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Abstract. The problem of composing mutually dependent rely-guarantee speci- 
fications arises in the hierarchical development of reactive or concurrent systems. 
The composition principle has been proposed as a logic-independent solution 
to this problem. In this paper, we apply it to Unity-like rely-guarantee specifi- 
cations. For that purpose, we interpret Unity formulas in Abadi and Lamport's 
compositional model. Then, the premises of the composition rule are reduced to 
proof obligations that can be carried out in the existing Unity proof system. The 
approach is illustrated by an example, the composition of mutually dependent 
specifications of concurrent buffers. 

1 Introduction 

Several specification methods [2, 10, 14] for the development of reactive or concurrent 
systems may be classified as rely-guarantee or assumption-commitment methods. Intuiti- 
vely, a rely-guarantee specification R ~ G states that a system satisfies the guarantee 
condition G if it operates in an environment that satisfies a rely condition R. We consider 
specification triples (R, G, G s) where the safety condition G s is implied by the full 
(including liveness) guarantee condition G and R is restricted to a safety condition. 

Hierarchical specification methods for concurrent systems generally require com- 
position rules. In the rely-guarantee paradigm, the composition principle of [2, 14] 
provides a way of combining mutually dependent specifications. If IS] denotes the set 
of behaviours allowed by a specification S, this principle may be stated as follows: 

P1 sat (R1 ~ G1) [R~N[GS]] C ~/~1]] [[R]N~G~]IN[[G s] C_ ~G s] 
P2 sat (R2 ~ G2) [[R]]N[Gt s ]C  [R2] [[R]N[G1]]N[G2]] C [[G]] 

P111Pz sat (R ~ G) 

Basically, the premises correspond the reliance, co-existence, guarantee and strength 
proof obligations of [ 10, 20]. Informally, they read: 

1. Reliance/Co-existence: [R] N [G2 s] C_ [R1]. P1 does not rely on more than P1 lIP2 
does, nor on more than P2 guarantees. 

2. Reliance/Co-existence: [R] A [G1 s] C_ [[R2]. P2 does not rely on more than P1 [IPz 
does, nor on more than P1 guarantees. 
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3. Guarantee: ~R]N~GS]N[GS] C_ ~GS]. Under the assumptions on the environment of 
P1 lIP2, the safety guarantee conditions of P1 and P2 must imply the safety guarantee 
conditions of P1 lIP2. 

4. Strength: ~R] N [G1] O [G2] C_ [G]. Under the assumptions on the environment of 
P1 lIP2, the guarantee conditions of P1 and P2 must imply the guarantee condition 
of P IIP2, especia]lly the liveness guarantee conditions. 

These four conditions are stated exclusively in semantic terms (sets of allowed be- 
haviours). Our objective is to apply them in a particular development framework. The 
language we have chosen is Unity logic [6] because it yields workable specifications 
that may be scaled up to specify large problems [15, 16, 17]. Its operators i n i t i a l l y ,  
unless, and leadsto specify initial conditions, next-state relations, and liveness re- 
quirements respectivelly. 

Thus, the aim of this paper is to show how the composition rule may be applied 
to Unity-like specifications. More precisely, we interpret the specifications in Abadi 
and Lamport's compositional model [2, 4] and then restate the above conditions in 
terms of the Unity proof obligations R, G s b- R1, R, G s ~- R2, R, G s, G s 1- G s, and 
R, GI, G2 F- G. 

As discussed in [2, 4], soundness of the composition principle is reached under 
the hypotheses that G s and R respectively constrain the specified system and its envi- 
ronment. Therefore, to reach soundness, we propose a new version of u n l e s s  which 
distinguishes system from environment transitions. Essentially, this modification is sim- 
ilar to what is done in [3, 5] when designing compositional versions of temporal logic. 

Throughout the paper, we preserve the Unity style of reasoning about specifications 
and reuse the Unity proof rules. This work should thus not be viewed as 'yet another 
language' but rather as an attempt to combine Abadi-Lamport's work [2] and Chandy- 
Misra's work [6, 15]. 

2 L o g i c  

In this section, we interpret Unity-like specifications in Abadi and Lamport's semantic 
model. Then, we recall some inference rules. 

