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Abs t rac t  
In this paper, we introduce and study a rendezvous mechanism for parallel replace- 
ments of hyperedges by (hyperedge-decorated) graphs that allows some merging of the 
replacing graphs if the attachment of the replaced hyperedges shares some nodes. The 
main result shows that the rendezvous mechanism can increase the generative power 
of table-controlled parallel hyperedge replacement graph grammars (which themselves 
are more powerful than ordinary hyperedge replacement graph grammars). 

0 I n t r o d u c t i o n  

Hyperedge replacement (as introduced by Feder [Fed71], Pavlidis [Pay72] and oth- 
ers under various synonyms) is one of the easiest and best studied types of graph 
rewriting (see, e.g., Bauderon and Courcelle [BC87], Lengauer and Wanke [LW88] 
and nabel, Kreowski and Vogler [HabS9], [HK871, [ItKV89]). Hyperedge replacement 
graph grammars combine an attractive generative power with interesting structural 
and decidability properties. To some extend, these nice properties result from the fact 
that hyperedge replacement is context-free in the sense of Courcelle [Cou87] (see also 
Habel [Hab89]). On the other hand, the generative power is not only restricted as 
one must expect fi'om a context-fi'ee mode of rewriting, but also because the nature 
of hyperedge replacement causes certain limitations. For each generated graph lan- 
guage, for example, there is a positive integer k sudl that no member of the language 
is k-fold connected. Hence tile set of all graphs, the set of all complete graphs, tile 
set of all bipartite graphs and other graph languages of this kind cannot be generated 
by either sequential or parallel hyperedge replacement graph grammars. 

In this paper, we introduce a rendezvous mechanism for parallel hyperedge replace- 
ment to overcome these limitations. If the attachments of some hyperedges share some 
nodes (called a "rendezvous"), their replacing graphs may be merged with each other 
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according to a predefined rendezvous specification. We show that the rendezvous 
mechanism can increase the generative power of table-controlled parallel hyperedge 
replacement graph grammars (which themselves are more powerful than ordinary hy- 
peredge replacement grammars). Actually, we present a hyperedge replacement graph 
grannnar with rendezvous generating the set of all complete graphs and one with a 
single table for the set of all graphs. The latter one uses only hyperedges of type 1, 
that is, hyperedges that point to only one node. Moreover, we show that for each 
table-controlled parallel hyperedge replacement graph grammar there exists a ren- 
dezvous table-controlled parallel hyperedge replacement graph grammar of order 2, 
that is, those using only hyperedges of type 2. 

We use a parallel notion of replacement because this seems natural in order to ex- 
plain the effect of the rendezvous specification. For other approaches to parallelism in 
the context of formal languages and graph grammars, see, e.g., Herman and Rozen- 
berg [Ht~75], Ehrig, Kreowski and Taentzer [EK761, [ET92], Bailey, Cuny and Fisher 
[BCF91], and Nagl [NagS7]. 

1 Hyperedge Replacement 

In this section, we recall tile basic notions hyperedge replacement is built upon. We 
choose ordinary unlabelled undirected graphs without loops and multiple edges as 
basic structures of interest. To generate sets of graphs, these graphs become decorated 
with hyperedges each of which has a label and is attached to several nodes of the graph. 
Further, every such (hyperedge-)decorated graph has a sequence of so-called external 
nodes. These external nodes are needed to define the replacement of a hyperedge by 
a (decorated) graph. Every hypercdge of a decorated graph serves as a placeholder 
for a graph or - -  recursively - -  tbr another decorated graph, which can replace the 
hyperedge by fusing its external nodes with those the hyperedge is attached to. 

1.1 Defini t ion (graph)  
A graph is a pair (V, E) where V is a finite set of nodes (or vertices) and E is a set of 
2-elements subsets of V, called edges. The set of all graphs is denoted by ~o. [] 

1.2 Defini t ion (decora ted  graph)  
Let N be a set of nonterminal labels each element A of which is associated with a 
natural nmnber, its type, denoted by type(A). 

A (hyperedge-)decorated graph (over N) is a system t l  = (l/, E, Y, lab, art, ext) where 

�9 (V, E) is in ~o, ca,lied the underlying graph U(H) of H, 

�9 Y is a finite set of hyperedges, 

�9 lab : Y --~ N is a mapping, called the labelling, 

�9 at t :  Y ~ V* is a mapping (called the attachment) such that ]att(y)l 1 = type(lab(y)) 
for all y E Y, 

�9 ext E V*, called the (sequence of) external nodes. 

