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Abs t rac t .  We explain a transformational 
approach to the design and verification of 
communicating concurrent systems. The 
transformations start form specifications that 
combine trace-based with state-based asser- 
tional reasoning about the desired communi- 
cation behaviour, and yield concurrent imple- 
mentations. We illustrate our approach by a 
case study proving correctness of implemen- 
tations of safe and regular registers allowing 
concurrent writing and reading phases, origi- 
nally due to Lamport. 

1 Introduction 

For concurrent systems a variety of specifica- 
tion formalisms have been developed, among 
them Temporal Logic IMP91], iterative pro- 
grams like action systems [Bac90] or UNITY 
programs [CM88], input/output automata 
[LT891, and process algebra [Mi189, BW90]. 
However, it remains a difficult task to design 
correct implementations starting from such 
specifications. It is here that we wish to make 
a contribution. 

We are developing a novel transforma- 
tional approach to the design of communi- 
cating concurrent systems. Our work origi- 
nates from the ESPRIT Basic P~esearch Ac- 
tion "ProCoS". ProCoS stands for "Provably 
Correct Systems" and is a wide-spectrum ver- 
ification project where embedded communi- 
cating systems are studied at various levels of 
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abstraction ranging from requirements' cap- 
ture over specification language and program- 
ming language down to the machine language 
[Bj089]. 

We use a specification language SL that 
combines trace-based with state-based asser- 
tional reasoning. The trace part specifies in 
a modular fashion in which order communi- 
cations on the channels may occur. To this 
end, regular expressions over channel alpha- 
bets are used. In the trace part we build 
on ideas of pure process algebra with unin- 
terpreted action symbols. Of course in any 
realistic application one has also to reason 
about values that are communicated. In SL 
the communication values are specified with 
the help of a state part which consists of state 
variables and communication assertions de- 
scribing when a channel is enabled for com- 
munication and what the effect of such a com- 
munication is. The state part corresponds to 
an iterative program in the style of action sys- 
tems or UNITY extended by communication 
through explicit message passing. 

The specification language SL is not as 
high:level as temporal logic can be, but it 
has the advantage that it allows us to for- 
mulate transformation rules for the stepwise 
design of implementations. In the ProCoS 
project we have developed a set of transfor- 
mation rules that is complete for transform- 
ing a large class of specifications into sequen- 
tial occam-like programs [0ITSS92]. In this 
paper we present further transformation rules 
that enable us to derive distributed concur- 
rent systems with components communicat- 
ing by synchronous message passing. 

Our work on transformational design is 
in the tradition of the work originated by 
Burstall and Darlington and pursued fur- 
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ther to practical application in projects 
like CIP (standing for Computer-aided 
Intuition-guided Programming) [Ban87] and 
PttOSPECTRA (standing for PROgram de- 
velopment by SPECification and TRAnsfor- 
mation) [Kri89]. While these approaches 
were concerned with conventional sequential 
programs, we study here concurrency and 
communication. 

Central to our approach is the concept of a 
mixed term [Old91b], i.e. a construct that 
mixes programming and specification con- 
structs. Mixed terms are well suited t o  ex- 
press intermediate stages of a design where 
some implementation details are fixed and 
others are still open. Mixed terms arise natu- 
rally as a formalization of the method of step- 
wise refinement originally advocated by Dijk- 
stra and Wirth. They appear also in the re- 
finement calculi of [Mor90, Bacg0], but these 
calculi deal with sequential or iterative pro- 
grams without explicit communication. 

In this paper we illustrate our approach by 
a ease study that is concerned with one of the 
basic assumptions of many distributed algo- 
rithms, viz. the correct interprocess commu- 
nication. In his article [Lam86], Lamport an- 
alyzes interprocess communication through 
registers that can be accessed by writers and 
readers in a possibly concurrent, i.e. over- 
lapping fashion. The assumptions that dis- 
tributed algorithms make about interprocess 
communication is mirrored by the values that 
a reader of the register may obtain in case of 
an overlapping writing phase. Lamport de- 
fines three classes of registers called safe, reg- 
ular and atomic where safe registers are the 
weakest and atomic are the strongest class. 
The main contribution of [LamB6] are several 
constructions of stronger register types from 
weaker ones together with correctness proofs 
in a specific formalism. The topic of concur- 
rent registers has excited quite some interest 
in the literature on distributed algorithms. A 
good overview can be found in [LG89]. 

In this paper we specify safe and regular 
registers in the language SL and systemati- 
cally derive one of Lamport's concurrent im- 
plementations using our transformational ap- 
proach. 

2 Specifications 

In this section we use the example of registers 
to provide an introduction to the specification 
language SL. As in [Lam86] we consider regis- 
ters that can store a value of some value set V 
and that are shared by one writer and possi- 
bly several readers. We begin with the case of 
only one re, uder. Following [LG89] such a reg- 
ister can be modelled as a system communi- 
cating through directed channels with its en- 
vironment consisting of a writer and a reader 
as shown in Figure 1. The writer initiates a 

Figurel: Register as communicating system 

writing phase by sending a value from the set  
V along the input channel W. This phase 
ends when a corresponding acknowledgement 
signal is output on channel A. Conversely, 
the reader initiates a reading phase by send- 
ing a signal along the input channel R. This 
phase ends when a value from the set V is 
returned along the output channel T. 

It remains to be specified what value is re- 
turned at the end of a reading phase. For a 
reading phase that does not overlap with any 
writing phase there is only one correct value 
to be returned, viz. the most recently writ- 
ten one. However, it is not clear what should 
happen in the case of concurrent, i.e. overlap- 
ping reading and writing phases. Therefore 
Lamport distinguishes three classes of regis- 
ters called safe, regular and atomic [Lam86]. 

For a safe register, any value of the value 
set V may be returned. For a regular register, 
either the value before or after the overlap- 
ping write must be returned. More generally, 
a read that overlaps with several writes, one 
of the values before or after these writes must 
be returned. For an atomic register, overlap- 
ping reads and writes must have the same ef- 
fect as if they occur in some non-overlapping 
order. We shall consider here only safe and 
regular registers. 
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2.1 Safe R e g i s t e r s  

Let us first explain how to specify a safe reg- 
ister in SL. An SL specification describes a 
communicating system using several parts. 

