
Application of the Composition Principle
to Unity-like Specifications

Pierre Collette "~

Universit6 Catholique de Louvain, Unit6 d'Informatique, Place Sainte-Barbe,
B-1348 Louvain-la-Neuve, Belgium

Abstract. The problem of composing mutually dependent rely-guarantee speci-
fications arises in the hierarchical development of reactive or concurrent systems.
The composition principle has been proposed as a logic-independent solution
to this problem. In this paper, we apply it to Unity-like rely-guarantee specifi-
cations. For that purpose, we interpret Unity formulas in Abadi and Lamport's
compositional model. Then, the premises of the composition rule are reduced to
proof obligations that can be carried out in the existing Unity proof system. The
approach is illustrated by an example, the composition of mutually dependent
specifications of concurrent buffers.

1 Introduction

Several specification methods [2, 10, 14] for the development of reactive or concurrent
systems may be classified as rely-guarantee or assumption-commitment methods. Intuiti-
vely, a rely-guarantee specification R ~ G states that a system satisfies the guarantee
condition G if it operates in an environment that satisfies a rely condition R. We consider
specification triples (R, G, G s) where the safety condition G s is implied by the full
(including liveness) guarantee condition G and R is restricted to a safety condition.

Hierarchical specification methods for concurrent systems generally require com-
position rules. In the rely-guarantee paradigm, the composition principle of [2, 14]
provides a way of combining mutually dependent specifications. If IS] denotes the set
of behaviours allowed by a specification S, this principle may be stated as follows:

P1 sat (R1 ~ G1) [R~N[GS]] C ~/~1]] [[R]N~G~]IN[[G s] C_ ~G s]
P2 sat (R2 ~ G2) [[R]]N[Gt s]C [R2] [[R]N[G1]]N[G2]] C [[G]]

P111Pz sat (R ~ G)

Basically, the premises correspond the reliance, co-existence, guarantee and strength
proof obligations of [10, 20]. Informally, they read:

1. Reliance/Co-existence: [R] N [G2 s] C_ [R1]. P1 does not rely on more than P1 lIP2
does, nor on more than P2 guarantees.

2. Reliance/Co-existence: [R] A [G1 s] C_ [[R2]. P2 does not rely on more than P1 [IPz
does, nor on more than P1 guarantees.

* National Fund for Scientific Research (Belgium)

231

3. Guarantee: ~R]N~GS]N[GS] C_ ~GS]. Under the assumptions on the environment of
P1 lIP2, the safety guarantee conditions of P1 and P2 must imply the safety guarantee
conditions of P1 lIP2.

4. Strength: ~R] N [G1] O [G2] C_ [G]. Under the assumptions on the environment of
P1 lIP2, the guarantee conditions of P1 and P2 must imply the guarantee condition
of P IIP2, especia]lly the liveness guarantee conditions.

These four conditions are stated exclusively in semantic terms (sets of allowed be-
haviours). Our objective is to apply them in a particular development framework. The
language we have chosen is Unity logic [6] because it yields workable specifications
that may be scaled up to specify large problems [15, 16, 17]. Its operators i n i t i a l l y ,
unless, and leadsto specify initial conditions, next-state relations, and liveness re-
quirements respectivelly.

Thus, the aim of this paper is to show how the composition rule may be applied
to Unity-like specifications. More precisely, we interpret the specifications in Abadi
and Lamport's compositional model [2, 4] and then restate the above conditions in
terms of the Unity proof obligations R, G s b- R1, R, G s ~- R2, R, G s, G s 1- G s, and
R, GI, G2 F- G.

As discussed in [2, 4], soundness of the composition principle is reached under
the hypotheses that G s and R respectively constrain the specified system and its envi-
ronment. Therefore, to reach soundness, we propose a new version of u n l e s s which
distinguishes system from environment transitions. Essentially, this modification is sim-
ilar to what is done in [3, 5] when designing compositional versions of temporal logic.

Throughout the paper, we preserve the Unity style of reasoning about specifications
and reuse the Unity proof rules. This work should thus not be viewed as 'yet another
language' but rather as an attempt to combine Abadi-Lamport's work [2] and Chandy-
Misra's work [6, 15].

