre, Bellegarde’s program trans-
formation system, is written in CAML. It uses a very simple first-order language as
its object language.

In this environment, claims that the development is automatable mean that we
have automated the process “piccewise”, translating between the formalisms in a
nearly mechanical fashion. It is, of course, our vision that one day these tools will
all work in concert, allowing a development to proceed from specification to efficient
realization with human intervention only when necessary.

7.2 Reuse

Although this paper has focused on the A-calculus, the specification can be applied
to virtually any abstract syntax with a regular binding structure provided its Lype
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can be expressed as a monad and the appropriate definition of map_with_policy can
be given. For example, adding boolean constants and a conditional has no effect
on the specification of substitution and only changes map_with_policy by defining it
to apply f recursively on the components of the conditional without applying Z.
Adding let is also trivial; again, no changes need to be made to the specification of
substitution—only to map_welh_policy. In this case, map_with_policy must apply Z
to f when it enters the component in which the bound variable has been introduced.
This ability to reuse specifications is one of the strongest arguments for the adoption
of monads as a tool to structure program specification and development.

But what about the trans{ormations? Can we reuse program improvements? Here
we have less experience, however the decisions that are required to improve programs
for the different scenarios outlined above are substantially the same. It appears that
a transformation system that records its development may be able to replay the
developmenl and obtain similar improvements.
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