Interface. This part lists the communica- 
tion channels of the system with their direc- 
tion (input or output) and value type. For 
the register the interface is given by 

input  W of V 
output  A of s i gna l  
input  R of s i gna l  
output  T of V. 

Trace Par t .  This part specifies the se- 
quencing constraints on the interface chan- 
nels whereas the communicated values are ig- 
nored. This is done by stating one or more 
trace assertions, each one consisting of an al- 
phabet, i.e. a subset of the interface channels, 
and a regular expression over these channels. 
The regular expression describes the sequenc- 
ing constraints on the channels mentioned in 
the alphabet. By stating several such trace 
assertions, we can specify different aspects of 
the intended system behaviour in a modular 
fashion. 

For the register the trace part is given by 

t r ace  W,A in  pref(W.A)* 
t r ace  R,T  i n  pref(R.T)*. 

The first trace assertion concerns the writer. 
It states that communications on the chan- 
nels W and A should occur in Mternating 
order starting with W. In other words, at 
each moment the trace of channels 14/" and A 
should be a prefix of some word in the regular 
language (W.A)*. The second trace assertion 
states a similar requirement for the reader. 

The informal semantics of this part of 
an SL specification is that the described 
behaviour must satisfy the sequencing con- 
straints of all trace assertions simultaneously. 
The trace part of an SL specification corre- 
sponds to path ezpressions in the sense of 
[CH74] or to a regular fragment of trace logic 
in the sense of [Zwi89] and [Old91a]. 

State  Par t .  This part describes what the 
exact values are that can be exchanged over 
the interface channels. To this end, this part 
may introduce local state variables. These 
variables constitute the state space of the 
specification and are used in so-called com- 
munication assertions specifying the link be- 
tween values and channels. However, these 
variables need not appear in an implementa- 
tion of the specified system. 

For the register we use the following state 
variables: 

v a r v  of V 
var m of bool 
var c of boo1. 

The variable v represents the current value 
of the register. The boolean variable m 
stands for write modus and expresses whether 
the register is currently engaged in a writ- 
ing phase. The boolean variable c indicates 
whether a reading phase has to return the 
correct value, i.e. the one currently stored in 
"0. 

A communication assertion for a channel 
ch is of the form 

corn ch write E read Y when wh then th 

where ~ and ~ are disjoint lists of state vari- 
ables, the list ~ of write variables and the list 

of read wriables, and two predicates, the 
when or enable predicate wh describing when 
a channel is enabled for communication and 
the then or effect predicate th describing the 
communication value and the effect of this 
communication on the state variables. 

The enable predicate may only use vari- 
ables from ~ and "~. The effect predicate may 
additionally use primed versions of the write 
variables and the distinguished variable @ch 
obtained by prefixing the channel name ch 
by the symbol 4. As in the specification lan- 
guage Z [Spi89], a primed variable z I refers 
to the value of the variable x at the moment 
of termination. The read variables are not 
changed. The variable @ch refers to the com- 
munication value on the channel ch. 

If one of the variable lists is empty or one 
of the predicates is true, these components 
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are omitted from the communication asser- 
tion. In general, there can be several com- 
munication assertions for the same channel. 
We require that the set of all write variables 
in these assertions is disjoint from the set of 
all read variables. 

For the channels IV, A, R, T of the register 
we state the following communication asser- 
tions. 

COrn Iu write v,m,c 

then m' A vt=@IV A -~c' 

asserts that each communication on channel 
IV updates the state variables v, m and c as 
follows: the write modus m is set, the value 
v of the register becomes the current com- 
munication value @IV, and c is set to f a l s e  
to indicate for a possibly overlapping read- 
ing phase that an arbitrary value may be re- 
turned. 

Simplex is the communication assertion for 
channel A: 

corn A ~rite m then ~m' 

just asserts that a communication on A 
switches off the write modus. For channel 
R, 

corn R wri te  c read m then c t = - - m  

asserts that in c it is recorded whether the 
register is currently outside a write modus. 
For channel T, 

corn T read c,v then c =~ @ T = v  

asserts that when c is set the communication 
value on channel T has to be the correct value 
as give. by v. 

Putting these parts together, we arrive at 
the SL specification of a safe register for one 
reader and value set V shown in Figure 2. 

Informally, this SL specification describes 
the set of all traces of communications along 
the channels W,A,R and T that satisfy 
the constraints given by the trace asser- 
tions and communication assertions simul- 
taneously. Communications are denoted by 
pairs (ch, k) where ch is a channel name and 

spec input IV of V 
output A of signal 

input R of signal 
output T of V 

t r ace  IV, A ~ prcf(iv.A)* 
t r ace  R,T  in pref(R.T)* 
vat m of boo1 
vat  c of bool 
vax v of P" 

COrn H/ write v~m,e  
�9 m' A v'=OIV A -4 

corn A .rite m then ~Tn s 

com R write c read m 

then c t = ~m 

corn T r e a d  c ,  v t h e n  c =~ @ T  = v 

e n d  

Figure2: Specification 1-reader-VTsa:[e 

k is the communication value. Communica- 
tions on channels eh of type s igna l  will be 
simply denoted by the channel name ch itself. 
For example, for V={1,2,3,4,5} the commu- 
nication trace 

tr = ( W,3).A.R.( T,3).R.( W,5).A.( T,4).R.( T,5) 

satisfies 1-reader-V-safe.  Note that within 
the second reading phase a writing phase oc- 
curs which sets the state variable e to fa l se .  
Hence at the end of this reading phase an ar- 
bitrary value from V may be output on chan- 
nel T. Here we have chosen the value 4. On 
the other hand, the last reading phase ends 
with c evaluating to t rue  and thus outputs 
the most recently written value, which is 5. 

The formal semantics of the specification 
language SL is defined in a predicative style 
in [Old91b] and [ORSS92] and is beyond the 
scope of this paper. We mention only that 
in this semantics each SL specification S is 
identified with a pair A : P where A is the 
interface of S and P is a predicate describing 
the behaviour specified by S in terms of com- 
munication traces, ready sets and some other 
ingredients that are not important here. 