2 L o g i c

In this section, we interpret Unity-like specifications in Abadi and Lamport's semantic
model. Then, we recall some inference rules.

2.1 Semantic Model

In temporal-logic based approaches, the set of variables is usually divided into two
classes: the class of dynamic variables and the class of static variables. Dynamic vari-
ables (also called state variables) represent quantifies that can vary with time, like x
in the Hoare triple {x = n}z := x + l{z > n). A state is then defined as a function
assigning to each dynamic variable a value in its domain. In contrast, static variables
represent quantities that remain constant with time, like n in the above Hoare triple. A
static valuation is then defined as a function assigning to each static variable a value in
its domain.

Abadi and Lamport interpret a specification S as a set IS] of allowed behaviours
[2]. A behaviour is a sequence

~ll a2 a3
0"=81 - - ~ 8 2 - - - + 83 --+ . . .

232

where each sk is a state, as defined above, and each ak is an agent. By convention, [~r I,
sk.cr, ak.a, and ~r[~ denote the length of ~r, the k t h state of or, the agent responsible for the
k th transition, and the finite prefix of o, ending with s~ .~r respectively. Agents must be
thought as the ehtities responsible for state transitions. Although two agents (program
and environment) would suffice in any particular specification, considering sets of
agents eases the composition problem because the parallel composition of programs
corresponds to the union of their composing agents. As discussed in [2], it may help the
reader to think of the agents as elementary circuit components or individual machine-
language instructions but the actual identity of the individual agents never matters. What
matters is whether an agent belongs to the specified system or to its environment. Let/z
be a set of agents and ~be its complement. Informally, the correctness formula P sat u S

is valid if all the behaviours of P are allowed by IS] when the agents in/z are considered
to form the program P and the agents in ~ are considered to form its environment.

2.2 Syntax and Semantics

Since Abadi and Lamport's model includes both program agents and environment
agents, the logic must include formulas which distinguish transitions performed by
different sets of agents. For that purpose, we replace the operator u n l e s s with the
operator un le s s u to obtain formulas that constrain the transitions performed by agents
in # only. Informally, ~r E ~ u n l e s s u q] if and only if every transition of ~ performed
by a/z-agent transforms a p A ~q state into a p V q state. In other words, i fp A -~q holds
before a/z-transition, then p holds after the transition, unless q holds. For example, if z
and n are respectively dynamic and static variables, the formula

x-- n unless~ x>n

asserts that a/z-agent may not decrease the value of z.
Throughout the definitions of this section, p, q are first-order assertions, and the

notation s ~r p indicates that p holds on state s, under the static valuation ~. Note that
is always submitted to a universal quantification, meaning that a Unity specification

must hold for all the possible assignments to the static variables. In the above example,
n may take any arbitrary value.

unless~ q] :

In addition to u n l e s s used for specifying safety properties, the Unity logic is built
upon a second operator 1 eads to used for specifying liveness properties. The formula
p l e a d s t o q is equivalent to n(p ~ <>q) in temporal logic [13]: if p holds at some
point in a behaviour, then q eventually holds. For example, if x and n are respectively
dynamic and static variables, the formula

z:n leadsto x=2n

asserts that x eventually doubles. Finally, the operator initially specifies initial
conditions.

[p l e a d s t o q~ = {or I V~ : Vk <]g[: (sk.~ ~ p) ==> (3j : k < j < Ic~[: sj .~r ~ q)}
[initially d = {~ IV(: sl.~ ~ p}

233

Although three operators suffice, it is helpful to introduce the following shorthands:

stable~ p -- p unless~ false
constant~ e -- stable~ e:n

where n is a static variable of the same sort as the expression e. Intuitively, s tabler , p
asserts that no/~-agent violates a p state (p is a/~-invariant [3]), and constants , e asserts
that no #-agent modifies the value of an expression e.

[stable. p11 = {0" I V~ : Vk < I~1: (S~.~ ~e P) ^ (ak.(r E/~) ~ (Sk+1.0" ~6 P)}

The Unity operator i n v a r i a n t will never appear in rely-guarantee specifications;
it will appear in proofs only. Intuitively, an assertion is an invariant if it holds on every
state of a behaviour.