2.1 Semantic Model 

In temporal-logic based approaches, the set of variables is usually divided into two 
classes: the class of dynamic variables and the class of static variables. Dynamic vari- 
ables (also called state variables) represent quantifies that can vary with time, like x 
in the Hoare triple {x = n}z := x + l{z  > n). A state is then defined as a function 
assigning to each dynamic variable a value in its domain. In contrast, static variables 
represent quantities that remain constant with time, like n in the above Hoare triple. A 
static valuation is then defined as a function assigning to each static variable a value in 
its domain. 

Abadi and Lamport interpret a specification S as a set IS] of allowed behaviours 
[2]. A behaviour is a sequence 

~ll a2  a3 
0"=81 - - ~  8 2 - - - +  83 --+ . . .  
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where each sk is a state, as defined above, and each ak is an agent. By convention, [~r I, 
sk.cr, ak.a, and ~r[~ denote the length of ~r, the k t h state of or, the agent responsible for the 
k th transition, and the finite prefix of o, ending with s~ .~r respectively. Agents must be 
thought as the ehtities responsible for state transitions. Although two agents (program 
and environment) would suffice in any particular specification, considering sets of 
agents eases the composition problem because the parallel composition of programs 
corresponds to the union of their composing agents. As discussed in [2], it may help the 
reader to think of the agents as elementary circuit components or individual machine- 
language instructions but the actual identity of the individual agents never matters. What 
matters is whether an agent belongs to the specified system or to its environment. Let/z 
be a set of agents and ~be its complement. Informally, the correctness formula P sat u S 

is valid if all the behaviours of P are allowed by IS] when the agents in/z are considered 
to form the program P and the agents in ~ are considered to form its environment. 

2.2 Syntax and Semantics 

Since Abadi and Lamport's model includes both program agents and environment 
agents, the logic must include formulas which distinguish transitions performed by 
different sets of agents. For that purpose, we replace the operator u n l e s s  with the 
operator un le  s s u to obtain formulas that constrain the transitions performed by agents 
in # only. Informally, ~r E ~ u n l e s s  u q] if and only if every transition of ~ performed 
by a/z-agent transforms a p A ~q state into a p V q state. In other words, i fp A -~q holds 
before a/z-transition, then p holds after the transition, unless q holds. For example, if z 
and n are respectively dynamic and static variables, the formula 

x-- n unless~ x>n 

asserts that a/z-agent may not decrease the value of z. 
Throughout the definitions of this section, p, q are first-order assertions, and the 

notation s ~r p indicates that p holds on state s, under the static valuation ~. Note that 
is always submitted to a universal quantification, meaning that a Unity specification 

must hold for all the possible assignments to the static variables. In the above example, 
n may take any arbitrary value. 

unless~ q] : 

In addition to u n l e s s  used for specifying safety properties, the Unity logic is built 
upon a second operator 1 eads to  used for specifying liveness properties. The formula 
p l e a d s t o  q is equivalent to n(p ~ <>q) in temporal logic [13]: if p holds at some 
point in a behaviour, then q eventually holds. For example, if x and n are respectively 
dynamic and static variables, the formula 

z:n leadsto x=2n 

asserts that x eventually doubles. Finally, the operator initially specifies initial 
conditions. 

[p l e a d s t o  q~ = {or I V~ : Vk < ]g[ : (sk.~ ~ p) ==> (3j : k < j  < Ic~[ : sj .~r ~ q)} 
[initially d = {~ IV(: sl.~ ~ p} 
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Although three operators suffice, it is helpful to introduce the following shorthands: 

stable~ p -- p unless~ false 
constant~ e -- stable~ e:n 

where n is a static variable of the same sort as the expression e. Intuitively, s tabler ,  p 
asserts that no/~-agent violates a p state (p is a/~-invariant [3]), and constants ,  e asserts 
that no #-agent modifies the value of an expression e. 

[stable.  p11 = {0" I V~ : Vk < I~1: (S~.~ ~e P) ^ (ak.(r E/~) ~ (Sk+1.0" ~6 P)} 

The Unity operator i n v a r i a n t  will never appear in rely-guarantee specifications; 
it will appear in proofs only. Intuitively, an assertion is an invariant if it holds on every 
state of a behaviour. 