A ready set is a set of channels that are 
ready for communication. The formal seman- 
tics of an SL specification S requires that 
each communication trace of a system satis- 
fying S should be ready on all channels that 



94 

may occur next according to the trace and 
communication assertions of S. For exam- 
ple, after the above trace tr  the specifica- 
tion 1 - r e a d e r - V - s a f e  requires that a regis- 
ter should be ready for communication on the 
channels W and R. In particular, a register 
may not refuse to interact with its writer or 
reader after the trace tr .  

In principle, the trace part of specifica- 
tion 1 - r e a d e r - V - s a f e  can be eliminated in 
favour of an extended state part. However, 
this would result in a specification that is 
more difficult to understand. In general, we 
strive to express the data independent as- 
pects of a system behaviour in the t r ~ e  part. 

For each given n, the above specification 
can be extended to one specifiying a safe 
register with n readers using communication 
channels Ri and T~ for i e 1..n (Figure 3). 

spec input W o:f V 
output A os signal 
input R1, ..., R, of signal 

ou tpu t  T1,..., T~ of  V 
t r a c e  W , A  in  pref(W.A)* 

~el .... t r a c e  Ri,Ti in  pref(Ri.Ti)* 
v a t  m of  boo l  
var c1~ ..., Cn of  boo l  
v a t  v of V 
corn W write v , m ,  cl, . . . ,  c,  
then m' A v' = ~|~/ A A7=1 -iCi' 

corn A write m then -~m t 
i6L..~ corn Ri write cl read m 

then e~ = ~m 

iel .... corn Ti read ci,v then ci =~ ~Ti = v 

end 

Figure3: Specification n-reader-V-safe 

Since each of the readers can have differ- 
ent overlapplngs with writing phases, we in- 
troduce separate state variables cl to record 
whether at the end of a reading phase the 
reader i should get the correct value of the 
register as stored in variable v. This is sped- 
fled in the communication assertion for chan- 
nel T/. 

2 .2  R e g u l a r  R e g i s t e r s  

Let us now specify the behaviour of a regular 
register for n readers and the value set V in 
the language SL. We can reuse a large part 
of the specification n - r e a d e r - V - s a  fe above. 
Only the specification of the value returned 
at the end of a reading phase need to be 
changed. The idea is here to replace the 
boolean variables ci by set valued variables 
Ci which at each moment represent the set of 
values from V that  may be returned. Thus 
we declare 

v a t  C1, ..., C~ o~ V - set 

and change the communication assertion for 
T~ to 

corn Yl r ead  Ci t h e n  ~Ti  E Ci. 

It remains to be specified how to update the 
state variables Ci. Since by the regularity 
condition a reading phase overlapping a writ- 
ing phase should either return the value be- 
fore or after the write, we keep track of the old 
value of the register with every write. Thus 
we introduce the state variable 

va t  old of  V 

and use the following communication asser- 
tions for channels Ri and W: 

corn Ri w r i t e  Ci r e a d  m, old, v 
then ( - m  ~ C~ = {~}) 

^ (m =~. C~ = {v, old}) 

COrn W , r i t e  v ,m,  Ct,.. . ,  C, ,oId 
t hen  m'  A v ' - ~ W  A old'= 

^ ^7=1 cI  = c~ u { ~ w } .  

Thus at the start  of a reading phase through 
Ri the set of correct values depends on 
whether the register is in a write modus. If 
not, only the current value is the correct one. 
Otherwise the current and the old value are 
both correct. If during the reading phase new 
writing phases are initiated by a communica- 
tion on channel W, each time the set of cor- 
rect values is enlarged by the newly written 
value @W. 



spec input  W of V 
output  A of s i g n a l  
input  RI, ..', R.  of s i gna l  
output  Tt .... , T,  of V 
t r ace  W,A in pref(W.A)* 

iel .... t r ace  Ri,Ti in pref(Ri .~)* 
vat  m of bool 
vat  C1, ..., C.  of V - set 
v a r v  of V 
var old of V 
corn W write v, m, Ci, ...~ C., old 

then m' A v ' = ~ W  A o ld '=v  

^ ALx ' -  ci - ci  o { ~ w }  
com A w r i t e  m then -~m' 

~r .... corn Ri write Ci read m, old, v 
then (-.m =~ C~ = (V}) 

^ (m ~ q = {~,otd}) 
iel .... corn Ti read Ci then ~Ti E (7i 
end 

Figure4: Specification n-reader-V-regular 

Altogether we obtain the specification 
shown by Figure 4. Examples of communi- 
cation traces satisfying n- reader -V-regula r  
are 

( W,3).A.R.(T,3).R.( W,5).A.(W,1).A.(T,k) 

where k E {1, 3, 5}. After each of these traces 
the register is ready to engage in communi- 
cations on channels W and R. 

3 Transformational Approach 

The standard setting for a transformational 
approach is that specifications are trans- 
formed stepwise into programs. For example, 
our aim in ProCoS is to transform specifica- 
tions of the language SL into programs of an 
occam-like programming language PL. In our 
present study we do not aim at occam-like 
programs but wish to show how to construct 
complex registers from simpler ones. 

Such a construction can be conveniently 
expressed in the language MIX of mixed 
terms. MIX comprises n-sty programming 
operators OP that can be applied to specifica- 
tions or other mixed terms S1, ..., Sn yielding 
a mixed term 0P[S1, ...,Sn]. In general, MIX 
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serves to express the intermediate stages of a 
transformational design from SL to PL and 
thus contains SL and PL as proper subsets. 
Here MIX is used as a language for expressing 
implementations of registers. 

Under the predicative semantics described 
in [Old91b] and [0RSS92], specifications, 
programs and mixed terms are all identified 
with so-caLled systems. These are pairs A : P 
where A is an interface and P is a predicate 
describing the communication behaviour on 
the interface channels in A. Logical implica- 
tion and equivalence on predicates are lifted 
to systems as follows: 

�9 system implication: AI:P1 --> A2:P.2 
if A1 = A2 and ~ PI :* P2,  

�9 system equivalence: A1 : P1 -= A~ : P2 
if A1 = A2 and ~ P1 ~# P2 �9 

We also write A~:P2 < =  A1:P 1 instead of 
AI:P1 ----> A2:P2. Under the predicative se- 
mantics, system implication models the sat- 
isfaction or implementation or refinement re- 
lation. Thus a program or mixed term Q / s  
correct w.r.t, or satisfies or implements or re- 
fines a specification S iff Q =>  S holds. Note 
that system equivalence is a special ease of 
refinement. 