[invariant p11 = {~ I v~ : vk < I~1 : ~k.~ ~ p}

The generalisation to a set S = {f~ } of formulas is straightforward:

[S11 = n~ [f~11

2.3 Proof Rules

As mentioned in the introduction, we reuse the Unity proof system. Among others, the
following weakening, transitivity, conjunction and progress-safety-progress rules are
directly drawn from the corresponding rules in [6]:

punless~ q invariant q ~ r p leadsto q, q leadsto r

p unless~ r p leadsto r

Pl unless~ ql, /92 unless~ q2

Pl A P2 unless.(pl A q2) V (~ A ql) V (ql A q2)

p leadsto q, r unless~ b, v unless~ b

p A r leadsto (q A v) V b

Similarly, the union theorem of [6] yields the union and decomposition rules:

punless m q~ punless~2 q

P unlessmu~ q

The construction rules for invariants are:

p initially p,

p unless~ q

p unlessv q

invariant p invariant p

where ~ p means that p is a valid assertion.
All the rules can be proved sound w.r.t, the semantic model: If1] N . . . [fn11 C__ [g]

holds for any rule with premises f l , . . . , f , and conclusion g.

stable~ p, stableffp

234

3 Rely-Guarantee

In this section, we first recall the meaning of a rely-guarantee specification R :r G.
Then, we show how the subscripted un less formulas of Sect. 2 can be used to restrict
a safety specification to system or environment transitions. Finally, we give a rely-
guarantee specification of a concurrent buffer.

3.1 Definitions

Let R, G be sets of formulas. Then, the rely-guarantee specification R ~ G asserts that
G holds when R holds.

[a s ca = {~ I ~eIR] ~ ~c [a]}

To make sense, the rely condition R should restrict the environment transitions only
[2]. Therefore, when specifying a system composed of p-agents, the rely condition R
is restricted to initially and unless~ formulas. Formally, R _~ ~ holds (R does not
constrain p [3, 8]):

R ___ g iff Va" : Vk < Io'1: o'lk e [R] A ak.oep ~ olk+, ~ [R]

By convention, G s denotes the safety formulas of G. Since G s should restrict the
system transitions only, we use unlessu formulas in G s when specifying a system
composed of p-agents. No i n i t i a l l y formula may appear in G s, that is initial states
are determined by the environment (included in the rely condition), not by the system.
Formally, G s <~ p holds (G s constrains at most p [3, 4]):

a s ~ p iff w : V k < l ~ l : crlk~lra s] A ak.o'f~p ~ ~lk+l E[Gs~
G s <1 p iff G s <1 p and g(r : ~rll E [GS]l

Due to the use of a unique agent symbol, such specifications distinguish between
the system and its environment but not between their composing agents (y-abstractness
is preserved [2]).

3.2 Example

To highlight the use of subscripted formulas, we specify a bounded concurrent buffer
that we assume to be composed of y-agents. A buffer receives messages in the variable
in and eventually produces them into the variable out.

Environment of Buffer

Buffer %

235

The specification R ~ G says that if the environment respects some access protocol
(rely condition R), then the buffer behaves properly (guarantee condition G): no message
is lost, no message is created, messages are delivered in the right order, at most N
messages are buffered, input messages are eventually consumed, and buffered messages
are eventually produced.

As in [1, 15, 18], we introduce an auxiliary variable b to represent the sequence
of messages currently buffered. The formula cons t an t~ b asserts that b is local to the
buffer, hence not modified by ~ agents. For the sake of simplicity, this formula has
been stated explicitly in the examples. However, it could be considered as a part of the
semantics of the auxiliary variables, hence implicitly defined. Formally, the variable b
is submitted to existential quantification [1,4]; consequently, G s <1 p holds although it
includes the formulas i n i t i a l l y b = 2- and cons t an t~ b.

The static variable m ranges over messages, the special value 2_ denotes the absence
of messages, and the operator �9 stands for sequence concatenation. Observe how the
formula cons ta r t t . (in) �9 b �9 (out> suffices to specify that no message is either created
or lost by the buffer arid that messages are delivered in the right order ~.