[invariant p11 = {~ I v~ : vk  < I~1 : ~k.~ ~ p} 

The generalisation to a set S = {f~ } of formulas is straightforward: 

[S11 = n~ [f~11 

2.3 Proof Rules 

As mentioned in the introduction, we reuse the Unity proof system. Among others, the 
following weakening, transitivity, conjunction and progress-safety-progress rules are 
directly drawn from the corresponding rules in [6]: 

punless~ q invariant q ~ r p leadsto q, q leadsto r 

p unless~ r p leadsto r 

Pl unless~ ql, /92 unless~ q2 

Pl A P2 unless.(pl A q2) V ( ~  A ql) V (ql A q2) 

p leadsto q, r unless~ b, v unless~ b 

p A r leadsto (q A v) V b 

Similarly, the union theorem of [6] yields the union and decomposition rules: 

punless m q~ punless~2 q 

P unlessmu~ q 

The construction rules for invariants are: 

p initially p, 

p unless~ q 

p unlessv q 

invariant p invariant p 

where ~ p means that p is a valid assertion. 
All the rules can be proved sound w.r.t, the semantic model: If1] N . . .  [fn11 C__ [g] 

holds for any rule with premises f l , . . . ,  f ,  and conclusion g. 

stable~ p, stableffp 



234 

3 Rely-Guarantee 

In this section, we first recall the meaning of a rely-guarantee specification R :r G. 
Then, we show how the subscripted un less  formulas of Sect. 2 can be used to restrict 
a safety specification to system or environment transitions. Finally, we give a rely- 
guarantee specification of a concurrent buffer. 

3.1 Definitions 

Let R, G be sets of formulas. Then, the rely-guarantee specification R ~ G asserts that 
G holds when R holds. 

[ a s  ca = {~ I ~eIR]  ~ ~c  [a]} 

To make sense, the rely condition R should restrict the environment transitions only 
[2]. Therefore, when specifying a system composed of p-agents, the rely condition R 
is restricted to initially and unless~ formulas. Formally, R _~ ~ holds (R does not 
constrain p [3, 8]): 

R ___ g iff Va" : Vk < Io'1: o'lk e [R] A ak.oep ~ olk+, ~ [R] 

By convention, G s denotes the safety formulas of G. Since G s should restrict the 
system transitions only, we use unlessu formulas in G s when specifying a system 
composed of p-agents. No i n i t i a l l y  formula may appear in G s, that is initial states 
are determined by the environment (included in the rely condition), not by the system. 
Formally, G s <~ p holds (G s constrains at most p [3, 4]): 

a s ~ p iff w : V k < l ~ l  : crlk~lra s] A ak.o'f~p ~ ~lk+l E[Gs~ 
G s <1 p iff G s <1 p and g(r : ~rll E [GS]l 

Due to the use of a unique agent symbol, such specifications distinguish between 
the system and its environment but not between their composing agents (y-abstractness 
is preserved [2]). 

3.2 Example 

To highlight the use of subscripted formulas, we specify a bounded concurrent buffer 
that we assume to be composed of y-agents. A buffer receives messages in the variable 
in and eventually produces them into the variable out. 

Environment of Buffer 

Buffer % 
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The specification R ~ G says that if the environment respects some access protocol 
(rely condition R), then the buffer behaves properly (guarantee condition G): no message 
is lost, no message is created, messages are delivered in the right order, at most N 
messages are buffered, input messages are eventually consumed, and buffered messages 
are eventually produced. 

As in [1, 15, 18], we introduce an auxiliary variable b to represent the sequence 
of messages currently buffered. The formula cons t an t~  b asserts that b is local to the 
buffer, hence not modified by ~ agents. For the sake of simplicity, this formula has 
been stated explicitly in the examples. However, it could be considered as a part of the 
semantics of the auxiliary variables, hence implicitly defined. Formally, the variable b 
is submitted to existential quantification [1,4]; consequently, G s <1 p holds although it 
includes the formulas i n i t i a l l y  b = 2- and cons t an t~  b. 