In the transformational approach a design 
of a program or mixed term Q from a speci- 
fication S is a sequence 

S = Ra <= ... <=  R .  = Q 

of system implications between mixed terms 
RI, ..., Rn where R1 is the given specification 
S and Rn is the desired result Q. The transi- 
tivity of the relation - >  ensures the desired 
correctness result Q -=> S. 

Each of the implications Ri < -  Ri+l in 
the design sequence is generated by an ap- 
plication of a transformation rule. We dis- 
tinguish two classes of transformation rules. 
Rules preserving system equivalence --- do 
not modify the system behaviour but only 
its syntactic representation. By contrast, 
implementation or strengthening rules relate 
systems of different behaviour by =>.  An 
application of such a rule represents an ir- 
reversible design decision: nondeterminism 
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within the behaviour may be removed or aa 
over-specification is obtained. 

3.1 T r a n s f o r m i n g  the State Part 

As a first contact with our transformational 
approach we present four groups of trans- 
formation rules dealing exclusively with the 
state part of a specification. As an applica- 
tion we shMl then formally derive .(the intu- 
itively clear statement) that regular registers 
refine safe registers. 

Spec i f i ca t ion  f o r m a t .  It is convenient to 
extend the specification format by introduc- 
ing invariant declarations of the form 

inv p 

where p is a predicate such that all free vari- 
ables are declared within the specification 
considered. Such a declaration postulates 
that p holds in the initial state and after each 
communication. 

Thus an SL specification can be repre- 
sented as a tuple spec  A TA Va CA I end 
where the components are as follows: 

A - a set of interface channels, 
TA - a set of trace assertions, 
Va - a set of variable declarations, 
CA - a set of communication assertions, 
I - a set of invariants. 

C o n j u n c t i o n .  These transformations re- 
veal the conjunctive nature of communication 
assertions and invariants; their application al- 
ways yield equivalent specifications. 

T 3.1 (conjunction of communication asser- 
tions) Two communication assertions 

cola ch wrs Ei read ~i 
when whi then thi 

(i 6 {1, 2}) for the same channel ch are equiv- 
alent to a single one: 

cola ch w r i t e  wl  U~2 read  ~1 U ~2 
when wh, A whz then  thl A th2. 

The conjunction of nil communication as- 
sertions for a channd ch within CA yields the 
unique communication assertion for oh: 

corn ch w r i t e  Ech r e a d  ~'ch 
uhen whoa t h e n  thch. 

T 3.2 (conjunction of invariants) Two in- 
variant declarations i n v  Pl and i n v  Pz are 
equivalent to a single one: i nv  Pl A P2. �9 

In the foUowing we denote by A I the con- 
junction of all invarlant predicates. If I is 
empty, we put A I = t r u e .  

S t r e n g t h e n i n g .  These transformations 
strengthen the system behaviour by restrict- 
ing the initial state, the state space or the 
effect of a communication. They either re- 
move some nondeterminism or lead to over- 
specification. It requires creativity to find the 
right degree of strengthening within the de- 
sign process. 

T 3.3 (initialization) Any variable declara- 
tion vax x of  tyx may be extended to an 
initialized declaration v a r  x of  tyx i n i t  c 
thereby defining e as initial value of z. �9 

T 3.4 (invariant strengthening) An invari- 
ant predicate p may be replaced by any predi- 
cate q over free variables Va such that  q =~ p 
holds. = 

Introducing an invarlant declaration in a 
specification without invariants is included as 
the special case of strengthening i n v  t r u e .  

T 3.5 (effect strengthening) An effect pred- 
icate p may be replaced by any predicate q 
such that  q A A I  ~ pho lds  and its free 
variables agree with the read and write list. 

M o d i f y i n g  spec i f i ca t ion  c o m p o n e n t s .  
These transformations describe the inter- 
action of several specification components. 
Their application always yield equivalent 
specifications. 
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T 3.6 (communication assertion modifica- 
tions) An enable or effect predicate p may 
be replaced by any predicate q with A I =~ 
(p r q) as far as the static semantics con- 
ditions are not violated. �9 

Thus dependent on the specification invari- 
ant a single enable or effect predicate can be 
strengthened or weakened without changing 
the behaviour. 

The counterpart of this transformation al- 
lows to modify an invariant dependent on the 
initial state and CA. To this end we need 
the notion of stability. A predicate q with 
free variables in Va is stable for a channel 
ch if the unique communication assertion of 
ch guarantees the following: q holds in all 
termination states of communications on ch 
that start in a state satisfying q. Formally, 
we have 

stable(q, ch) 

r 
wh~ ^ th~  ^ q =, q[W'~h/W~h ] 

where the substitution q[~'ch/~,h] replaces 
the write variables ~ h  by their primed ver- 
sions. Note that disjointness of ~ h  and 
free(q) guarantees stable(q, ch ). 
T 3.7 (invariant modifications) Let q be a 
predicate which holds in the initial state and 
is stable for all channels in A. Then any in- 
variant predicate p may be weakened to the 
implication q =~ p or strengthened to the 
conjunction q ^ p. �9 

Removing a declaration inv p is done by 
weakening to p =~ p. 

Local variables. Here we consider how 
read and write lists of a communication as- 
sertions and the set of local variable declara- 
tions can be changed by equivalence transfor- 
mations. 

T 3.8 (read llst modification) Any variable 
x E Ira may be added to the read list of a 
communication assertion of channel ch pro- 
vided x does not occur in the write list ~ch. 
A variable occurring free neither in the enable 
nor in the effect predicate of a communication 
assertion may be removed from its read list. 

The following two rules are corollaries of 
a quite complex equivalence transformation 
dealing with the combined modification of 
variable declarations, invariants and commu- 
nication assertions. They allow us to add and 
remove variable declarations together with 
modifications of communication assertions. 