Specification R ~ G

Rely R
initially in : 2_
initially out : I
out = m unlessy out : I
stableff out = 2_
stable~ in : m

G u a r a n t e e G

in : m unless~ i n : 2-

stable, in = •

s t a b l e , out = m

s t a b l e . Ibl < N
constant. (in> ,~ �9 <out)

Ibl < N l e a d s t o in = 2_

Ibl >0 l e a d s t o out # l

A u x . V a r i a b l e

initiallyb= •
c o n s t a n t ~ b

The Unity style is preserved in writing specifications as well as in reasoning abo,t
them. For example, the following deductions can be rewritten from [15]:

G s b invariant Ibl _< N (1)

G s b out = I u n l e s s . [b[< N V in = 2- (2)

H, G ~- o u t : _L l e a d s t o Ibl < N v i n - - / (3)

where H = { s t abl ep- out = / } . Detailed proof examples will be given in next section.

4 Composition

In this section, we show that the syntactic restrictions imposed on the rely-guarantee
specifications of Sect. 3 match the hypotheses of thecomposition rule. We then put this
rule into practice by replacing the premises expressed in semantic terms with suitable
Unity proof obligations. We finally illustrate the rule by composing mutually-dependent
rely-guarantee specifications of concurrent buffers.

2 It also ensures that b does not introduce infinite invisible nondeterminism, a sufficient condition
for existential quantification to preserve safety [1]

236

4.1 Parallel Composition Rule

Let # = #1 (-J#2 with/q (qP2 = ~. Formulated in terms of correctness formulas, the
composition principle becomes the rule

P1 sat., (R1 =r G1)
t92 sat.2 (n2 ~ G2)

in] o [ar c [n,]
In] n [af] c In2]

P, IIP= sat. (n ~ G)

In] o [a~] n [a~] c [a s]
In] n [al] n [a2] c_ [a]

According to [2], this rule is sound under the hypotheses R1 <1 ~ , G s <1 #1, n2 <1 #---~,
G s <~ p2, n ~ -fi, and G s <~ #. As stated in Sect. 3, a very simple syntactic restriction
suffices: the subscripts appearing in the unless formulas of R1, G1 s, R2, G s, R, and
G s are -fi-f, #1, -~ , #2, -fi, and # respectively. Since the Unity proof system is sound, we
may replace set inclusion with proof obligations in the premises:

Pi sat., (R1 =:~ G1) n , G S F- 1~1 n , G S, G S F- G S

/~ sat.2 (R2 =~ G2) n, G s F R2 n, G1, G2 [- G

P, IIP2 sat. (R ~ G)

4.2 Specification of Concurrent Buffers

Buffer1 transmits messages from the variable in to the intermediate variable m i d and
Buffer2 transmits messages from the variable m i d to the variable out. The specifica-
tions R1 ~ G1 and n2 :~ G2 are drawn from the specification R ~ G by suitable
renaming. Since/z2 __C_ ~- and/,1 C_ ~-~, the rely conditions RI, R2 depend on the guar-
antee conditions G2, G1 respectively. So the proposed rely-guarantee specifications are
mutually dependent.

Environment of Buffer1 [I Buffer2

~ - ~ Buffer1 ~ ~ - - - - ~ Buffer2 ~

Specification R 1 ~ G 1

Rely R 1
initially in : I
initially m i d = 3_

m i d = ra unless~ m i d = 3_

stableff[raid= 3-
st able~ in------ra

Guarantee G 1

in = ra unless m in = l

stable m in =]_

stable m mid=m

stable m IblI < N1
constant.l (in) �9 bl o (mid)
Ib, l< N, leads to in = _1_
Ib, I >0 leads to raid#_L

Aux.Var iable
initially bl = 3-
constants7 bl

Specification R 2 ~ G 2

237

R e l y R 2
i n i t i a l l y m i d = l
i n i t i a l l y out = l
out = m unlessh- ~ out = l
stable~2 OUt = I
stable~ 2 m i d = m

G u a r a n t e e G 2

mid=rn unless m m i d = &
stable m m i d = •
stable.2 out = m

s t a b l e m Ib2l _< N2
constant.2 (mid) �9 b 2 �9 (out)
[b2l < N2 leadsto m i d = I
Ibzl > 0 leadsto o u t # l

A u x . V a r i a b l e

i n i t i a l l y b2 = l
cons t ant~- b2

4.3 Hiding and Access Restrictions

The program Buffer is the parallel composition of Buffer 1 and Buffer 2 where the
variable mid, initially empty, is made local.