The static variable m ranges over messages, the special value 2_ denotes the absence 
of messages, and the operator �9 stands for sequence concatenation. Observe how the 
formula cons ta r t t .  ( in)  �9 b �9 (out> suffices to specify that no message is either created 
or lost by the buffer arid that messages are delivered in the right order ~. 

Specification R ~ G 

Rely R 
initially in : 2_ 
initially out : I 
out = m unlessy out : I 
stableff out = 2_ 
stable~ in  : m 

G u a r a n t e e  G 

in : m unless~ i n  : 2- 

stable, in  = • 

s t a b l e ,  out  = m 

s t a b l e .  Ibl < N 
constant. (in> ,~ �9 <out) 

Ibl < N l e a d s t o  in  = 2_ 

Ibl >0  l e a d s t o  out  # l 

A u x . V a r i a b l e  

initiallyb= • 
c o n s t a n t ~ b  

The Unity style is preserved in writing specifications as well as in reasoning abo,t 
them. For example, the following deductions can be rewritten from [15]: 

G s b invariant Ibl _< N (1) 

G s b out  = I u n l e s s .  [b[ < N V in  = 2- (2) 

H,  G ~- o u t :  _L l e a d s t o  Ibl < N v i n - -  / (3) 

where H = { s t  abl  ep- out  = / } .  Detailed proof examples will be given in next section. 

4 Composition 

In this section, we show that the syntactic restrictions imposed on the rely-guarantee 
specifications of Sect. 3 match the hypotheses of thecomposition rule. We then put this 
rule into practice by replacing the premises expressed in semantic terms with suitable 
Unity proof obligations. We finally illustrate the rule by composing mutually-dependent 
rely-guarantee specifications of concurrent buffers. 

2 It also ensures that b does not introduce infinite invisible nondeterminism, a sufficient condition 
for existential quantification to preserve safety [1] 
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4.1 Parallel Composition Rule 

Let # = #1 (-J#2 with/q (qP2 = ~. Formulated in terms of correctness formulas, the 
composition principle becomes the rule 

P1 sat., (R1 =r G1) 
t92 sat.2 (n2 ~ G2) 

in] o [ar c [n,] 
In] n [af] c In2] 

P, IIP= sat. (n  ~ G) 

In] o [a~] n [a~] c [a s] 
In] n [al] n [a2] c_ [a] 

According to [2], this rule is sound under the hypotheses R1 <1 ~ ,  G s <1 #1, n2 <1 #---~, 
G s <~ p2, n ~ -fi, and G s <~ #. As stated in Sect. 3, a very simple syntactic restriction 
suffices: the subscripts appearing in the unless  formulas of R1, G1 s, R2, G s, R, and 
G s are -fi-f, #1, -~ ,  #2, -fi, and # respectively. Since the Unity proof system is sound, we 
may replace set inclusion with proof obligations in the premises: 

Pi sat., (R1 =:~ G1 ) n ,  G S F- 1~1 n ,  G S, G S F- G S 

/~ sat.2 (R2 =~ G2) n, G s F R2 n, G1, G2 [- G 

P, IIP2 sat. (R ~ G) 

4.2 Specification of Concurrent Buffers 

Buffer1 transmits messages from the variable in to the intermediate variable m i d  and 
Buffer2 transmits messages from the variable m i d  to the variable out. The specifica- 
tions R1 ~ G1 and n2 :~ G2 are drawn from the specification R ~ G by suitable 
renaming. Since/z2 __C_ ~- and/,1 C_ ~-~, the rely conditions RI, R2 depend on the guar- 
antee conditions G2, G1 respectively. So the proposed rely-guarantee specifications are 
mutually dependent. 