T 3.9 (state space eztension) The state 
space can be extended by declaration of a 
new local variable. In addition the write lists 
of any communication assertions may be ex- 
tended by this variable. �9 

T 3.10 (removing write only variables) A 
variable declaration vex x of ty~[ i n i t  e] 
may be removed from a specification if z does 
not occur free in any invariant~ enable or ef- 
fect predicate. In that case z must be re- 
moved from the variable lists of the commu- 
nication assertions and their effect predicates 
must be changed such that 

th,~g ~' ~ 3z' �9 th~ d 

holds for all channels ch where r appears in 
the write list. �9 

3.2 R e g u l a r  I m p l e m e n t s  Safe 

From their informal description it seems obvi- 
ous that a regular register implements a safe 
one. Here we will prove this relation formally 
for the SL specifications given in Section 2. 
Since both specifications agree on their inter- 
face and trace parts, we need to relate only 
their state parts. To this end, we shall ap- 
ply the above transformation rules and mas- 
sage the specification n- reader-V-safe  un- 
til specification n - reader -V- regu la r  is ob- 
tained. We proceed in three steps: 

1. The communication assertions of T/are 
modified to the pattern of the regu- 
lar register specification. Therefore the 
state space is extended by set-valued 
variables C1,..., Cn and the invariant 
A~=t cl ~ (Ci = {v}) is introduced. 

2. By appropriate initialization and effect 
strengthening the invariant of Step 1 is 
made redundant. This allows to remove 
the same and afterwards all variables 
el~...~ Cn. 
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3. The variable old is added and channels 
W and Ri are strengthened to achieve 
the regular specification pattern. 

In the following we give a detailed account of 
this refinement by referring to the numbers of 
applied transformation rules. Starting point 
is the specification n - r e a d e r - V - s a f e .  

S tep  1 We extend the internal state space 
by new local variables Cl .... ~ Ca where write 
accesses axe restricted to channels W and 
R1, ..., R,, [T3.9]: 

var 6'1, ..., C .  o f  V - set 
cola W w r i t e  CI, . . . ,  Ca 
tom Ri .rite Ci. 

The values of C1, ..., Ca are related to those 
of cl , . . . ,  ca by the following invariant [T3.4]: 

l ay  A ( c i  =~ e l =  {v}). 
i=1 

Thus whenever 7'/ has to return the correct 
register value then variable Ci holds value 
{v}. The effect predicates of channels Ri are 
now strengthened [T3.5] to @Ti 6 Ci based 
on implication 

@Tie C~ ^ AL~ (c~ ~ c~ = {~}) 
=~ (ci ~ ~ T ~ = v ) .  

Since any communication on W assigns 
f a l s e  to all ei, its termination state satis- 
fies the invariant. All remaining channels 
A, T1, ..., T ,  do not write variables occurring 
in the invariant predicate. Thus the invari- 
ant holds and its declaration can be removed 
[T3.7]. 

This leads to a specification without read 
accesses to variables cl, . . . ,  ca. By trans- 
formation [T3.10] their declarations are re- 
moved and the communication assertions of 
W and R1, .... R ,  are modified using the logi- 
cal equivalences 3e~ .... , c~,A~=1 -,d i ~ t r u e  
and 3c~ * c~ = -~m ~ t r ue .  We thus obtain 
the following specification: 

spec ... interface and trace assertions ... 
v a r  m of  h e e l  
va t  C1, ..., C ,  of V - set 
v a r v  of V 
corn W write v,m,  Cl, . . . ,  C. 

then m' ^ v t=~W 

r A .rite m then mm t 

iel.,.~ corn Ri write Ci read m,v 
then ~m =~ C~= {v} 

~ea .... tom T/ read Ci then @T/q Ci 

end 

Step  3 We introduce the local variable old 
of type V and allow write access to it by W 

Accordingly the read fists are modified [T3.8] [T3.9]: 
by appending Ci and removing ci. Thus v a t  old of V 

in total the old communication assertions of 
T1, ..., 7", are replaced by the following ones 
for each i E 1..n: 

corn T~ read  Ci t h e n  @Ti E Ci. 

S tep  2 We strengthen the system behaviour 
in such a way that the invariant becomes re- 
dundant and thus may be removed. Firstly, 
all variables ci are initialized with f a l s e  
[T3.3]: 

var el, . . . ,  c ,  of bool  i n i t  false. 

Therefore the invariant holds initially. Sec- 
ondly, the effect predicates of channels Ri are 
strengthened [T3.5]: 

corn Ri write Ci, ci read m,v  
I _ _  �9 ' - ,m ^ ( - m  ~ c ~ -  {v} ) .  then c i = 

com W write old. 

C~ - C~u Strengthening W by conjunct A~=I ' - 
{@W} A old t = v [T3.5] and extending 
the read lists of all Ri by old [T3.8] together 
with strengthening their effects by conjuucts 

I _ _  m =~ C~ - {v, old} [T3.5] delivers the target 
specification n-reader-V-regular. 

4 C o n c u r r e n t  I m p l e m e n t a t i o n s  

In this section we study the implementation 
of a specification as a system of concurrently 
working subsystems synchronized via inter- 
hal communication. When designing such a 
system one first decides on its architecture, 
i.e. which tasks should be performed con- 
currently and how subsystems should corn- 
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municate. The transformational refinement 
process is then guided by these decisions. 

As an example we consider the implemen- 
tation of an n- reader-V-safe  register using 
n copies Xl, ..., X, of 1-reader-V-safe reg- 
isters and an auxiliary write process WP due 
to [Lain86, LG89]. The architecture of this 
implementation is shown in Figure 5. Thus 

W - ~ .  -. 

A " - - -  
~/P 

Wl J L 
at -[ Xl  [" " t 

t-.-----J 

wl j - - - ~ .  
�9 a i  [ _ ~ -  

wn _r "L 

- - - "  r x  

.R n 
- - "  r .  

Figure5: Implementation of n-reader-V-safe 

each of the n readers can communicate di- 
rectly via the channels Ri and Ti with a pri- 
vate single reader register Xi. By contrast, 
the writer communicates via W and A with 
the auxiliary process WP which is linked with 
the single reader registers Xl via the internal 
channels wl and ai. The idea is that a write 
access to the n-reader register is implemented 
in several stages. After having received a new 
value by communication on W the process 
WP transmits this value via potentially par- 
allel internal writes to all Xi. The external 
acknowledge on A is offered as soon as all in- 
ternal writes have indicated their termination 
by the acknowledge events al. 