Buffer - (initially mid = _L in Bufferll IBuffer2) \ {mid)

To cope with such hiding [7, 9, 19], it suffices to extend the rely condition with
the hypotheses that the environment does not modify the local variables and that the
program starts with correct initial values for its local variables.

P sat, (R ~ G)
R = 2 u {cons tan t~ v}

P \ {v} sat, (R ~ G) --

P sat. (_R :r G)
R = RU {initially v = e }

(initially v = e in P) sat, (R ~ G) --

We also need the information that Buffer I does not access the variable out and
Buffer 2 does not access the variable in. To cope with such access restrictions [7. 19].
it suffices to extend the guarantee condition with a c o n s t a n t formula stating that a
program does not modify a variable that it does not access.

P sat, (R ~ G)

P sat. (R =~ _G_G)
v g Var(P) , G = GU { c o n s t a n t . v}

4.4 Composition of Mutually Dependent Specifications

Assuming Buffer I and Buffer 2 satisfy R1 ~ G1 and R2 ::~ G2 respectively, we prove
that Buffer satisfies R :=~ G provided that N = N1 +N2 + 1. The following rule is easily
derived from the above parallel, hiding and access restrictions rules:

Buffer1 sat,~ (R1 ~ G1) R, G__S, G~ ~ R1 R_, G__S, G_G s ~- G s

Buffer2 sat m (R2 ::~ G2) ._RR, __Gl s, ~ F- R2 R, __G1, ~ & G

Buffer sat, (R :~ G)

238

where

R = R U
~I -- GI U
G__2=Gz U

{cons tan twmid , i n i t i a l l y m i d = 3_}
{constantu, out)
{constantmin }

The four proof obligations can be carried out in the Unity framework. Following
[15], we use a refinement mapping technique [1, 2] to cope with auxiliary variables. In
this case, the refinement mapping is simply b = bl �9 (mid) �9 b2.

First, we illustrate the union rule by proving:

R, GlS, G~ I-- stable-fiT mid= 3- (4)

which is a part of the proof obligation R, G s G s F R1 In addition to the union rule of - - - - 1 , - - 2

Sect. 2, its proof uses the following constant rule:

constantu e

stableu e = t
t is a static term

/i~,GS,G~ F- stablely mid= 3-

1. s t a b l e m mid= 3_ by G2 s
2. cons t an t~ mid by _R
3. s table-# mid = .L by 2, constant rule
4. s t a b l e m u ~ mid= 3- by 1,3, unionrule
5. s t a b l e ~ mid= 3- by 4,~-]-=#2 U #

The last step of the proof uses ~ = P2 U #. This equality captures the idea that the
environment of Buffer1 is exactly Buffer2 plus the environment of Buffer1 []ButTer2.
It highlights that the use of sets of agents rather than two agents eases the composition
problem.

Then, we illustrate the composition of liveness requirements by proving:

R,_.G_G1 ,__G 2 L- I b] < N l e a d s t o in = I (5)

which is a part of the proof obligation _R, ___.al, ~ ~- G. Its proof requires the use of the
implication and disjunction-transitivity rules:

invariant p~q pleadstoqVr, rleadstos

p leadsto q p leadsto q V s

239

R,__G1,G_~ P [b [< N l e a d s t o i n = •

.