Environment of Buffer1 [I Buffer2 

~ - ~  Buffer1 ~ ~ - - - - ~  Buffer2 ~ 

Specification R 1 ~ G 1 

Rely  R 1 
initially in : I 
initially m i d =  3_ 

m i d =  ra unless~ m i d =  3_ 

stableff[ raid= 3- 
st able~ in------ra 

Guarantee G 1 

in = ra unless m in = l 

stable m in = ]_ 

stable m mid=m 

stable m IblI < N1 
constant.l (in) �9 bl o (mid) 
Ib, l< N, leads to  in = _1_ 
Ib, I >0 leads to  raid#_L 

Aux.Var iable  
initially bl = 3- 
constants7 bl 
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R e l y  R 2 
i n i t i a l l y  m i d =  l 
i n i t i a l l y  out = l 
out = m unlessh- ~ out = l 
stable~2 OUt = I 
stable~ 2 m i d =  m 

G u a r a n t e e  G 2 

mid=rn  unless m m i d = &  
stable m m i d =  • 
stable.2 out = m 

s t a b l e  m Ib2l _< N2 
constant.2 (mid) �9 b 2 �9 (out) 
[b2l < N2 leadsto m i d =  I 
Ibzl > 0  leadsto o u t # l  

A u x . V a r i a b l e  

i n i t i a l l y  b2 = l 
cons t  ant~- b2 

4.3 Hiding and Access Restrictions 

The program Buffer is the parallel composition of Buffer 1 and Buffer 2 where the 
variable mid, initially empty, is made local. 

Buffer - (initially mid = _L in Bufferll IBuffer2) \ {mid)  

To cope with such hiding [7, 9, 19], it suffices to extend the rely condition with 
the hypotheses that the environment does not modify the local variables and that the 
program starts with correct initial values for its local variables. 

P sat, (R ~ G) 
R = 2 u {cons tan t~  v} 

P \ {v} sat, (R ~ G) -- 

P sat. (_R :r G) 
R = RU {initially v = e }  

(initially v = e in P) sat, (R ~ G) -- 

We also need the information that Buffer I does not access the variable out and 
Buffer 2 does not access the variable in. To cope with such access restrictions [7. 19]. 
it suffices to extend the guarantee condition with a c o n s t a n t  formula stating that a 
program does not modify a variable that it does not access. 

P sat, (R ~ G) 

P sat. (R =~ _G_G) 
v g Var(P) ,  G = GU { c o n s t a n t .  v} 

4.4 Composition of Mutually Dependent Specifications 

Assuming Buffer I and Buffer 2 satisfy R1 ~ G1 and R2 ::~ G2 respectively, we prove 
that Buffer satisfies R :=~ G provided that N = N1 +N2 + 1. The following rule is easily 
derived from the above parallel, hiding and access restrictions rules: 

Buffer1 sat,~ ( R1 ~ G1) R,  G__S, G~ ~ R1 R_, G__S, G_G s ~- G s 

Buffer2 sat m (R2 ::~ G2) ._RR, __Gl s, ~ F- R2 R, __G1, ~ & G 

Buffer sat, (R :~ G) 
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where 

R = R  U 
~I -- GI U 
G__2=Gz U 

{cons tan twmid ,  i n i t i a l l y m i d =  3_} 
{constantu, out) 
{constantmin } 

The four proof obligations can be carried out in the Unity framework. Following 
[15], we use a refinement mapping technique [1, 2] to cope with auxiliary variables. In 
this case, the refinement mapping is simply b = bl �9 (mid) �9 b2. 

First, we illustrate the union rule by proving: 

R, GlS, G~ I-- stable-fiT mid= 3- (4) 

which is a part of the proof obligation R, G s G s F R1 In addition to the union rule of - -  - - 1  , - - 2  

Sect. 2, its proof uses the following constant rule: 

constantu e 

stableu e = t  
t is a static term 

/i~,GS,G~ F- stablely mid= 3- 

1. s t a b l e  m mid= 3_ by G2 s 
2. cons t an t~  mid by _R 
3. s table-# mid = .L by 2, constant rule 
4. s t a b l e m u  ~ mid= 3- by 1,3, unionrule 
5. s t a b l e ~  mid= 3- by 4,~-]-=#2 U # 

The last step of the proof uses ~ = P2 U #. This equality captures the idea that the 
environment of Buffer1 is exactly Buffer2 plus the environment of Buffer1 []ButTer2. 
It highlights that the use of sets of agents rather than two agents eases the composition 
problem. 