We now present a formal transformational 
design of this implementation consisting of 
the following steps: 

�9 Local channds are declared and their 
global sequencing is constrained. 

�9 The state space is extended to cover 
the state spaces of the n single reader 
register. The behaviour is strength- 
ened to achieve the effects of the 
1-reader-V-safe specification. 

�9 The whole specification is decomposed 
into the subsystems WP and X1, ..., Xa. 

4.1 Local  C h a n n e l s  

A communication on a local channel is in- 
dependent from and invisible to the environ- 
ment. It may be performed as soon as its 
enable predicate holds in the current inter- 
hal state and the extended trace satisfies the 
sequencing constraints of all trace assertions. 
Thus in contrast to external channels there is 
no synchronization with the environment�9 

Interface channels chl,..., chk of a speci- 
fication S are localized applying to S the 
declaration operator CHAR with parameters 
Chl, ..., chk: 

$1 = CHAR chl,. . . ,ehk S. 

CHAH is one of the operators of the language 
MIX so that $1 is a mixed term. The seman- 
tics of CHAR implies that the system -ql avoids 
engaging in unboundedly many communica- 
tions on the local channels chl, ..., chk. Thus 
CHAR is a so-called "angelic" operator which 
is difficult to implement. 

To avoid non-implementabillty we addi- 
tionaUy use the operator HIDE from MIX: 

o~ = CHAR chl,..., chk HIDE Chl,... , ehk S. 

Systems Sz and $2 behave the same as long 
as S does not allow unbounded communica- 
tion on chl,..�9 ehk. But in contrast to -ql 
unbounded communication on these channels 
leads to divergence of $2. For a more detailed 
analysis see [0RSS92]. 

Here we present a rule dealing with the 
combined effect of introducing local channels 
with hiding. 

T 4.1 (introducing local channels) 
Let S = spee A TA Va C A I e n d  be a 
specification and chl,..., chk channel names 
not in A. Then S is equivalent to any mixed 
term 

T = CHAN chl,... , chk HIDE Chl,.. ,  chk 
spee AT TAT Va CA I end 

where the interface AT is given by 1 

A input  Chl of tYchl, ...inpul; chk of tychk 
output Chl o5 tyeh 1,...output chk of tych ~ 

1For technical reasons the local channels are de- 
clared with both directions. 
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and the trace part TAr satisfies the following 
conditions: 

1. it prevents unbounded communication 
on the new channels, 

2. its projection onto the old channels al- 
lows exactly the same traces as TA, 

3. for each prefix t of one of its traces and 
for each trace assertion ta E TAT the 
intersection of all extensions of t with the 
alphabet of ta contains at most one of 
the new channels. 

Condition 1 implies that T describes a di- 
vergence free system. Conditions 2 and 3 im- 
ply that  semantically S and T describe the 
same traces and ready sets. An application 
of this rule requires to find a right extension 
of the trace part meeting both these condi- 
tions and the overall development idea. 

In our example we introduce the local 
channels Wl, ..., w , ,  al ,  ..., an. As mentioned 
above communications on wi and al are al- 
ways enclosed by a preceding W and a fin- 
ishing A communication. Hence the ap- 
plication conditions 1-3 of [T4.1] are satis- 
fied. No restrictions are required between 
write and acknowledge channels of different 
single readers. Thus we replace the spec- 
ification n - r e a d e r - V - s a f e  by the following 
mixed term: 

CHAN 1Ol, ..., wn, Ul, .., an 

HIDE I01~ ..., ~On, Ul, ..., an 

spec input Wl, ..., Wn Of V 

ou tpu t  Wl,..., wn Of V 
inpu t  ul,  ..., an of  s i g n a l  
ou tpu t  a l , . . . ,  an Of s i g n a l  

... all n - r e a d e r - V - s a f e  components ... 
i E 1 . . n :  

t r a c e  IV, A, wi, al in  pref(W.wi.ai .A)* 
end 

4 .2  T r a c e  A s s e r t i o n s  a n d  I n v a r i a n t s  

Now we aim at the behaviour of the single 
reader registers. This requires an extended 
reasoning about modifications of the state 

part where in addition to the rules presented 
in 3.1 also the trace part is taken into ac- 
count. 

The following rule provides a generaliza- 
tion of the invariant reasoning based on [T3.6] 
and [T3.7]. It checks whether a predicate q 
holds whenever the system may engage in a 
communication on channel ch and allows us 
to modify its communication assertion appro- 
priately. We say that  a chaand eh* estab- 
lishes q if it holds in the terminating state of 
each ch* communication: 

establish(q, ch*) 

r 

whch. ^ the .  ~ q[~'ch./g~.]. 

T 4.2 (effect modifications under trace as- 
sertions) Let t r a c e  chl,  ..., chk i n  re be a 
trace assertion and q be a predicate which is 
stable for all channds of A\{chl . . . .  , ehk}. Let 
ch E {oh1 .... , chk}  he a channel such that  
in every word of the regular language of re 
each occurrence of ch is preceded by a chan- 
nel ch* establishing q. If further all interme- 
diate channels between oh* and ch are stable 
for q then the effect th~h may be weakened 
to q =~ tha, or strengthened to q ^ th~h 
without changing the behaviour. �9 

For the moment the design process pro- 
ceeds by the same technique shown in detail 
in 3.2: the state space is changed and com- 
munication assertions are strengthened; in- 
variants are introduced to modify communi- 
cation assertions and are removed afterwards. 

At first we introduce new local variables 
ml, s vi which shall correspond to the local 
variables m ,  c,  v of an 1 - r e a d e r - V - s a f e  reg- 
ister specification. Write and read access to 
these new variables is restricted as follows: 

va r  ral, ..., mn , l e l ,  ..., fen of  boo l  
v a r  vl, ..., vn o f  V 
corn Wi write vi~mi,~c i 
COrn ui write mi 
corn /~i write ~ei read mi 
COrn Ti read lei, vi. 