2.
3.
4. I b l < N l e a d s t o Ibll<g~ v [b2l<N2Mmid--A_
5. Ib21 <g2 leads to m i d = •
6. Ibl < N l e a d s t o Ib~l < N~ V m i d = •
7. mid=_l, l e a d s t o 1511 < gl V in = 2_
8. Ibl<N'toad-~to [b , l<gl v i n = •
9.]bl[<N1 leadstoin=•
10. Ibl<N leads to in=A_

(*) by 1,2, b=bt * (mid) .b2, N=N~+N2+I

i n v a r i a n t Ihl ~ N1 by G s, rename (1)
i n v a r i a n t Ib2l _< N2 by G s, rename (1)
i n v a r i a n t Ib I < N =v Ibll< gl V Ibzl < gz v m i d = • see (.)

by 3, implication rule
by G2
by 4, 5, disj.-trans.
by (4), G1, rename (3)
by 6, 7, disj.-trans.
by G1
by 8, 9, disj.-trans.

Finally, we sketch the next deduction to illustrate the use of safety requirements
when proving liveness requirements:

R, G 1 , G__ a t- mid # • A Ib2l=O l e a d s t o out # • (6)

This result is used in the proof of R,__G1, G_ 2 i- Ibl > 0 l e a d s t o out r 1. Steps 1 to
6 are given without further explanations; step 7 uses the progress-safety-progress (psp)
rule of Sect. 2.

R_, G_ A, G_~ t- mid 5s _L A Ib21 =0 l e ads to out # I

1. stable~2 mid # _1_ by _R, G1, union rule
12. mid 5k I unless~ out # • V [b2l >o by 1, weakening rule
3. cons tan t m {mid) �9 b2 * (out) by G2
4. mid • _L unlessuz out ~s I V [bzl >0 by 3, undetailed calculus
5. [b2[< a2 leadsto m i d = • by G2
6. Ib21 =0 l e a d s t o mid=_L by 5
7. mid r Ib21 =0 leads to out # • V Ib21>0 by 2,4,6,psprule
8. Ib21 > 0 l e a d s t o out # • by G2
9. mid ~ • A Ib2l =0 l e ads to out ~ • by 7, 8, disj.-trans.

5 R e l a t e d W o r k

Unity. Compared with pure Unity specifications of concurrent objects [15, 17], our con-
tribution lies in the ability to cope with mutually dependent rely-guarantee specifications.
In the buffer example of [15, 17], mutually dependent specifications are systematically
avoided by moving a part of the specification outside the rely-guarantee scheme. De-
spite this important difference, the way of reasoning about specifications is preserved:
the proofs in Sect. 4 are a straightforward rewriting of similar proofs in [15]. More
fundamentally, we must note that the composition principle, hence our work, is founded
upon a compositional model of programs whereas the underlying computational model
of [6] is not compositional.

240

P r o o f ob l iga t ions : Jones ' work . Based on Jones' earlier work [10], the parallel rules of
[19, 20, 21] can be viewed as applications of the composition principle for terminating
programs. Although carded out in another framework, the proof obligations can be
related to ours:

- In [19, 21], the safety proof obligations look like R V G~ F R1. These cannot be
expressed in our framework: no disjunction is allowed between Unity formulas.
However, even if we write R, G2 s F R1, there is an implicit disjunction between R
and C2 s because they are specifications over distinct sets of agents. More precisely,
the disjunction is eventually made explicit in the proof of R, C2 s F /~1 when
applying the union rule: the disjunction appears as the union of the sets of agents
(see proof of (4) in Sect. 4).

- The liveness proof obligation in [10, 20] requires the construction of a dynamic
invariant linking successive states in a behaviour; this binary relation must be pre-
served by both the environment and the system transitions. In the Unity framework,
it basically corresponds to using the progress-safety-progress rule for l e a d s t o (see
proof of (6) in Sect. 4): its premises r unless~ b and r unless~ b express that the
associate binary relation must be preserved by both the environment agents and the
system agents.