Then, we illustrate the composition of liveness requirements by proving: 

R,_.G_G1 ,__G 2 L- I b] < N l e a d s t o  in = I (5) 

which is a part of the proof obligation _R, ___.al, ~ ~- G. Its proof requires the use of the 
implication and disjunction-transitivity rules: 

invariant p~q pleadstoqVr, rleadstos 

p leadsto q p leadsto q V s 
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R,__G1,G_~ P [ b [ < N l e a d s t o  i n = •  

. 

2. 
3. 
4. I b l < N l e a d s t o  Ibll<g~ v [b2l<N2Mmid--A_ 
5. Ib21 <g2 leads to  m i d = •  
6. Ibl < N l e a d s t o  Ib~l < N~ V m i d =  • 
7. mid=_l, l e a d s t o  1511 < gl  V in = 2_ 
8. Ibl<N'toad-~to [b , l<gl  v i n = •  
9. ]bl[<N1 leadstoin=• 
10. Ibl<N leads to  in=A_ 

(*) by 1,2, b=bt * (mid) .b2, N=N~+N2+I 

i n v a r i a n t  Ihl ~ N1 by G s, rename (1) 
i n v a r i a n t  Ib2l _< N2 by G s, rename (1) 
i n v a r i a n t  Ib I < N =v Ibll< gl  V Ibzl < gz v m i d =  • see ( . )  

by 3, implication rule 
by G2 
by 4, 5, disj.-trans. 
by (4), G1, rename (3) 
by 6, 7, disj.-trans. 
by G1 
by 8, 9, disj.-trans. 

Finally, we sketch the next deduction to illustrate the use of safety requirements 
when proving liveness requirements: 

R, G 1 , G__ a t- mid # • A Ib2l=O l e a d s t o  out # • (6) 

This result is used in the proof of R,__G1, G_ 2 i- Ibl > 0  l e a d s t o  out r 1. Steps 1 to 
6 are given without further explanations; step 7 uses the progress-safety-progress (psp) 
rule of Sect. 2. 

R_, G_ A, G_~ t- mid  5s _L A Ib21 =0  l e ads to  out # I 

1. stable~2 mid # _1_ by _R, G1, union rule 
12. mid 5k I unless~ out # • V [b2l >o by 1, weakening rule 
3. cons tan t  m {mid) �9 b2 * (out) by G2 
4. mid • _L unlessuz out ~s I V [bzl >0 by 3, undetailed calculus 
5. [b2[< a2 leadsto m i d = •  by G2 
6. Ib21 =0  l e a d s t o  mid=_L by 5 
7. mid r  Ib21 =0 leads to  out # • V Ib21>0 by 2,4,6,psprule 
8. Ib21 > 0  l e a d s t o  out # • by G2 
9. mid ~ • A Ib2l =0 l e ads to  out ~ • by 7, 8, disj.-trans. 

5 R e l a t e d  W o r k  

Unity. Compared with pure Unity specifications of concurrent objects [ 15, 17], our con- 
tribution lies in the ability to cope with mutually dependent rely-guarantee specifications. 
In the buffer example of [15, 17], mutually dependent specifications are systematically 
avoided by moving a part of the specification outside the rely-guarantee scheme. De- 
spite this important difference, the way of reasoning about specifications is preserved: 
the proofs in Sect. 4 are a straightforward rewriting of similar proofs in [15]. More 
fundamentally, we must note that the composition principle, hence our work, is founded 
upon a compositional model of programs whereas the underlying computational model 
of [6] is not compositional. 
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P r o o f  ob l iga t ions :  Jones '  work .  Based on Jones' earlier work [ 10], the parallel rules of 
[19, 20, 21] can be viewed as applications of the composition principle for terminating 
programs. Although carded out in another framework, the proof obligations can be 
related to ours: 

- In [19, 21], the safety proof obligations look like R V G~ F R1. These cannot be 
expressed in our framework: no disjunction is allowed between Unity formulas. 
However, even if we write R, G2 s F R1, there is an implicit disjunction between R 
and C2 s because they are specifications over distinct sets of agents. More precisely, 
the disjunction is eventually made explicit in the proof of R, C2 s F /~1 when 
applying the union rule: the disjunction appears as the union of the sets of agents 
(see proof of (4) in Sect. 4). 

- The liveness proof obligation in [10, 20] requires the construction of a dynamic 
invariant linking successive states in a behaviour; this binary relation must be pre- 
served by both the environment and the system transitions. In the Unity framework, 
it basically corresponds to using the progress-safety-progress rule for l e a d s t o  (see 
proof of (6) in Sect. 4): its premises r unless~ b and r unless~ b express that the 
associate binary relation must be preserved by both the environment agents and the 
system agents. 

TLA r e l y - g u a r a n t e e  spec i f icat ions .  We contribute to the rely-guarantee paradigm by 
using explicit distinct subscripts to distinguish the rely and the guarantee parts of a 
specification. For example, the ~ subscripts indicate that the rely condition constrains 
the environment only. Similar syntactic restrictions appear in the Temporal Logic of 
Actions (TLA) for open systems [3, 12]: the disjunction # V F restricts the transition 
formula F to environment transitions, and the disjunction ~ V F restricts the same 
formula to system transitions. In TLA, unprimed and primed formulas refer to the state 
before respectively after the transition; with this convention, the formula p uales%, q 
corresponds to the binary state relation described by ~ V (p A ~q ~ p' V q') in TLA. 
Although they can be expressed in TLA, our specifications are not in TLA canonical 
form [3]: we specify a conjunction of restrictions on the system transitions instead of a 
disjunction of allowed system transitions. 

Action-based specifications. Consequently, compared to TLA and other action-based 
specifications of concurrent objects [3, 9, 11, 18], the Unity approach preserves the 
conjunctive character of a specification: an omitted requirement can simply be added 
to the conjunction. For instance, the specification of a bounded buffer is obtained from 
the specification of an unbounded one simply by adding the formula s t a b l e ,  [bl<N. 
Adding this requirement in action-based specifications implies revising the definition of 
each action. Furthermore, invariant-looking properties such as cons tan t ,  in �9 b �9 out 
appear explicitly. As a drawback w.r.t, action-based specifications, we note that unreal- 
izable specifications are not excluded when using 1 eads to; in action-based approaches, 
unrealizable specifications may be avoided by replacing the liveness requirements with 
suitable fairness requirements on the actions. Actually, the two approaches may appear at 
different stages of the development process: once the Unity specification is established, 
it may be refined until identifying the system actions becomes necessary. A possible 
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extension of this work is thus the development of proof rules, based on [6], to prove 
the validity of an action-based specification w.r.t, a Unity rely-guarantee specification. 
Then, the formal development process goes on, using established refinement method 
for action-based'specifications, e.g. [ 11]. 

Temporal operators versus auxiliary variables. Applying the composition principle 
of [2, 4] requires specifications that can be interpreted in the proposed model. Another 
candidate specification language would be the compositional version of the linear time 
temporal logic [5]. Unfortunately, the more powerful operators of temporal logic raise 
the complexity of reasoning about specifications [18]. By choosing the Unity logic, we 
follow the alternative approach of e.g. [9, 12, 18, 19]: the specification language is simple 
and the necessary expressive power is obtained by using auxiliary variables. Actually, 
only leads~;o is a temporal operator and temporal reasoning is then avoided whenever 
possible. As claimed in [12, 18], this approach yields more natural specifications: a 
specification is made of an initial condition ( •  a set of allowed transitions 
(unless), and a set of liveness requirements (leadsto).  

6 Conclusion 

In order to reuse Abadi and Lamport's results on mutually dependent rely-guarantee 
specifications, we have adapted the unless  operator of Unity. By simple syntactic 
restrictions, we have obtained formulas that constrain either the system transitions or 
the environment transitions. Then, we have illustrated the approach on an example, 
by applying the rule to compose mutually dependent rely-guarantee specifications of 
concurrent buffers. 

An advantage of the approach lies in keeping the Unity style of reasoning about 
specifications: since the language is simple (short formal description), it yields rather 
intuitive proof rules, hence workable specifications. However, as discussed in [2], rea- 
soning about concurrent systems remains a lengthy task, because of detailed calculations. 
Even the simple example of concurrent buffers generates lengthy proofs. Redoing proofs 
in response to changes in the initial specification could thus be a problem when scaling 
the approach to real-size developments [16]. 
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