Then the effect predicates of theses channels 
are strengthened. The additional restrictions 
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are motivated by the corresponding predi- 
cates in 1 - r e a d e r - V - s a f e .  

c o .  wl w r i t e  vi, mi , lc i  r e a d  v 
t h e n  m~ A v ~ = v  A -~t~ 

corn a/ write ml then -~m~ 
con Ri w r i t e  Ci, tCi r ead  m, ml 

t h e n  c~ = -~m ^ s = "~mi 
corn T i r e a d  ci,v,~ci~1; i 

t h e n  (el ==~ @T/=  v) A (lcl =~ @Ti = v/) 

In the following steps the effect predicates 
are modified such that  they become indepen- 
dent from variables m and cl, ..., ca. This 
is done by iterated application of the invari- 
ant technique shown in the previous example. 
New invariants are introduced and some ef- 
fects are modified under them. After that ef- 
fect predicates of other channels are strength- 
ened to make the invarlant redundant. 

Firstly we deal with channels Ti whose ef- 
fect predicates are simplified under the fol- 
lowing invariant: 

n 

inv A (~i ~ lcl ^ ~ /=  ~). 
i=1  

Thus communication assertions of T / can  be 
replaced by the following ones: 

corn T/ r e a d  ~Cl, V/ t hen  s =~ ~ T / =  vl. 

Consideration of the single effect predicates 
shows that  this invaxiant is established by 
any communication on W, since all ci are set 
to f a l s e ,  and is a stable property of chan- 
nels Ti, ai, A. The initialization of variables 
cl, ..., c ,  by f a l s e  makes it also valid in the 
initial state. The effect predicates of channels 
w / a n d  R / a r e  strengthened by the conjuncts 
-,ci and -~m =;, (-~mi A v~ = v), respectively, 
and thus the invariant becomes redundant. 

var Cl,...,Cn of  boo l  i n i t  f a l s e  
coT. wl w r i t e  V/,mi,~Cl r ead  v, ci 

t h e n  ~ ^ V~=V A "~IC~ ̂  "~Ci 
corn Ri w r i t e  Ci,~Ci read  m, mi, vi, v 

t h e n  c~ = "-m A lc~ = -~m/ A 
('~m =~-,mi A v i = v )  

Next all read accesses to variables c/ are 
removed using the iuvariant m =~ A~'=I ~ci. 

It allows us to strengthen the effects of all wl 
by replacing conjuncts -~e/with m: 

COrn w~ w r i t e  v / ,mi , l c l  r e a d  v , m  
t h e n  m~ A v ~ = v  A "-t~ A m. 

The invariant predicate used here holds in 
the initial state and is stable for all channels. 
Thus it can be removed without any further 
changes. 

Then the local vaxiables c, , . . . ,  c ,  are re- 
moved and we obtain the following reduced 
state part: 

v a r  m, ml ,  . . ,  ran, te l ,  ..., len o f  boo l  
var V, Vl,..., v ,  o f  V 
com W w r i t e  v , m  t h e n  m I A v t = •W 
co,, A w r i t e  m t h e n  -~m' 
corn to/ write v/,m/,Icl read v,m 

t hen  ml A v i - v  A A m 
cola ai w r i t e  ml t h e n  -~m~ 
corn RI v r i t e  s r e a d  m, ml, v/, v 

t h e n  tc~ = ",ml A 
( - m  :~ - m /  ^ v / =  v) 

corn T/ r e a d  lcl,  vl t h e n  tci ~ OTi = vl. 

Now we pursue the elimination of variable 
m. To remove the read accesses to variable 
m the newly introduced rule [T4.2] is applied. 
Each communication on W assigns t r u e  to m 
and each one on A sets m to f a l s e  and no 
other communication modifies the value of m. 
Thus predicate m = t r u e  is established by 
W and is stable for all channels but A. We 
conclude from trace assertion 

t r a c e  A, W, ai, Wl i n  pref(W.wi.ai .A)* 

that each wl communication is preceded by 
an W communication and there cannot occur 
an A communication between W and the fol- 
lowing wi. Thus the effect thwl can be weak- 
ened and the communication assertions of all 
wl are replaced by 

COrn wi w r i t e  Vi~ti,~C i r e a d  v 
I I ! then mi A v i - v  A "~{ci. 

To deal with the occurrence of m in the ef- 
fect of channels Ri the behaviour is strength- 
ened by 

inv  "~m =~ A ('-,ml A vi = v). 
S=l 
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Under this invariant the communication as- 
sertions of all Ri are modified to 

corn Ri write s read m, ml, vi,v 
t h e n  s = " . m l .  

The initialization 

va r  m of bool  i n i t  t r u e  

delivers the validity of the above invariant 
predicate in the initial state. The 'channels 
ai,Ri, Ti do not write any variable of the in- 
variant while the effect predicates of W and 
wi always establish this invariant. Thus only 
channel A must be strengthened to achieve 
the redundancy of the invariant: 

corn A write m 
read m h ..., ran, ~)1, ..., Vn, 1) 

t h e n  ~mt A A~=I (-lml A Vi = V). 

Based on the sequencing constraints given 
by pref(W.wl.ai .A) we eliminate by multi- 
ple application of [T4.2] all conjuncts -~mi 
and vl = v. The former ones are established 
by communications al and are stable for all 
channels Ri and Ti. Thus thA can be weak- 
ened by removing conjunct A~'=1 -mi .  The 
other conjuncts vi = v are established by the 
wi's and are stable for all Ri, Ti and r  Thus 
A~=I vi = v can also he removed. Moreover, 
since there is no more a read access to m, this 
local variable can be removed and the com- 
munication assertions of W and A are simpli- 
fied to 

corn W w r i t e  v then v'= ~ W  
corn A. 

4.3  P a r a l l e l  D e c o m p o s i t i o n  

A major goal of the definition of SL and MIX 
was to support the development of concur- 
rent implementations. The result is a parallel 
decomposition rule based on the n-ary syn- 
chronization operator $YI~ of MIX. Accord- 
ing to this rule, interface components, invari- 
ants, trace assertions and communication as- 
sertions may he divided over the subspecifica- 
tions in an arbitrary fashion. Only each local 
variable declaration has to occur in exactly 
one ~i" 

T 4.3 (parallel decomposition) 
Let S = spec A TA Va CA I end and Si = 
spec Ai TAi Vai CAi Ii end for i E 1..n he 

vt specifications where A = Ui=l Ai, TA = 
Ui"=l TAi, Va = ~J'~=l Vai 2, CA = [J~=l CAI 

r t  
and I = Ui=l Ii. Then 

S - s u [ S , , . . . , & ] ,  

i.e. S is equivalent to a mixed term where 
synchronization is applied to all 5'/. tt 

We remark that TA enforces synchroniza- 
tion of all communications that  appear on 
channels in more than one of the local trace 
assertions TA~. The disjointness condition 
on the local variables Val reflects distributed 
concurrency. Thus a parallel decomposition 
must he prepared by rearranging specifica- 
tion components to achieve disjointness. To 
this end, we shall use the transformations 
[T3.1] and [T3.2]. 