TLA r e l y - g u a r a n t e e spec i f icat ions . We contribute to the rely-guarantee paradigm by
using explicit distinct subscripts to distinguish the rely and the guarantee parts of a
specification. For example, the ~ subscripts indicate that the rely condition constrains
the environment only. Similar syntactic restrictions appear in the Temporal Logic of
Actions (TLA) for open systems [3, 12]: the disjunction # V F restricts the transition
formula F to environment transitions, and the disjunction ~ V F restricts the same
formula to system transitions. In TLA, unprimed and primed formulas refer to the state
before respectively after the transition; with this convention, the formula p uales%, q
corresponds to the binary state relation described by ~ V (p A ~q ~ p' V q') in TLA.
Although they can be expressed in TLA, our specifications are not in TLA canonical
form [3]: we specify a conjunction of restrictions on the system transitions instead of a
disjunction of allowed system transitions.

Action-based specifications. Consequently, compared to TLA and other action-based
specifications of concurrent objects [3, 9, 11, 18], the Unity approach preserves the
conjunctive character of a specification: an omitted requirement can simply be added
to the conjunction. For instance, the specification of a bounded buffer is obtained from
the specification of an unbounded one simply by adding the formula s t a b l e , [bl<N.
Adding this requirement in action-based specifications implies revising the definition of
each action. Furthermore, invariant-looking properties such as cons tan t , in �9 b �9 out
appear explicitly. As a drawback w.r.t, action-based specifications, we note that unreal-
izable specifications are not excluded when using 1 eads to; in action-based approaches,
unrealizable specifications may be avoided by replacing the liveness requirements with
suitable fairness requirements on the actions. Actually, the two approaches may appear at
different stages of the development process: once the Unity specification is established,
it may be refined until identifying the system actions becomes necessary. A possible

241

extension of this work is thus the development of proof rules, based on [6], to prove
the validity of an action-based specification w.r.t, a Unity rely-guarantee specification.
Then, the formal development process goes on, using established refinement method
for action-based'specifications, e.g. [11].

Temporal operators versus auxiliary variables. Applying the composition principle
of [2, 4] requires specifications that can be interpreted in the proposed model. Another
candidate specification language would be the compositional version of the linear time
temporal logic [5]. Unfortunately, the more powerful operators of temporal logic raise
the complexity of reasoning about specifications [18]. By choosing the Unity logic, we
follow the alternative approach of e.g. [9, 12, 18, 19]: the specification language is simple
and the necessary expressive power is obtained by using auxiliary variables. Actually,
only leads~;o is a temporal operator and temporal reasoning is then avoided whenever
possible. As claimed in [12, 18], this approach yields more natural specifications: a
specification is made of an initial condition (• a set of allowed transitions
(unless), and a set of liveness requirements (leadsto).

6 Conclusion

In order to reuse Abadi and Lamport's results on mutually dependent rely-guarantee
specifications, we have adapted the unless operator of Unity. By simple syntactic
restrictions, we have obtained formulas that constrain either the system transitions or
the environment transitions. Then, we have illustrated the approach on an example,
by applying the rule to compose mutually dependent rely-guarantee specifications of
concurrent buffers.

An advantage of the approach lies in keeping the Unity style of reasoning about
specifications: since the language is simple (short formal description), it yields rather
intuitive proof rules, hence workable specifications. However, as discussed in [2], rea-
soning about concurrent systems remains a lengthy task, because of detailed calculations.
Even the simple example of concurrent buffers generates lengthy proofs. Redoing proofs
in response to changes in the initial specification could thus be a problem when scaling
the approach to real-size developments [16].

Acknowledgements
I am grateful to Pierre-Yves Schobbens, Michel Sintzoff, and Ketil Str for their

valuable comments on earlier drafts of this paper. I also thank Mete Celitkin, Yves
Ledru, Philippe Massonet, and Thanh Tung Nguyen for their helpful suggestions.

R e f e r e n c e s

1. M. Abadi and L. Lamport, The Existence of Refinement Mappings, in Proceedings of the 3rd
Annual Symposium on Logic In Computer Science, 1988, pp. 165-175.

2. M. Abadi and L. Lamport, Composing Specifications, in J.W. de Bakker, W.-P. de Roever,
and G. Rozenberg eds., Stepwise Refinement of Dbtributed Systems, Springer-Verlag, 1990,
LNCS 430, pp. 1-41.