1Given v E V*, Iv I denotes tile length of v. 
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Remarks .  

1. If H is a decorated graph we denote its components by VH, Etf, YH, labH, agtH 
and eXtH (unless they are explicitly named). 

2. A set N of nonterminals a~ above will be cMled typed in the following. 

3. We let type(H) = lext I and for every y E ]')~ we define typeH(y) = type(lab(y)). 

4. The set of all decorated graphs of type k over N is denoted by Gk(N), and G(N) 
denotes Uke~ Gk( N). 

5. For every label A we set [A] = {1,. . . , type(A)}. Accordingly, for a hyperedge 
y E }~f, let [Y]H = [labH(y)].. 

6. For A E N the decorated graph ([m],O,{y},lab, att, ext) with lab(y) = A and 
art(y) = exl = 1 . . .  type(A) is called a handle and denoted by A'.  [] 

Two decorated graphs are said to be isomorphic if there is an isomorphism between 
the underlying graphs preserving external nodes, and there is a bijective mapping 
between their hyperedges which is consistent with the graph isomorphism. 

1.3 Definit ion ( i somorphic  decora ted  graphs)  
Two decorated graphs H and H ~ are isomorphic, denoted by H ~- H',  if there are bijec- 
tive mappings f : VH --* VH, and g :  Y~I --* ]II/, such that EH, = {{f(x), f(y)} I {x, y} E 
EH}, la@(y) = labw(g(y)) and J'*(attH(y)) = attH,(g(y)) for all y E Y~t, and 
f*(extH) = eXlH,, where f* is the natural extension of f to sequences. [] 

1.4 E x a m p l e  ( h y p e r e d g e - d e c o r a t e d  graph)  
The picture below shows a decorated graph consisting of a graph on six vertices having 
six edges together with four hyperedges. Its external nodes are drawn with numbers 
inside which indicate their order. The hyperedges are labelled with A, B, and C, a~ld 
the order on their tentacles is again indicated by numbers. The type of this decorated 
graph as well as that of the A-labelled hyperedge is 3, while the hyperedges labelled 
with B are of type 2 and the one labelled with C is of type 1. 

1 

2 

Next we define some frequently used operations on decorated graphs. 

1.5 Defini t ion (opera t ions  on decora ted  graphs)  
Let H, H '  E ~(Ar). 

1. Let B C ]~,,. Then the removal of B from H yields the decorated graph 

H - B = ( VII, EH, Yll -- B, lab, art, exttl ) 

with lab(y) = labH(y) and art(y) = attH(y) for all y E YH -- B. 

[] 
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2. The disjoint union of H and H ~ is the decorated graph 

H + H' = (VH 5 Vu,, EH U Eu,, Yu U Yu,, lab, art, extu) 

3. 

with lab(y) = labu(y) and att(y) = attH(y) for all y E YH and lab(y) = labH,(y) 

and att(y) = attH,(y) for all y E YH,. Here U denotes tile disjoint union of sets. 
(Observe that the disjoint union of decorated graphs is not commutative.) 
For H~, . . . ,  H,, E G(N), E~L~ tl~ means Ha + H2 + . . .  + II, .  

Let f : I/'tt ~ V be a mapping for some set V. Then the nodes-set exchange in 
H through f yields the decorated graph 

with E = 
for all y C 
sequences. 

H / f  = (V, E, YH, labH, art, ext) 

{ { f ( x ) , f ( y ) }  l {x ,y}  fi E t l , f ( x )  r f(y)}, att(y) = f*(attH(y)) 
~ , ,  and ext = f*(extH), where f* is the natural extension of f to 

4. Let 6 be a binary relation on Vtl, let V be the quotient set of Vtt through the 
equivalence relation generated by 5 with natural mapping nat : Vtt ~ V. Then 
H/nat  is called the nodes fusion according to 6, and is also denoted by H/5. If 
u,v e V a, u = u, . . .u,~ and v = v l "  .v,,, and 5 = {(ui,vi) ] 1 __~ i _< n}, we also 
write H/(u  = v) instead of 11/5. o 

With the help of the operations just defined we now explain hyperedge replacement. 
We will restrict ourselves to the parallel nlode of rewriting, i.e., we always replace all 
hyperedges occurring in a decorated graph sinmltaneously. 

1.6 Defini t ion (parallel  hyperedge  r ep lacemen t )  
Let H E ~(N) and let repl : )~  --+ jC(N) be a mapping with typeH(y) = type(repl(y)) 
for y C Yti. 

The replacement of Yu = {yl , . . . ,  yn} in H through repl yields the decorated graph 

with art = art(y1).. ,  att(y,~ ) and cxt = ext~pt(u~ ) . . . ext~ept(y,,). 

Remarks .  

1. Parallel hyperedge replacement is a simple construction where the hyperedges of 
a decorated graph are removed, the associated decorated graphs are added dis- 
jointly and their external nodes are fused with the corresponding nodes formerly 
al, tached to the replaced hyperedges. 

2. Note that the component graphs replacing the hyperedges are fully embedded 
into the resulting graph where their external nodes loose this status. 

3. If a mapping repl : YH ~ G(N) meets the azsumption of the definition, it will be 
referred to as well-typed. [] 
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2 Parallel hyperedge replacement grammars 

In this section hyperedge replacement with rendezvous is introduced. The basic model 
to which the notion of rendezvous is added is HTOL hyperedge replacement. The let- 
ter H refers to the hybrid type of graphs where hyperedges are rewritten while undi- 
rected edges remain unchanged. The letter T indicates that the considered grammars  
provide sets of tables where each table is a set of productions, and OL refers to the 
type of rewriting of OL systems (see, e.g., Rozenberg and Salomaa [RS80]) which was 
adapted to hyperedge replacement by Kreowski [Kre92]. 

We first define rendezvous functions. These are functions between binary relations. 

2.1 Def in i t ion  ( r e n d e z v o u s  func t ion )  
Let I ,  I ' ,  J ,  dl be sets. 

A rendezvous function is a function r : 7~(1 • I ' )  ~ 79(J • J ' ) .  

Here, 79(S) denotes the powerset of a set S. 

R e m a r k .  

The constant rendezvous fnnction that always yields some fixed binary relation B is 
denoted by B itself. 2 In particular, 0 denotes the rendezvous function assigning 0 to 
every argument. 13 

2.2 Def in i t ion  ( p r o d u c t i o n ,  t ab l e  se t ,  r e n d e z v o u s  spec i f i ca t ion)  

1. A production (over N)  is a pair p = (A,R) with A E N and R E ~(N) .  A is 
called the left-hand side of p and denoted by lhs(p). R is called the right-hand 
side and denoted by rhs(p). A finite set of productions is called a table, and a 
set of sudl tables is a table set. 

2. Let T be a table set. A 7vndezvous specification for T is a fimction 7~ which 
assigns to every table P C T and every pair (p,p~) C P • P a rendezvous function 
T~p(p,p') from 7)([lhs(p)] • [lhs(p')]) to P(V~h,(p) • V~h,(p,)). 

R e m a r k s .  

1. For every decorated graph H and all y, y' C YH we denote by pu(y, y') the binary 
relation 

PH(Y,Y') = {(i , j )  E [Y]u • [Y']H [ attH(y)i = attH(y')j}. 

We call PH(Y,Y') the rendezvous of y and y' (in H). It is the binary relation 
describing which of the tentacles of y and y~ are a t tadmd to the same node in H.  

2. If P E 7- and '~p(p,p') = r for some rendezvous function r and all p,p' E P we 
may write ~ e  = r. [] 

A rendezvous specification will be used as follows. Whenever the hyperedges of a 
decorated graph are replaced, ibr each pair of these hyperedges their rendezvous 
is determined. Afterwards, the hyperedges are replaced by the right-hand sides of 
the productions. In addition, nodes are fused if they are related to each other by 

uOf course, this notation is ambigous since it does not distinguish between renflezvous functions 
having different domains and/or ranges, tlowever, for our purposes it is not necessary to make a 
difference here. 
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T@(p,p')(p), for every pair of productions applied, and where p is the rendezvous of 
the replaced hyperedges. 

We now define hyperedge replacement with rendezvous formally. 

2.3 Def in i t ion  ( h y p e r e d g e  r e p l a c e m e n t  wi th  r endezvous )  
Let H, H '  E 9(N) ,  let T be a table set and let Tr be some rendezvous specification 
for T. 

1. A mapping b : I '~ --+ P with P C T is called an L-base (over T)  in H if the 
mapping repl defined by repl(y) = rhs(b(y)) for all y E Yu is well-typed. 

2. l~br every L-base b : ]~t --+ P over T we define 

b) = @ np(b(y), b(y'))(p,,(y,y')). 
y ,y lElz  H 

3. Let b : YH "* P an L-base over T in H. Then there is a di~ct derivation H ==* H' 
P,T~ 

through b if 
tI' ~ I~EPLACE(H, repl)/7~(H, b), 

with repl : YH ~ 6(N)  defined by repl(y) = rhs(b(y)) for all y e YH. 

4. A sequence of direct derivations of the form Ho ~ Hi =:r �9 ==~ Hk with P1, . . . ,  Pk E 

H T is called a derivation (of length k) from Ho to Hk and is denoted by IIo ~ k. 

If II ~- II', this may be denoted by II ~ II'. If k in II =~ H' does not matter, 
"T,~ T,Tr 

it may be replaced by a star symbol. [] 

2.4 Def in i t ion  ( h y p e r e d g e - r e p l a e e l n e n t  g r a m m a r s  wi th  r e n d e z v o u s )  

1. A hybrid table-con, trolled OL hypercdge replacement grammar with rendezvous 
(an RHTOL IIR grammar) is a system G = (N,T,7~, Z) where N is a typed set 
of nonterminals, T is a finite table set, ~ is a rendezvous specification for T,  and 
Z E ~0(N), called the axiom. I[ Z = ,5'* for some S C N we may denote G by 
(N, :r, s). 

2. Given such a grammar, the generated graph language consists of all graphs deriv- 
able fl-om Z, i.e., 

L(G) = { I I e  9o I Z ~ tI}. 
"I-,T~ 

l : temarks.  

1. G is said to be of order k if k is the least natural number satisfying type(A) < k 
for all A E N. 

2. IfC is a, class of II.HTOL ItR grammars we denote by s the set {L(G) ] G e C} 
and by Ci the set of all grammars in C of order not greater than i. 

3. `Hq-Os denotes the class of RHTOL HR grammars with trivial rendezvous spec- 
ification. That  is, R p  = 0 for all tables. 7-r163 denotes the class of RHTOL 
HR grammars with a single table and "HOE, denotes the intersection of ~TOE,  
and T4"HOE,. [] 
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The classes 7- lT0s  and H O s  compare to the respective classes introduced by Kre- 
owski [Kre92]. Kreowski proves in particular that s163 is properly included in 
s163  HOL HR grammars in turn have the same language generative power as 
ordinary sequential hyperedge replacement grammars? 

The construction used for the rendezvous mechanism reminds of earlier work on amal- 
gamation of graph productions by Boehm, Fonio and Habel [BFH87] (see also Degano 
and Montanari [DM87]). However, whereas amalgamation is used to build new pro- 
ductions out of given ones (and new derivations out of given ones), the rendezvous 
mechanism influences ~he result of a (parallel) rewriting step. Whereas the main the- 
orem obtained by Boehm, Fonio and Habel is that amalganaation does not change the 
generated graphs the idea behind rendezvous is to increase the generative power of 
hyperedge replacement. So, rendezvous and amalgamation are actually not as closely 
related as it could seem at first sight. 

3 Examples 

In this section we present some examples of RHTOL HIt grammars. The first grammar 
generates all square grids, the second one all complete graphs and the third one all 
graphs. 

3.1 Exanaple (generat ion of square grids) 
The RHTOL HR grammar G R I D  = ({A, B}, {P1, P2}, 7~, Z), which generates the set 
of all square grids, is defined as tbllows. 1} 
P1 = {pc,p.} with p~ = (A, co,'ner), p~ = (B, edge) and 

edge = 

v2 

{ {(vi,w,)} ifp={(i, 1)} 
7~t,, (Pc, Pe)(P) = @ otherwise, 

ZTo be precise, one ought to say that "HOE compares to tim set of all hyperedge-replacement 
gramnlars where only canonical derivations in tile sense of Kreowski [Kre87] are allowed. From the 
viewpoint of generated languages, however, this makes no difference. 
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{(Wl,'W2) if p = {(1,2)} 
np~ (p~, p~)(p) = 0 otherwise 

and 7~p 1 = 0 otherwise. 

' ' ' (A,  corner'),  p" = (B,  edge') and P2 = {Pc,P~} with Pc = 

e o ? - 7 ~ e r '  ~-~ e d g e  ! ~-. 

~nd ~p~ = ~. 

The first three derivations in G R I D  are i l lustrated below. 

> 

0 

0 

o 

0 

t'] 

0 
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If we talCe the empty rendezvous specification 0 instead of 7-4 (i.e., if we consider the 
derivations without rendezvous) we get instead derivations of the following kind. 

--> 

1 

The language generated by GRID is the set of all square grids: 

L(GRID) = { ~ ' 

I 

, . . .  } 

[] 

3.2 E x a m p l e  ( g e n e r a t i o n  of  all c o m p l e t e  g r a p h s )  
In order to generate the set of all complete graphs the RHTOL HR grammar  K given 
by I (  = ({A}, {P1, P2}, 7"4, A) can be used. Its components are defined as follows. 

P1 = {Pnew}, P2 = {Pa~} where p.r = (A, new) and Par (A, del) with 

vI ~ 
new = del = 0 v 

[ ]  

and "]2,.pl = {(v,v)}, ~'~P2 = ~. 

This grammar  generates the set of all complete graphs in the following way. In every 
intermediate graph, all nodes carry a.t least one A-labelled hyperedge. Each' such 
hyperedge generates a new node v which is connected with the old one by an edge. 
By the rendezvous specification, all the new nodes are merged into one, whidl is thus 
connected with every old one. [] 
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3.3 E x a m p l e  (genera t ion  of all graphs)  
Using basically the same idea as abovc we obtain ALL = ({A}, {P1, P2}, TO, A) which 
generates the set of all graphs. We let P2 be as in K, P~ = {p,~,p~, , ,} ,  with P,,,o as 

' = (A, new') where above and p,,r 

vo []  

1 7 , e W  t - ~  

o [] 

and, again, 7-r = {(v, v)}, Tip~ = ~. V1 

4 In terna l  R e n d e z v o u s  

As mentioned in tile introduction one of the main limitations of hyperedge replacement 
stems from the fact that, if two hyperedges are replaced by some graphs, the newly 
introduced parts cannot be connected directly. The examples in Section 3 indicate that 
the rendezvous mechanism enables us to overcome this disadvantage. On the other 
hand, the examples do not fully exploit tile power of the new notion because we never 
merge "old" parts, that is, external nodes of the right-hand sides. In fact, rendezvous 
in its most general form seems to exceed our initial intention: Not only are we able 
to introduce dependencies between new nodes created from different hyperedges in 
a parallel step; it is also possible to let the graph shrink by fusing old nodes. This 
is why it is quite unclear how the membership problem call be solved for arbitrary 
RHTOL HR languages. Because of these reasons the class of RHTOL ttR grammars 
in which only internal nodes (that is, nodes that are not external ones) are merged 
by the rendezvous specification is of special interest. 

4.1 Defini t ion (hyperedge  r ep l acemen t  with in ternal  rendezvous)  
The class ZTtq-Os is the set of all RHTOL HR grammars with internal rendezvous 
(IHTOL HR grammars). All RIITOL I-IR gralmnar (N, T, 7~, Z) is in Z7/TOf-, if we 
have for all P C "T, p,,p2 E P, p C_ [lhs(pl)] • Jibs(p2)] and (vl,vz) E TCp(pl,p2)(p) 
that vi is an internal node of Pi (for i = 1,2). 

We have the following theorem. 

4.2 T h e o r e m  
Let G C 2"7/70/2 be such that every rlght-hand side of a production in G contains 
at least one internal node. Then the membership problem for G is decidable. 

Proof .  In each parallel step in G the size (= nmnber of nodes) of the generated 
graph increases because only internal nodes are affected by the rendezvous and every 
right-hand side contains (at least) one internal node. (The "worst case" is that all 
the internal nodes get merged, yielding one new node.) But this means that an 
easy modification of the well-known algorithm to recognize context-sensitive string 
languages call be used to recognize L(G). This algorithm produce~ all derivations 
that yield graphs of the input graph's size and decides whether one of the generated 
graphs is isomorplfic to tile input graph. [] 
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The reader should notice that all our examples are of the form required by Theo- 
rem 4.2. It is an interesting question whether the theorem can be extended to all 
IHTOL HR grammars, without the requirement of producing at least one new node 
in each step. 

5 T h e  g e n e r a t i n g  p o w e r  of  R H T O L  H R  g r a m -  
m a r s  

In this section we investigate I~he power of RHTOL HR grammars. In particular, 
we prove two theorems. The first one states that there are languages which can 
be generated by grammars in ZT'tOf.1, i.e., very restricted IHTOL HP~ grammars 
that generate language.s which cannot be generated by HTOL HR grammars. As a 
second result of this section we prove that every language generated by an HTOL HR 
grammar can also be generated by an P~HTOL HR grammar of order 2. 

The theorem below follows fl'om the fact that - -  as shown in Example 3.3 - - t h e r e  is 
a grammar G 6 ZT"lT-Of-.l generating ~0. 

5.1 T h e o r e m  

Proof. For every G = (N,T,7~,Z) 6 Z~TOs let Go = (N,{P},TC',Z), where 
P = l,J T and 

Ts ifp, p' 6 P '  for some P '  6 T 
7~(p ,p ' )  = 0 if there is no such P '  6 T.  

Obviously, Go is in Z~Of,  and we have L(G) C_ L(Go) since every derivation in 
G is also admissible in Go. Applying this to the IHTOL HR grammar ALL from 
Example 3.3 we get L(ALL) C_ L(ALLo) 6 Z?YOf_,~. Since L(ALL) = ~o this 
means L(ALL) = L(ALLu) = Q0. It remains to show that there is no G' 6 NTOs  
generating Q0. By the above for all G' 6 ~TOf ,  we have L(G') C_ L(G'o) 6 ~Of,. 
However, it is well-known that there is no hyperedge-replacement grammar generating 
~o [Hab89], that  is, no gralmnar in ? / O f  generates G0. [] 

Our next theorem states that for every HTOL HR grammar there is an equivalent 
I~HTOL HR grammar of order 2. 

5.2 T h e o r e m  

P roo f .  Let O = (N, T,Tr Z) be of order k. In the following we will define tlle 
components of the RHTOL Hll grammar G' = (N' ,T ' ,Ts  Z') satisfying L(G') = 
L(G). Let N '  = {A I A 6 N} t~{1,. . . ,  k}, where all labels are of type 2. 

The basic idea of the proof is as follows. Consider any A-labelled hyperedge y of type 
m occurring in Z or in a production, such as the one depicted in the left-hand side 
below. 
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This hyperedge will be replaced .by the "bipartite" decorated graph in the right-hand 
side above. Here, the middle node is an auxiliary, new node. The hyperedge labelled A 
(which is attached to the first attached node of y) now gets replaced as y got before, 
but with the slight modification that only the first external node of the replacing 
right-hand side remains an external node. All others become ordinaa'y nodes. Hence 
additional identifications are necessary: the ith attached node of y has to be fused 
with the node which was the ith external one of the right-hand side before. This is 
easily done by a rendezvous relation for a (1, 1)-rendezvous between the A-labelled 
and the/- label led hyperedge. 

For each decorated graph H = ( V, E ,  Y, lab, att, ext ) let f ( H ) = ( Y ' ,  E ,  Y ' ,  lab', att', ext ), 
where 

v' = v 6{,,~ l y e }I} 

F' = U~o'{y~ l i E [yln) 

att '(y,) = v~att(y)i and 

l A 
lab(y) i f i = l  

lab'(yl) = i if 2 < i < typetf(y).  

Now define for each production p = ( A , R )  E P e T a production/~ = (,4,/~) as 
follows. If I ( R )  = (V, E, Y, lab, art, cxt) then 

k = (V 6{mid}, E, Y, lab, ate, mid cxtl) 

Furthernlore, let ql = (i , i" - }~o), for i = 2 , . . . ,  k. For every P E 7" we set 

P =  {1~ I I, E P} U {q, I i = 2 , . . . , k } .  

Now 7-' = {t5 ] p E 7-}. For every/~ E /5 e 7-' and for allqi,  2 < i < m,  where 
eXtrhs(p) = Vl . . .  Vm and ext~h~(qd = v v', we define 

{ ( v l , v ' ) , ( v l , v ) }  i f e q = { ( 1 , 1 ) }  
n'p(l~, qi)(eq) = 0 otherwise. 

For all other pairs p ,p '  E P we let 7~,(p,p ')  = 0. Finally, let Z ' =  f ( Z ) .  

It remains to prove that  L(G')  = L(G).  For this, it suffices to show that  for all 
decorated gr~pbs H, H '  E ~(N)  there is a direct derivation H ==~ H '  if alld only if "T,7~ 
f ( H )  T,:~,w f ( H ' ) ,  since 133, definition of f we have f ( t l )  = H if YH = 0. 
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Since 1"/' is empty except for the rendezvous {(l, 1)} two replacements of hyperedges 
2" Yl,Y2 6 ]I(H) are not affected by the rendezvous unless they stem from the same 

hyperedge in H. ltence by context-fl'eeness of hyperedge replacement we may without 
loss of geueraliW assume that  1t is a handle A' .  Let f (R )  = (V, E, Y, lab, art, ext) 
and let p = (A, R) 6 P be the production applied to A" in order to derive H ' .  Then 
t I " ~  R, hence f ( t I ' )  "~ f (R) .  Let b: Y/(H) ---* P be deii,md by 

f ~ if l.b:(,,)(y) = A repl(y) [ qi if lab1(n)(y ) = i. 

With m = type(A), eX~H = v~ ...'vm, and Ytt = {Y} we have 

f ( H )  ==r vm},E,Y, lab, att, v l . . . vm)  
T,O 

through b. Since the rendezvous of each two hyeredges of f ( H )  is {(1, 1)}, 7"s b) 
identifies v.~ with vl and every vi with extl, for i = 2 , . . . ,  m. (Observe. that  vl = exQ, 
anyway.) Thus 

f ( H )  ~ ( V ,  E, Y, lab, art, ex t l . . ,  extra) = I (R)  "~ f (U ' )  
T,R' 

as asserted. 

For the other direction let f ( l l )  = f (A ' )  ~ II". Theu Yl(tt) = {y l , . . .  ,y, ,},  where 
T',R' 

Yl is labelled b y / l  and for each i, 2 < i < m, Yi is labelled by i. So the L-base b' used 
in this direct derivation must have the form 

f /) i f / =  1 b'(yl) 
q, if i > 1 

for some i5 and j5 with/~ 6 / 3  6 T ' .  Hence b defined by b(y) = p is an L-base over T 
in H = A" since p 6 P 6 T.  Now H ==ez H '  through b, for some H '  6 Q(N). By the 

T,/r 

first part  of the proof this means f ( t I )  ~ f ( II ' )  through b', so H "  ~ f (H') .  [] 
T',R' 

Observe that  tile proof of Theorem 5.2 relies heavily Oll the fact that external nodes 
are merged by the rendezvous specification. There seems to be no way to ,chive this 
effect using an ]HTOL2 ]tR gramma,'. We have the following corollary summerizing 
the (proper) inclusions known so far. 

5.3 C o r o l l a r y  

2. ~(~o~) c z(z~o~) c c(n~oc) <_ ~(n~oc). 

P r o o f .  The properness of s163 C s 1 6 3  was shown by Kreowski [Kre92]. 
Theorem 5.1 yields both s 1 6 3  C s 1 6 3  and s163 C s163 and 
L:( 'HTOs C f ( ~ T O L : 2 )  is the statement of Theorem 5.2. [] 
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6 C o n c l u s i o n  

This paper presents the very first steps of the investigation of hyperedge replacement 
with rendezvous. The rendezvous mechanism allows to overcome certain limitations 
of the generative power of hypcredge replacement grammars without rendezvous. The 
following are open problems for further consideration: 

1. The summarizing Corollary 5.3 leaves the following questions: Are s163 
and E.(Z~TOI:.) properly included in ~.(~7-lTOf~) or not? Is ~.(7r included 
in e . ( n ~ o ~ )  o,. even in ~C(Z~O~)? 

2. The generative power of ordinary hyperedge-replacemelat graph grammars in- 
creases with the order. Is this also the case if the grammars employ the rendezvous 
mechanism? The authors conjecture that this should be true for ZT"ITOs but 
false for 7r163 (For the latter a proof similar to the one for Theorem 5.2 may 
be possible but the extension is not trivial.) 

3. Is there a sort of "coutext-freeness lenama" for ZT-(TOE.? Which are other in- 
teresting special cases of the rendezvous mechanism that increase the generative 
power of hyperedge replacement but do not destroy all the theory? 

4. More explicitly speaking, which of the rich structural aaad decidability results of 
hyperedge-replacement grammars and languages can be carried over or adapted 
to the case of grammars with rendezvous or subclasses of it? 
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