Semantically the meaning of TA is a reg- 
ular language over the set of all channels. 
Thus modifications of the set of all trace 
assertions do not change the specified sys- 
tem behaviour as long as the same language 
is described. The trace merging algorithm 
[RS91, OttSS92] provides a transformation to 
join several trace assertions into a single one. 
A special case of trace merging is given by 
the following rule. 

T 4.4 (trace projection) 
Let t r a c e  chl,...,  chk i n  re he a trace as- 
sertion within TA and let ch11, ..cht,,, be a 
subset of its alphabet. Let ~'~ be a regular 
expression equivalent to re where all occur- 
rences of names {Chl, ..., chk}\{eht,,..chtm} 
are replaced by n i l  a. Then the addition of 
the projected trace assertion 

t r a c e  chll, ..cht,, i n  ~'~ 

to TA does not change the behaviour. �9 

Let us now consider the example. The 
intended architecture (cf. Figure 5) deter- 
mines the allocation of the interface compo- 
nents and variable declarations to the subsys- 
tems. As mentioned above, each single reader 

2Union of palrwlse disjoint sets. 
3The constant a l l  denotes the regular language 

consisting of the empty word. 
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register Xi shall get the variables m i , l c i ,  vi 
and therefore variable v must be placed in WP. 
Since the write list of a communication asser- 
tion wl consists of variables mi ,  lc i ,  vi and v, 
we must achieve a conjunctive form of the ef- 
fect predicate such that the former three and 
the latter one variable are not accessed in the 
same conjunct. Restricting the communica- 
tion value @wi to v by [T3.5] gives the effect 
predicate 

t r ' ~ w i  A @ w i = v .  m i A ~s i A V i = 

Then by IT3.1] the unique communication as- 
sertion is replaced by the following two: 

cola wi read v then ~W i = ~; 
corn wi wri te  vi,mi,~ci 

then m~ A -~lc~ A v l= r  

The specification of a single reader regis- 
ter requires an alternation between write and 
acknowledge communications. Thus for each 
i e 1..n we add by [T4.4] the projections 

trace wl,  ai in p r e f ( w i . a l ) *  

of trace assertions 

t r ace  IV, A ,  wl, ai in  p r e f ( W . w l . a i . A ) *  

on chaands wi and al to TA. After these 
preparations the whole specification is de- 
composed by [T4.3] yielding the following 
mixed term: 

CHAN W l ,  . . . ,  f f ; k , U l ,  ...~ an 
HIDE Wl, . . . ,  Wn,al~ ..., an 
SYN[ WP, XI, ..., Xn ] 

where 

WP= 

spec input W of V 
output A of signal 
output Wl,..., w .  of V 
input al, ..., a ,  of signal 

trace W, A in p r e f ( W . A ) *  
i E 1 . . n :  
t r ace  A ,  IV, al, wi  i n  pre  f ( W . w i . a i . A  )* 

vat  v of V 
cola W write v then v t=  ~ W  
cola wi read v then @wl = v 

end 

Xi = spec input  w/ of V 
output  ai of s i g n a l  
input  R/ of s i g n a l  
output ~ of V 
t r a c e  toi ,al  i n  p r e f ( w i . a i ) *  
t r ace  f i i , T i  i n  p r e f ( R i . T i ) *  
v a t  ml  of bool 
v a r  lc i  of bool 
v e x  vi of V 
corn wi write vi, mi,~c i 

' -Ic~ ' = @wl then m i A A v i 
cola ai write mi  then "~m~ 
coln Ri w r i t e  tel read  m l  

then Id i = -~mi 
tom T/ read s vl 

then lc l  =~ @Ti = vi 
end 

Note that each Xl is a copy of the 
1-reader-V-safe specification with the in- 
ter/ace channels W, A, R, T renamed into 
wl, al, RI, T/. This concludes the construction 
of an n- reader-V-safe  register from n copies 
of a 1-reader-V-safe register and an auxil- 
iary write process WP. 

By applying further transformations from 
[OILSS92, Ch. 8], we can obtain an steam- 
like implementation of WP with the following 
program body: 

WHILE t rue  SEQ [ W ? v ,  

PAR [SEQ [wl ! v, al?] . . . . .  
SEQ[w.!v,an?] ], 

A ! ]  . 

5 Discussion 

Our work on transformational design of con- 
current systems is close in spirit to the work 
on UNITY [CM88] and to Back's work on 
refinement calculus [Bac90]. One of the dif- 
ferences is that UNITY and Back start from 
iterative programs akin to Dijkstra's do-od 
loops whereas we start from SL specifications 
with an explicit treatment of communication. 
This leads us also to consider a richer class of 
programming operators and hence transfor- 
mation rules than previous work. 

The case study deals with one of the sim- 
pler concurrent implementations of registers 
originally due to Lamport [Lam86]. Whereas 



104 

Lamport gives a correctness proof in some 
special formalism, we use here a specifi- 
cation formalism combining standard ideas 
from process algebra, in particular about the 
semantics of CSP-like communicating pro- 
cusses [Hoa85, Old91a], and from state-based 
assertional reasoning. Our communication- 
based specification of the register is inspired 
by [LG89]. 

New is our transformational derivation 
of the concurrent implementation" of the n 
reader safe register. We have applied the 
same transformational approach to derive 
also other implementations of register due 
to [LareS6]: n reader regular register imple- 
mented by one reader regular registers and by 
one reader safe registers; safe registers for a fi- 
nite value set V implemented by safe registers 
for binary values. These transformations rely 
on further rules dealing with renaming and 
branching in the flow of control. We have not 
yet attacked the really difficult constructions 
for atomic registers. This would be a chal- 
lenging task for a transformational design. 
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