242

3. M. Abadi and L. Lamport, An Old-Fashioned Recipe for Real Time, in J.W. de Bakker, C.
Huizing, W.-P. de Roever, and G. Rozenberg eds., Real Time: Theory in Practice, Springer-
Verlag, 1992, LNCS 600, pp 1-27.

4. M. Abadi and G.D. Plotkin, A Logical View of Composition and Refinement, in Proceedings
of the 18th Annual ACM Symposium on Principles of Programming Languages, 1991, pp
323-332.

5. H. Barringer, R. Kuiper, and A. Pnueli, Now you may Compose Temporal Logic Specifi-
cations, in Proceedings of the 16th ACM Symposium on Theory of Cornputing, 1984, pp.
51-63.

6. K.M. Chandy and J. Misra, Parallel Program Design: a Foundation, Addison-Wesley, 1988.
7. P. Collette, Semantic Rules to Compose Rely-Guarantee Specifications, Research Report RR

92-25, Universit6 Catholique de Louvain, 1992, Belgium.
8. F. Dederichs, System and Environment: The Philosophers Revisited, Technical Report TUM-

I9040, Institut ftir Informatik, Technische Universitat Miinchen, 1990, Germany.
9. P. Gr0nning, T.Q. Nielsen and H.H. Lovengreen, Refinement and Composition of Transition-

based Rely-Guarantee Specifications with Auxiliary Variables, in K.V. Nori and C.E. Veni
Madhavan eds., Foundations of Software Technology and Theoretical Computer Science,
Springer-Verlag, 1991, LNCS 472, pp 332-348.

10. C.B. Jones, Tentative Steps Towards a Development Method for Interfering Programs, in
ACM Transactions on Programming Languages And Systems, 1983, Vol 5, 4, pp 596-619.

11. B. Jonsson, On Decomposing and Refining Specifications of Distributed Systems, in J.W. de
B akker, W-P. de Roever, and G. Rozenberg eds, Stepw&e Refinement of Distributed Systems,
Springer-Verlag, 1990, LNCS 430, pp. 261-385.

12. L. Lamport, The Temporal Logic of Actions, Research Report 57, Digital Equipment Corpo-
ration Systems Research Center, 1990.

13. Z. Manna and A. Pnueli, The Anchored Version of the Temporal Framework, in J.W. de
Bakker, W.-P. de Roever, and G. Rozenberg eds., Linear Time, Branching Time and Partial
Orders in Logics and Models for Concurrency, Springer-Verlag, 1989, LNCS 354, pp. 201-
284.

14. J. Misra and K.M. Chandy, Proofs of Networks of Processes, in IEEE Transactions on
Software Engineering, 1981, Vol 7, 4, pp 417-426.

15. J. Misra, Specifying Concurrent Objects as Communicating Processes, in Science of Com-
puter Programming, 1990, Vol 14, 2-3, pp. 159-184.

16. A. Pizzarello, An Industrial Experience in the use of UNITY, in J.P. Ban~tre and D. Le M6tayer
eds., Research Directions in High-Level Parallel Programming Languages, Springer-Verlag,
1991, LNCS 574, pp 39-49.

17. A.K. Singh, Specification of Concurrent Objects Using Auxiliary Variables, in Sc&nce of
Computer Programming, 1991, Vol 16, pp 49-88.

18. E.G. Stark, Proving Entailment Between Conceptual State Specifications, in Theoretical
Computer Science, 1988, Vo156, pp 135-154.

19. K. StOlen, A Method for the Development of Totally Correct Shared-State Parallel Programs,
in J.C.M. Baeten and J.F. Groote eds., Proceedings of Concur'91, Springer-Verlag, 1991,
LNCS 527, pp 510-525.

20. J.C.P. Woodcock and B. Dickinson, Using VDM with Rely and Guarantee-Conditions, in
R. Bloomfield, L. Marshall and R. Jones eds., Proceedings of VDM'88: The Way Ahead,
Spfinger-Verlag, 1988, LNCS 328, pp 434-458.

21. Q. Xu and H. Jifeng, A Theory of State-based Parallel Programming: Part I, in J. Morris ed.,
4th BCS-FACS Refinement Workshop, Springer-Verlag, 1991, pp 326-359:

