
A Case Study in
Transformational Design of Concurrent Systems*

Ernst-Rfidiger Oldcrog Stephan RSssig

FB Informatik, Universits Oldenburg
Postfach 2503, 2900 Oldenburg, Germany t

Abs t rac t . We explain a transformational
approach to the design and verification of
communicating concurrent systems. The
transformations start form specifications that
combine trace-based with state-based asser-
tional reasoning about the desired communi-
cation behaviour, and yield concurrent imple-
mentations. We illustrate our approach by a
case study proving correctness of implemen-
tations of safe and regular registers allowing
concurrent writing and reading phases, origi-
nally due to Lamport.

1 Introduction

For concurrent systems a variety of specifica-
tion formalisms have been developed, among
them Temporal Logic IMP91], iterative pro-
grams like action systems [Bac90] or UNITY
programs [CM88], input/output automata
[LT891, and process algebra [Mi189, BW90].
However, it remains a difficult task to design
correct implementations starting from such
specifications. It is here that we wish to make
a contribution.

We are developing a novel transforma-
tional approach to the design of communi-
cating concurrent systems. Our work origi-
nates from the ESPRIT Basic P~esearch Ac-
tion "ProCoS". ProCoS stands for "Provably
Correct Systems" and is a wide-spectrum ver-
ification project where embedded communi-
cating systems are studied at various levels of

*This research was partially supported by the CEC
with the ESPRIT Basic Research Project No. 7071
ProCoS II and by the German Ministry of Re-
search and Technologic (BMFT) as part of the
project KORSO (Korrekte Software) under grant
No. 01 IS 203 N.

! {olderog,roessig} @informatik.uni-oldenbnrg.dc

abstraction ranging from requirements' cap-
ture over specification language and program-
ming language down to the machine language
[Bj089].

We use a specification language SL that
combines trace-based with state-based asser-
tional reasoning. The trace part specifies in
a modular fashion in which order communi-
cations on the channels may occur. To this
end, regular expressions over channel alpha-
bets are used. In the trace part we build
on ideas of pure process algebra with unin-
terpreted action symbols. Of course in any
realistic application one has also to reason
about values that are communicated. In SL
the communication values are specified with
the help of a state part which consists of state
variables and communication assertions de-
scribing when a channel is enabled for com-
munication and what the effect of such a com-
munication is. The state part corresponds to
an iterative program in the style of action sys-
tems or UNITY extended by communication
through explicit message passing.

The specification language SL is not as
high:level as temporal logic can be, but it
has the advantage that it allows us to for-
mulate transformation rules for the stepwise
design of implementations. In the ProCoS
project we have developed a set of transfor-
mation rules that is complete for transform-
ing a large class of specifications into sequen-
tial occam-like programs [0ITSS92]. In this
paper we present further transformation rules
that enable us to derive distributed concur-
rent systems with components communicat-
ing by synchronous message passing.

Our work on transformational design is
in the tradition of the work originated by
Burstall and Darlington and pursued fur-

9]

ther to practical application in projects
like CIP (standing for Computer-aided
Intuition-guided Programming) [Ban87] and
PttOSPECTRA (standing for PROgram de-
velopment by SPECification and TRAnsfor-
mation) [Kri89]. While these approaches
were concerned with conventional sequential
programs, we study here concurrency and
communication.

Central to our approach is the concept of a
mixed term [Old91b], i.e. a construct that
mixes programming and specification con-
structs. Mixed terms are well suited t o ex-
press intermediate stages of a design where
some implementation details are fixed and
others are still open. Mixed terms arise natu-
rally as a formalization of the method of step-
wise refinement originally advocated by Dijk-
stra and Wirth. They appear also in the re-
finement calculi of [Mor90, Bacg0], but these
calculi deal with sequential or iterative pro-
grams without explicit communication.

In this paper we illustrate our approach by
a ease study that is concerned with one of the
basic assumptions of many distributed algo-
rithms, viz. the correct interprocess commu-
nication. In his article [Lam86], Lamport an-
alyzes interprocess communication through
registers that can be accessed by writers and
readers in a possibly concurrent, i.e. over-
lapping fashion. The assumptions that dis-
tributed algorithms make about interprocess
communication is mirrored by the values that
a reader of the register may obtain in case of
an overlapping writing phase. Lamport de-
fines three classes of registers called safe, reg-
ular and atomic where safe registers are the
weakest and atomic are the strongest class.
The main contribution of [LamB6] are several
constructions of stronger register types from
weaker ones together with correctness proofs
in a specific formalism. The topic of concur-
rent registers has excited quite some interest
in the literature on distributed algorithms. A
good overview can be found in [LG89].

In this paper we specify safe and regular
registers in the language SL and systemati-
cally derive one of Lamport's concurrent im-
plementations using our transformational ap-
proach.

2 Specifications

In this section we use the example of registers
to provide an introduction to the specification
language SL. As in [Lam86] we consider regis-
ters that can store a value of some value set V
and that are shared by one writer and possi-
bly several readers. We begin with the case of
only one re, uder. Following [LG89] such a reg-
ister can be modelled as a system communi-
cating through directed channels with its en-
vironment consisting of a writer and a reader
as shown in Figure 1. The writer initiates a

Figurel: Register as communicating system

writing phase by sending a value from the set
V along the input channel W. This phase
ends when a corresponding acknowledgement
signal is output on channel A. Conversely,
the reader initiates a reading phase by send-
ing a signal along the input channel R. This
phase ends when a value from the set V is
returned along the output channel T.

It remains to be specified what value is re-
turned at the end of a reading phase. For a
reading phase that does not overlap with any
writing phase there is only one correct value
to be returned, viz. the most recently writ-
ten one. However, it is not clear what should
happen in the case of concurrent, i.e. overlap-
ping reading and writing phases. Therefore
Lamport distinguishes three classes of regis-
ters called safe, regular and atomic [Lam86].

For a safe register, any value of the value
set V may be returned. For a regular register,
either the value before or after the overlap-
ping write must be returned. More generally,
a read that overlaps with several writes, one
of the values before or after these writes must
be returned. For an atomic register, overlap-
ping reads and writes must have the same ef-
fect as if they occur in some non-overlapping
order. We shall consider here only safe and
regular registers.

92

2.1 Safe R e g i s t e r s

Let us first explain how to specify a safe reg-
ister in SL. An SL specification describes a
communicating system using several parts.

Interface. This part lists the communica-
tion channels of the system with their direc-
tion (input or output) and value type. For
the register the interface is given by

input W of V
output A of s i gna l
input R of s i gna l
output T of V.

Trace Par t . This part specifies the se-
quencing constraints on the interface chan-
nels whereas the communicated values are ig-
nored. This is done by stating one or more
trace assertions, each one consisting of an al-
phabet, i.e. a subset of the interface channels,
and a regular expression over these channels.
The regular expression describes the sequenc-
ing constraints on the channels mentioned in
the alphabet. By stating several such trace
assertions, we can specify different aspects of
the intended system behaviour in a modular
fashion.

For the register the trace part is given by

t r ace W,A in pref(W.A)*
t r ace R,T i n pref(R.T)*.

The first trace assertion concerns the writer.
It states that communications on the chan-
nels W and A should occur in Mternating
order starting with W. In other words, at
each moment the trace of channels 14/" and A
should be a prefix of some word in the regular
language (W.A)*. The second trace assertion
states a similar requirement for the reader.

The informal semantics of this part of
an SL specification is that the described
behaviour must satisfy the sequencing con-
straints of all trace assertions simultaneously.
The trace part of an SL specification corre-
sponds to path ezpressions in the sense of
[CH74] or to a regular fragment of trace logic
in the sense of [Zwi89] and [Old91a].

State Par t . This part describes what the
exact values are that can be exchanged over
the interface channels. To this end, this part
may introduce local state variables. These
variables constitute the state space of the
specification and are used in so-called com-
munication assertions specifying the link be-
tween values and channels. However, these
variables need not appear in an implementa-
tion of the specified system.

For the register we use the following state
variables:

v a r v of V
var m of bool
var c of boo1.

The variable v represents the current value
of the register. The boolean variable m
stands for write modus and expresses whether
the register is currently engaged in a writ-
ing phase. The boolean variable c indicates
whether a reading phase has to return the
correct value, i.e. the one currently stored in
"0.

A communication assertion for a channel
ch is of the form

corn ch write E read Y when wh then th

where ~ and ~ are disjoint lists of state vari-
ables, the list ~ of write variables and the list

of read wriables, and two predicates, the
when or enable predicate wh describing when
a channel is enabled for communication and
the then or effect predicate th describing the
communication value and the effect of this
communication on the state variables.

The enable predicate may only use vari-
ables from ~ and "~. The effect predicate may
additionally use primed versions of the write
variables and the distinguished variable @ch
obtained by prefixing the channel name ch
by the symbol 4. As in the specification lan-
guage Z [Spi89], a primed variable z I refers
to the value of the variable x at the moment
of termination. The read variables are not
changed. The variable @ch refers to the com-
munication value on the channel ch.

If one of the variable lists is empty or one
of the predicates is true, these components

93

are omitted from the communication asser-
tion. In general, there can be several com-
munication assertions for the same channel.
We require that the set of all write variables
in these assertions is disjoint from the set of
all read variables.

For the channels IV, A, R, T of the register
we state the following communication asser-
tions.

COrn Iu write v,m,c

then m' A vt=@IV A -~c'

asserts that each communication on channel
IV updates the state variables v, m and c as
follows: the write modus m is set, the value
v of the register becomes the current com-
munication value @IV, and c is set to f a l s e
to indicate for a possibly overlapping read-
ing phase that an arbitrary value may be re-
turned.

Simplex is the communication assertion for
channel A:

corn A ~rite m then ~m'

just asserts that a communication on A
switches off the write modus. For channel
R,

corn R wri te c read m then c t = - - m

asserts that in c it is recorded whether the
register is currently outside a write modus.
For channel T,

corn T read c,v then c =~ @ T = v

asserts that when c is set the communication
value on channel T has to be the correct value
as give. by v.

Putting these parts together, we arrive at
the SL specification of a safe register for one
reader and value set V shown in Figure 2.

Informally, this SL specification describes
the set of all traces of communications along
the channels W,A,R and T that satisfy
the constraints given by the trace asser-
tions and communication assertions simul-
taneously. Communications are denoted by
pairs (ch, k) where ch is a channel name and

spec input IV of V
output A of signal

input R of signal
output T of V

t r ace IV, A ~ prcf(iv.A)*
t r ace R,T in pref(R.T)*
vat m of boo1
vat c of bool
vax v of P"

COrn H/ write v~m,e
�9 m' A v'=OIV A -4

corn A .rite m then ~Tn s

com R write c read m

then c t = ~m

corn T r e a d c , v t h e n c =~ @ T = v

e n d

Figure2: Specification 1-reader-VTsa:[e

k is the communication value. Communica-
tions on channels eh of type s igna l will be
simply denoted by the channel name ch itself.
For example, for V={1,2,3,4,5} the commu-
nication trace

tr = (W,3).A.R.(T,3).R.(W,5).A.(T,4).R.(T,5)

satisfies 1-reader-V-safe. Note that within
the second reading phase a writing phase oc-
curs which sets the state variable e to fa l se .
Hence at the end of this reading phase an ar-
bitrary value from V may be output on chan-
nel T. Here we have chosen the value 4. On
the other hand, the last reading phase ends
with c evaluating to t rue and thus outputs
the most recently written value, which is 5.

The formal semantics of the specification
language SL is defined in a predicative style
in [Old91b] and [ORSS92] and is beyond the
scope of this paper. We mention only that
in this semantics each SL specification S is
identified with a pair A : P where A is the
interface of S and P is a predicate describing
the behaviour specified by S in terms of com-
munication traces, ready sets and some other
ingredients that are not important here.

A ready set is a set of channels that are
ready for communication. The formal seman-
tics of an SL specification S requires that
each communication trace of a system satis-
fying S should be ready on all channels that

94

may occur next according to the trace and
communication assertions of S. For exam-
ple, after the above trace tr the specifica-
tion 1 - r e a d e r - V - s a f e requires that a regis-
ter should be ready for communication on the
channels W and R. In particular, a register
may not refuse to interact with its writer or
reader after the trace tr .

In principle, the trace part of specifica-
tion 1 - r e a d e r - V - s a f e can be eliminated in
favour of an extended state part. However,
this would result in a specification that is
more difficult to understand. In general, we
strive to express the data independent as-
pects of a system behaviour in the t r ~ e part.

For each given n, the above specification
can be extended to one specifiying a safe
register with n readers using communication
channels Ri and T~ for i e 1..n (Figure 3).

spec input W o:f V
output A os signal
input R1, ..., R, of signal

ou tpu t T1,..., T~ of V
t r a c e W , A in pref(W.A)*

~el t r a c e Ri,Ti in pref(Ri.Ti)*
v a t m of boo l
var c1~ ..., Cn of boo l
v a t v of V
corn W write v , m , cl, . . . , c,
then m' A v' = ~|~/ A A7=1 -iCi'

corn A write m then -~m t
i6L..~ corn Ri write cl read m

then e~ = ~m

iel corn Ti read ci,v then ci =~ ~Ti = v

end

Figure3: Specification n-reader-V-safe

Since each of the readers can have differ-
ent overlapplngs with writing phases, we in-
troduce separate state variables cl to record
whether at the end of a reading phase the
reader i should get the correct value of the
register as stored in variable v. This is sped-
fled in the communication assertion for chan-
nel T/.

2 .2 R e g u l a r R e g i s t e r s

Let us now specify the behaviour of a regular
register for n readers and the value set V in
the language SL. We can reuse a large part
of the specification n - r e a d e r - V - s a fe above.
Only the specification of the value returned
at the end of a reading phase need to be
changed. The idea is here to replace the
boolean variables ci by set valued variables
Ci which at each moment represent the set of
values from V that may be returned. Thus
we declare

v a t C1, ..., C~ o~ V - set

and change the communication assertion for
T~ to

corn Yl r ead Ci t h e n ~Ti E Ci.

It remains to be specified how to update the
state variables Ci. Since by the regularity
condition a reading phase overlapping a writ-
ing phase should either return the value be-
fore or after the write, we keep track of the old
value of the register with every write. Thus
we introduce the state variable

va t old of V

and use the following communication asser-
tions for channels Ri and W:

corn Ri w r i t e Ci r e a d m, old, v
then (- m ~ C~ = {~})

^ (m =~. C~ = {v, old})

COrn W , r i t e v ,m, Ct,.. . , C, ,oId
t hen m' A v ' - ~ W A old'=

^ ^7=1 cI = c~ u { ~ w } .

Thus at the start of a reading phase through
Ri the set of correct values depends on
whether the register is in a write modus. If
not, only the current value is the correct one.
Otherwise the current and the old value are
both correct. If during the reading phase new
writing phases are initiated by a communica-
tion on channel W, each time the set of cor-
rect values is enlarged by the newly written
value @W.

spec input W of V
output A of s i g n a l
input RI, ..', R. of s i gna l
output Tt , T, of V
t r ace W,A in pref(W.A)*

iel t r ace Ri,Ti in pref(Ri .~)*
vat m of bool
vat C1, ..., C. of V - set
v a r v of V
var old of V
corn W write v, m, Ci, ...~ C., old

then m' A v ' = ~ W A o ld '=v

^ ALx ' - ci - ci o { ~ w }
com A w r i t e m then -~m'

~r corn Ri write Ci read m, old, v
then (-.m =~ C~ = (V})

^ (m ~ q = {~,otd})
iel corn Ti read Ci then ~Ti E (7i
end

Figure4: Specification n-reader-V-regular

Altogether we obtain the specification
shown by Figure 4. Examples of communi-
cation traces satisfying n- reader -V-regula r
are

(W,3).A.R.(T,3).R.(W,5).A.(W,1).A.(T,k)

where k E {1, 3, 5}. After each of these traces
the register is ready to engage in communi-
cations on channels W and R.

3 Transformational Approach

The standard setting for a transformational
approach is that specifications are trans-
formed stepwise into programs. For example,
our aim in ProCoS is to transform specifica-
tions of the language SL into programs of an
occam-like programming language PL. In our
present study we do not aim at occam-like
programs but wish to show how to construct
complex registers from simpler ones.

Such a construction can be conveniently
expressed in the language MIX of mixed
terms. MIX comprises n-sty programming
operators OP that can be applied to specifica-
tions or other mixed terms S1, ..., Sn yielding
a mixed term 0P[S1, ...,Sn]. In general, MIX

95

serves to express the intermediate stages of a
transformational design from SL to PL and
thus contains SL and PL as proper subsets.
Here MIX is used as a language for expressing
implementations of registers.

Under the predicative semantics described
in [Old91b] and [0RSS92], specifications,
programs and mixed terms are all identified
with so-caLled systems. These are pairs A : P
where A is an interface and P is a predicate
describing the communication behaviour on
the interface channels in A. Logical implica-
tion and equivalence on predicates are lifted
to systems as follows:

�9 system implication: AI:P1 --> A2:P.2
if A1 = A2 and ~ PI :* P2,

�9 system equivalence: A1 : P1 -= A~ : P2
if A1 = A2 and ~ P1 ~# P2 �9

We also write A~:P2 < = A1:P 1 instead of
AI:P1 ----> A2:P2. Under the predicative se-
mantics, system implication models the sat-
isfaction or implementation or refinement re-
lation. Thus a program or mixed term Q / s
correct w.r.t, or satisfies or implements or re-
fines a specification S iff Q => S holds. Note
that system equivalence is a special ease of
refinement.

In the transformational approach a design
of a program or mixed term Q from a speci-
fication S is a sequence

S = Ra <= ... <= R . = Q

of system implications between mixed terms
RI, ..., Rn where R1 is the given specification
S and Rn is the desired result Q. The transi-
tivity of the relation - > ensures the desired
correctness result Q -=> S.

Each of the implications Ri < - Ri+l in
the design sequence is generated by an ap-
plication of a transformation rule. We dis-
tinguish two classes of transformation rules.
Rules preserving system equivalence --- do
not modify the system behaviour but only
its syntactic representation. By contrast,
implementation or strengthening rules relate
systems of different behaviour by =>. An
application of such a rule represents an ir-
reversible design decision: nondeterminism

96

within the behaviour may be removed or aa
over-specification is obtained.

3.1 T r a n s f o r m i n g the State Part

As a first contact with our transformational
approach we present four groups of trans-
formation rules dealing exclusively with the
state part of a specification. As an applica-
tion we shMl then formally derive .(the intu-
itively clear statement) that regular registers
refine safe registers.

Spec i f i ca t ion f o r m a t . It is convenient to
extend the specification format by introduc-
ing invariant declarations of the form

inv p

where p is a predicate such that all free vari-
ables are declared within the specification
considered. Such a declaration postulates
that p holds in the initial state and after each
communication.

Thus an SL specification can be repre-
sented as a tuple spec A TA Va CA I end
where the components are as follows:

A - a set of interface channels,
TA - a set of trace assertions,
Va - a set of variable declarations,
CA - a set of communication assertions,
I - a set of invariants.

C o n j u n c t i o n . These transformations re-
veal the conjunctive nature of communication
assertions and invariants; their application al-
ways yield equivalent specifications.

T 3.1 (conjunction of communication asser-
tions) Two communication assertions

cola ch wrs Ei read ~i
when whi then thi

(i 6 {1, 2}) for the same channel ch are equiv-
alent to a single one:

cola ch w r i t e wl U~2 read ~1 U ~2
when wh, A whz then thl A th2.

The conjunction of nil communication as-
sertions for a channd ch within CA yields the
unique communication assertion for oh:

corn ch w r i t e Ech r e a d ~'ch
uhen whoa t h e n thch.

T 3.2 (conjunction of invariants) Two in-
variant declarations i n v Pl and i n v Pz are
equivalent to a single one: i nv Pl A P2. �9

In the foUowing we denote by A I the con-
junction of all invarlant predicates. If I is
empty, we put A I = t r u e .

S t r e n g t h e n i n g . These transformations
strengthen the system behaviour by restrict-
ing the initial state, the state space or the
effect of a communication. They either re-
move some nondeterminism or lead to over-
specification. It requires creativity to find the
right degree of strengthening within the de-
sign process.

T 3.3 (initialization) Any variable declara-
tion vax x of tyx may be extended to an
initialized declaration v a r x of tyx i n i t c
thereby defining e as initial value of z. �9

T 3.4 (invariant strengthening) An invari-
ant predicate p may be replaced by any predi-
cate q over free variables Va such that q =~ p
holds. =

Introducing an invarlant declaration in a
specification without invariants is included as
the special case of strengthening i n v t r u e .

T 3.5 (effect strengthening) An effect pred-
icate p may be replaced by any predicate q
such that q A A I ~ pho lds and its free
variables agree with the read and write list.

M o d i f y i n g spec i f i ca t ion c o m p o n e n t s .
These transformations describe the inter-
action of several specification components.
Their application always yield equivalent
specifications.

97

T 3.6 (communication assertion modifica-
tions) An enable or effect predicate p may
be replaced by any predicate q with A I =~
(p r q) as far as the static semantics con-
ditions are not violated. �9

Thus dependent on the specification invari-
ant a single enable or effect predicate can be
strengthened or weakened without changing
the behaviour.

The counterpart of this transformation al-
lows to modify an invariant dependent on the
initial state and CA. To this end we need
the notion of stability. A predicate q with
free variables in Va is stable for a channel
ch if the unique communication assertion of
ch guarantees the following: q holds in all
termination states of communications on ch
that start in a state satisfying q. Formally,
we have

stable(q, ch)

r
wh~ ^ th~ ^ q =, q[W'~h/W~h]

where the substitution q[~'ch/~,h] replaces
the write variables ~ h by their primed ver-
sions. Note that disjointness of ~ h and
free(q) guarantees stable(q, ch).
T 3.7 (invariant modifications) Let q be a
predicate which holds in the initial state and
is stable for all channels in A. Then any in-
variant predicate p may be weakened to the
implication q =~ p or strengthened to the
conjunction q ^ p. �9

Removing a declaration inv p is done by
weakening to p =~ p.

Local variables. Here we consider how
read and write lists of a communication as-
sertions and the set of local variable declara-
tions can be changed by equivalence transfor-
mations.

T 3.8 (read llst modification) Any variable
x E Ira may be added to the read list of a
communication assertion of channel ch pro-
vided x does not occur in the write list ~ch.
A variable occurring free neither in the enable
nor in the effect predicate of a communication
assertion may be removed from its read list.

The following two rules are corollaries of
a quite complex equivalence transformation
dealing with the combined modification of
variable declarations, invariants and commu-
nication assertions. They allow us to add and
remove variable declarations together with
modifications of communication assertions.

T 3.9 (state space eztension) The state
space can be extended by declaration of a
new local variable. In addition the write lists
of any communication assertions may be ex-
tended by this variable. �9

T 3.10 (removing write only variables) A
variable declaration vex x of ty~[i n i t e]
may be removed from a specification if z does
not occur free in any invariant~ enable or ef-
fect predicate. In that case z must be re-
moved from the variable lists of the commu-
nication assertions and their effect predicates
must be changed such that

th,~g ~' ~ 3z' �9 th~ d

holds for all channels ch where r appears in
the write list. �9

3.2 R e g u l a r I m p l e m e n t s Safe

From their informal description it seems obvi-
ous that a regular register implements a safe
one. Here we will prove this relation formally
for the SL specifications given in Section 2.
Since both specifications agree on their inter-
face and trace parts, we need to relate only
their state parts. To this end, we shall ap-
ply the above transformation rules and mas-
sage the specification n- reader-V-safe un-
til specification n - reader -V- regu la r is ob-
tained. We proceed in three steps:

1. The communication assertions of T/are
modified to the pattern of the regu-
lar register specification. Therefore the
state space is extended by set-valued
variables C1,..., Cn and the invariant
A~=t cl ~ (Ci = {v}) is introduced.

2. By appropriate initialization and effect
strengthening the invariant of Step 1 is
made redundant. This allows to remove
the same and afterwards all variables
el~...~ Cn.

98

3. The variable old is added and channels
W and Ri are strengthened to achieve
the regular specification pattern.

In the following we give a detailed account of
this refinement by referring to the numbers of
applied transformation rules. Starting point
is the specification n - r e a d e r - V - s a f e .

S tep 1 We extend the internal state space
by new local variables Cl ~ Ca where write
accesses axe restricted to channels W and
R1, ..., R,, [T3.9]:

var 6'1, ..., C . o f V - set
cola W w r i t e CI, . . . , Ca
tom Ri .rite Ci.

The values of C1, ..., Ca are related to those
of cl , . . . , ca by the following invariant [T3.4]:

l ay A (c i =~ e l = {v}).
i=1

Thus whenever 7'/ has to return the correct
register value then variable Ci holds value
{v}. The effect predicates of channels Ri are
now strengthened [T3.5] to @Ti 6 Ci based
on implication

@Tie C~ ^ AL~ (c~ ~ c~ = {~})
=~ (ci ~ ~ T ~ = v) .

Since any communication on W assigns
f a l s e to all ei, its termination state satis-
fies the invariant. All remaining channels
A, T1, ..., T , do not write variables occurring
in the invariant predicate. Thus the invari-
ant holds and its declaration can be removed
[T3.7].

This leads to a specification without read
accesses to variables cl, . . . , ca. By trans-
formation [T3.10] their declarations are re-
moved and the communication assertions of
W and R1, R , are modified using the logi-
cal equivalences 3e~ , c~,A~=1 -,d i ~ t r u e
and 3c~ * c~ = -~m ~ t r ue . We thus obtain
the following specification:

spec ... interface and trace assertions ...
v a r m of h e e l
va t C1, ..., C , of V - set
v a r v of V
corn W write v,m, Cl, . . . , C.

then m' ^ v t=~W

r A .rite m then mm t

iel.,.~ corn Ri write Ci read m,v
then ~m =~ C~= {v}

~ea tom T/ read Ci then @T/q Ci

end

Step 3 We introduce the local variable old
of type V and allow write access to it by W

Accordingly the read fists are modified [T3.8] [T3.9]:
by appending Ci and removing ci. Thus v a t old of V

in total the old communication assertions of
T1, ..., 7", are replaced by the following ones
for each i E 1..n:

corn T~ read Ci t h e n @Ti E Ci.

S tep 2 We strengthen the system behaviour
in such a way that the invariant becomes re-
dundant and thus may be removed. Firstly,
all variables ci are initialized with f a l s e
[T3.3]:

var el, . . . , c , of bool i n i t false.

Therefore the invariant holds initially. Sec-
ondly, the effect predicates of channels Ri are
strengthened [T3.5]:

corn Ri write Ci, ci read m,v
I _ _ �9 ' - ,m ^ (- m ~ c ~ - {v}) . then c i =

com W write old.

C~ - C~u Strengthening W by conjunct A~=I ' -
{@W} A old t = v [T3.5] and extending
the read lists of all Ri by old [T3.8] together
with strengthening their effects by conjuucts

I _ _ m =~ C~ - {v, old} [T3.5] delivers the target
specification n-reader-V-regular.

4 C o n c u r r e n t I m p l e m e n t a t i o n s

In this section we study the implementation
of a specification as a system of concurrently
working subsystems synchronized via inter-
hal communication. When designing such a
system one first decides on its architecture,
i.e. which tasks should be performed con-
currently and how subsystems should corn-

99

municate. The transformational refinement
process is then guided by these decisions.

As an example we consider the implemen-
tation of an n- reader-V-safe register using
n copies Xl, ..., X, of 1-reader-V-safe reg-
isters and an auxiliary write process WP due
to [Lain86, LG89]. The architecture of this
implementation is shown in Figure 5. Thus

W - ~ . -.

A " - - -
~/P

Wl J L
at -[Xl [" " t

t-.-----J

wl j - - - ~ .
�9 a i [_ ~ -

wn _r "L

- - - " r x

.R n
- - " r .

Figure5: Implementation of n-reader-V-safe

each of the n readers can communicate di-
rectly via the channels Ri and Ti with a pri-
vate single reader register Xi. By contrast,
the writer communicates via W and A with
the auxiliary process WP which is linked with
the single reader registers Xl via the internal
channels wl and ai. The idea is that a write
access to the n-reader register is implemented
in several stages. After having received a new
value by communication on W the process
WP transmits this value via potentially par-
allel internal writes to all Xi. The external
acknowledge on A is offered as soon as all in-
ternal writes have indicated their termination
by the acknowledge events al.

We now present a formal transformational
design of this implementation consisting of
the following steps:

�9 Local channds are declared and their
global sequencing is constrained.

�9 The state space is extended to cover
the state spaces of the n single reader
register. The behaviour is strength-
ened to achieve the effects of the
1-reader-V-safe specification.

�9 The whole specification is decomposed
into the subsystems WP and X1, ..., Xa.

4.1 Local C h a n n e l s

A communication on a local channel is in-
dependent from and invisible to the environ-
ment. It may be performed as soon as its
enable predicate holds in the current inter-
hal state and the extended trace satisfies the
sequencing constraints of all trace assertions.
Thus in contrast to external channels there is
no synchronization with the environment�9

Interface channels chl,..., chk of a speci-
fication S are localized applying to S the
declaration operator CHAR with parameters
Chl, ..., chk:

$1 = CHAR chl,. . . ,ehk S.

CHAH is one of the operators of the language
MIX so that $1 is a mixed term. The seman-
tics of CHAR implies that the system -ql avoids
engaging in unboundedly many communica-
tions on the local channels chl, ..., chk. Thus
CHAR is a so-called "angelic" operator which
is difficult to implement.

To avoid non-implementabillty we addi-
tionaUy use the operator HIDE from MIX:

o~ = CHAR chl,..., chk HIDE Chl,... , ehk S.

Systems Sz and $2 behave the same as long
as S does not allow unbounded communica-
tion on chl,..�9 ehk. But in contrast to -ql
unbounded communication on these channels
leads to divergence of $2. For a more detailed
analysis see [0RSS92].

Here we present a rule dealing with the
combined effect of introducing local channels
with hiding.

T 4.1 (introducing local channels)
Let S = spee A TA Va C A I e n d be a
specification and chl,..., chk channel names
not in A. Then S is equivalent to any mixed
term

T = CHAN chl,... , chk HIDE Chl,.. , chk
spee AT TAT Va CA I end

where the interface AT is given by 1

A input Chl of tYchl, ...inpul; chk of tychk
output Chl o5 tyeh 1,...output chk of tych ~

1For technical reasons the local channels are de-
clared with both directions.

100

and the trace part TAr satisfies the following
conditions:

1. it prevents unbounded communication
on the new channels,

2. its projection onto the old channels al-
lows exactly the same traces as TA,

3. for each prefix t of one of its traces and
for each trace assertion ta E TAT the
intersection of all extensions of t with the
alphabet of ta contains at most one of
the new channels.

Condition 1 implies that T describes a di-
vergence free system. Conditions 2 and 3 im-
ply that semantically S and T describe the
same traces and ready sets. An application
of this rule requires to find a right extension
of the trace part meeting both these condi-
tions and the overall development idea.

In our example we introduce the local
channels Wl, ..., w , , al , ..., an. As mentioned
above communications on wi and al are al-
ways enclosed by a preceding W and a fin-
ishing A communication. Hence the ap-
plication conditions 1-3 of [T4.1] are satis-
fied. No restrictions are required between
write and acknowledge channels of different
single readers. Thus we replace the spec-
ification n - r e a d e r - V - s a f e by the following
mixed term:

CHAN 1Ol, ..., wn, Ul, .., an

HIDE I01~ ..., ~On, Ul, ..., an

spec input Wl, ..., Wn Of V

ou tpu t Wl,..., wn Of V
inpu t ul, ..., an of s i g n a l
ou tpu t a l , . . . , an Of s i g n a l

... all n - r e a d e r - V - s a f e components ...
i E 1 . . n :

t r a c e IV, A, wi, al in pref(W.wi.ai .A)*
end

4 .2 T r a c e A s s e r t i o n s a n d I n v a r i a n t s

Now we aim at the behaviour of the single
reader registers. This requires an extended
reasoning about modifications of the state

part where in addition to the rules presented
in 3.1 also the trace part is taken into ac-
count.

The following rule provides a generaliza-
tion of the invariant reasoning based on [T3.6]
and [T3.7]. It checks whether a predicate q
holds whenever the system may engage in a
communication on channel ch and allows us
to modify its communication assertion appro-
priately. We say that a chaand eh* estab-
lishes q if it holds in the terminating state of
each ch* communication:

establish(q, ch*)

r

whch. ^ the . ~ q[~'ch./g~.].

T 4.2 (effect modifications under trace as-
sertions) Let t r a c e chl, ..., chk i n re be a
trace assertion and q be a predicate which is
stable for all channds of A\{chl , ehk}. Let
ch E {oh1 , chk} he a channel such that
in every word of the regular language of re
each occurrence of ch is preceded by a chan-
nel ch* establishing q. If further all interme-
diate channels between oh* and ch are stable
for q then the effect th~h may be weakened
to q =~ tha, or strengthened to q ^ th~h
without changing the behaviour. �9

For the moment the design process pro-
ceeds by the same technique shown in detail
in 3.2: the state space is changed and com-
munication assertions are strengthened; in-
variants are introduced to modify communi-
cation assertions and are removed afterwards.

At first we introduce new local variables
ml, s vi which shall correspond to the local
variables m , c, v of an 1 - r e a d e r - V - s a f e reg-
ister specification. Write and read access to
these new variables is restricted as follows:

va r ral, ..., mn , l e l , ..., fen of boo l
v a r vl, ..., vn o f V
corn Wi write vi~mi,~c i
COrn ui write mi
corn /~i write ~ei read mi
COrn Ti read lei, vi.

Then the effect predicates of theses channels
are strengthened. The additional restrictions

101

are motivated by the corresponding predi-
cates in 1 - r e a d e r - V - s a f e .

c o . wl w r i t e vi, mi , lc i r e a d v
t h e n m~ A v ~ = v A -~t~

corn a/ write ml then -~m~
con Ri w r i t e Ci, tCi r ead m, ml

t h e n c~ = -~m ^ s = "~mi
corn T i r e a d ci,v,~ci~1; i

t h e n (el ==~ @T/= v) A (lcl =~ @Ti = v/)

In the following steps the effect predicates
are modified such that they become indepen-
dent from variables m and cl, ..., ca. This
is done by iterated application of the invari-
ant technique shown in the previous example.
New invariants are introduced and some ef-
fects are modified under them. After that ef-
fect predicates of other channels are strength-
ened to make the invarlant redundant.

Firstly we deal with channels Ti whose ef-
fect predicates are simplified under the fol-
lowing invariant:

n

inv A (~i ~ lcl ^ ~ /= ~).
i=1

Thus communication assertions of T / can be
replaced by the following ones:

corn T/ r e a d ~Cl, V/ t hen s =~ ~ T / = vl.

Consideration of the single effect predicates
shows that this invaxiant is established by
any communication on W, since all ci are set
to f a l s e , and is a stable property of chan-
nels Ti, ai, A. The initialization of variables
cl, ..., c , by f a l s e makes it also valid in the
initial state. The effect predicates of channels
w / a n d R / a r e strengthened by the conjuncts
-,ci and -~m =;, (-~mi A v~ = v), respectively,
and thus the invariant becomes redundant.

var Cl,...,Cn of boo l i n i t f a l s e
coT. wl w r i t e V/,mi,~Cl r ead v, ci

t h e n ~ ^ V~=V A "~IC~ ̂ "~Ci
corn Ri w r i t e Ci,~Ci read m, mi, vi, v

t h e n c~ = "-m A lc~ = -~m/ A
('~m =~-,mi A v i = v)

Next all read accesses to variables c/ are
removed using the iuvariant m =~ A~'=I ~ci.

It allows us to strengthen the effects of all wl
by replacing conjuncts -~e/with m:

COrn w~ w r i t e v / ,mi , l c l r e a d v , m
t h e n m~ A v ~ = v A "-t~ A m.

The invariant predicate used here holds in
the initial state and is stable for all channels.
Thus it can be removed without any further
changes.

Then the local vaxiables c, , . . . , c , are re-
moved and we obtain the following reduced
state part:

v a r m, ml , . . , ran, te l , ..., len o f boo l
var V, Vl,..., v , o f V
com W w r i t e v , m t h e n m I A v t = •W
co,, A w r i t e m t h e n -~m'
corn to/ write v/,m/,Icl read v,m

t hen ml A v i - v A A m
cola ai w r i t e ml t h e n -~m~
corn RI v r i t e s r e a d m, ml, v/, v

t h e n tc~ = ",ml A
(- m :~ - m / ^ v / = v)

corn T/ r e a d lcl, vl t h e n tci ~ OTi = vl.

Now we pursue the elimination of variable
m. To remove the read accesses to variable
m the newly introduced rule [T4.2] is applied.
Each communication on W assigns t r u e to m
and each one on A sets m to f a l s e and no
other communication modifies the value of m.
Thus predicate m = t r u e is established by
W and is stable for all channels but A. We
conclude from trace assertion

t r a c e A, W, ai, Wl i n pref(W.wi.ai .A)*

that each wl communication is preceded by
an W communication and there cannot occur
an A communication between W and the fol-
lowing wi. Thus the effect thwl can be weak-
ened and the communication assertions of all
wl are replaced by

COrn wi w r i t e Vi~ti,~C i r e a d v
I I ! then mi A v i - v A "~{ci.

To deal with the occurrence of m in the ef-
fect of channels Ri the behaviour is strength-
ened by

inv "~m =~ A ('-,ml A vi = v).
S=l

102

Under this invariant the communication as-
sertions of all Ri are modified to

corn Ri write s read m, ml, vi,v
t h e n s = " . m l .

The initialization

va r m of bool i n i t t r u e

delivers the validity of the above invariant
predicate in the initial state. The 'channels
ai,Ri, Ti do not write any variable of the in-
variant while the effect predicates of W and
wi always establish this invariant. Thus only
channel A must be strengthened to achieve
the redundancy of the invariant:

corn A write m
read m h ..., ran, ~)1, ..., Vn, 1)

t h e n ~mt A A~=I (-lml A Vi = V).

Based on the sequencing constraints given
by pref(W.wl.ai .A) we eliminate by multi-
ple application of [T4.2] all conjuncts -~mi
and vl = v. The former ones are established
by communications al and are stable for all
channels Ri and Ti. Thus thA can be weak-
ened by removing conjunct A~'=1 -mi . The
other conjuncts vi = v are established by the
wi's and are stable for all Ri, Ti and r Thus
A~=I vi = v can also he removed. Moreover,
since there is no more a read access to m, this
local variable can be removed and the com-
munication assertions of W and A are simpli-
fied to

corn W w r i t e v then v'= ~ W
corn A.

4.3 P a r a l l e l D e c o m p o s i t i o n

A major goal of the definition of SL and MIX
was to support the development of concur-
rent implementations. The result is a parallel
decomposition rule based on the n-ary syn-
chronization operator $YI~ of MIX. Accord-
ing to this rule, interface components, invari-
ants, trace assertions and communication as-
sertions may he divided over the subspecifica-
tions in an arbitrary fashion. Only each local
variable declaration has to occur in exactly
one ~i"

T 4.3 (parallel decomposition)
Let S = spec A TA Va CA I end and Si =
spec Ai TAi Vai CAi Ii end for i E 1..n he

vt specifications where A = Ui=l Ai, TA =
Ui"=l TAi, Va = ~J'~=l Vai 2, CA = [J~=l CAI

r t
and I = Ui=l Ii. Then

S - s u [S , , . . . , &] ,

i.e. S is equivalent to a mixed term where
synchronization is applied to all 5'/. tt

We remark that TA enforces synchroniza-
tion of all communications that appear on
channels in more than one of the local trace
assertions TA~. The disjointness condition
on the local variables Val reflects distributed
concurrency. Thus a parallel decomposition
must he prepared by rearranging specifica-
tion components to achieve disjointness. To
this end, we shall use the transformations
[T3.1] and [T3.2].

Semantically the meaning of TA is a reg-
ular language over the set of all channels.
Thus modifications of the set of all trace
assertions do not change the specified sys-
tem behaviour as long as the same language
is described. The trace merging algorithm
[RS91, OttSS92] provides a transformation to
join several trace assertions into a single one.
A special case of trace merging is given by
the following rule.

T 4.4 (trace projection)
Let t r a c e chl,..., chk i n re he a trace as-
sertion within TA and let ch11, ..cht,,, be a
subset of its alphabet. Let ~'~ be a regular
expression equivalent to re where all occur-
rences of names {Chl, ..., chk}\{eht,,..chtm}
are replaced by n i l a. Then the addition of
the projected trace assertion

t r a c e chll, ..cht,, i n ~'~

to TA does not change the behaviour. �9

Let us now consider the example. The
intended architecture (cf. Figure 5) deter-
mines the allocation of the interface compo-
nents and variable declarations to the subsys-
tems. As mentioned above, each single reader

2Union of palrwlse disjoint sets.
3The constant a l l denotes the regular language

consisting of the empty word.

103

register Xi shall get the variables m i , l c i , vi
and therefore variable v must be placed in WP.
Since the write list of a communication asser-
tion wl consists of variables mi , lc i , vi and v,
we must achieve a conjunctive form of the ef-
fect predicate such that the former three and
the latter one variable are not accessed in the
same conjunct. Restricting the communica-
tion value @wi to v by [T3.5] gives the effect
predicate

t r ' ~ w i A @ w i = v . m i A ~s i A V i =

Then by IT3.1] the unique communication as-
sertion is replaced by the following two:

cola wi read v then ~W i = ~;
corn wi wri te vi,mi,~ci

then m~ A -~lc~ A v l= r

The specification of a single reader regis-
ter requires an alternation between write and
acknowledge communications. Thus for each
i e 1..n we add by [T4.4] the projections

trace wl, ai in p r e f (w i . a l) *

of trace assertions

t r ace IV, A , wl, ai in p r e f (W . w l . a i . A) *

on chaands wi and al to TA. After these
preparations the whole specification is de-
composed by [T4.3] yielding the following
mixed term:

CHAN W l , . . . , f f ; k , U l , ...~ an
HIDE Wl, . . . , Wn,al~ ..., an
SYN[WP, XI, ..., Xn]

where

WP=

spec input W of V
output A of signal
output Wl,..., w . of V
input al, ..., a , of signal

trace W, A in p r e f (W . A) *
i E 1 . . n :
t r ace A , IV, al, wi i n pre f (W . w i . a i . A)*

vat v of V
cola W write v then v t= ~ W
cola wi read v then @wl = v

end

Xi = spec input w/ of V
output ai of s i g n a l
input R/ of s i g n a l
output ~ of V
t r a c e toi ,al i n p r e f (w i . a i) *
t r ace f i i , T i i n p r e f (R i . T i) *
v a t ml of bool
v a r lc i of bool
v e x vi of V
corn wi write vi, mi,~c i

' -Ic~ ' = @wl then m i A A v i
cola ai write mi then "~m~
coln Ri w r i t e tel read m l

then Id i = -~mi
tom T/ read s vl

then lc l =~ @Ti = vi
end

Note that each Xl is a copy of the
1-reader-V-safe specification with the in-
ter/ace channels W, A, R, T renamed into
wl, al, RI, T/. This concludes the construction
of an n- reader-V-safe register from n copies
of a 1-reader-V-safe register and an auxil-
iary write process WP.

By applying further transformations from
[OILSS92, Ch. 8], we can obtain an steam-
like implementation of WP with the following
program body:

WHILE t rue SEQ [W ? v ,

PAR [SEQ [wl ! v, al?]
SEQ[w.!v,an?]],

A !] .

5 Discussion

Our work on transformational design of con-
current systems is close in spirit to the work
on UNITY [CM88] and to Back's work on
refinement calculus [Bac90]. One of the dif-
ferences is that UNITY and Back start from
iterative programs akin to Dijkstra's do-od
loops whereas we start from SL specifications
with an explicit treatment of communication.
This leads us also to consider a richer class of
programming operators and hence transfor-
mation rules than previous work.

The case study deals with one of the sim-
pler concurrent implementations of registers
originally due to Lamport [Lam86]. Whereas

104

Lamport gives a correctness proof in some
special formalism, we use here a specifi-
cation formalism combining standard ideas
from process algebra, in particular about the
semantics of CSP-like communicating pro-
cusses [Hoa85, Old91a], and from state-based
assertional reasoning. Our communication-
based specification of the register is inspired
by [LG89].

New is our transformational derivation
of the concurrent implementation" of the n
reader safe register. We have applied the
same transformational approach to derive
also other implementations of register due
to [LareS6]: n reader regular register imple-
mented by one reader regular registers and by
one reader safe registers; safe registers for a fi-
nite value set V implemented by safe registers
for binary values. These transformations rely
on further rules dealing with renaming and
branching in the flow of control. We have not
yet attacked the really difficult constructions
for atomic registers. This would be a chal-
lenging task for a transformational design.

Acknowledgemen t . We are grateful to An-
drea Sprock who performed an initial study
on transformational design of safe and regu-
lax registers [Spr92]. This paper is influenced
by her work but our proofs are different.

References

[Bac90] R.J.K. Back. Refinement calculus, Part
Ih Parallel and Reactive Programs. In J.W.
de Bakker, W.P. de rtoever, and G. Itozen-
berg, editors, Stepwise Refinement of Dis-
tribated Systems - Models, ~brmalisms, Cor-
rectness, LNCS 430, pages 67-93. Springer-
Verlag, 1990.

[Bau87] F.L. Bauer et ai. The Munich Project
CIP, Vol. lI: The Transformation System CIP-
S. LNCS 292. Springer-Verlag, 1987.

[Bjr D. BjCrner et at. A ProCoS project de-
scription - ESPRIT BRA 3104. EATCS Bul-
letin, 39:60-73, 1989.

[BWg0] J.C.M. Baeten and P. Weijland. Process
Algebra. Cambridge University Press, 1990.

[CH74] R.H. Campbell and A.N. tIabermann.
The specification of process synchronisation by
path expressions. LNCS 16. Springer-Verlag,
1974.

[CM88] K.M. Chandy and J. Misra. Parallel Pro-
gram Design - A Foundation. Addison-Wesley,
1988.

[Hoa85] C.A.B.. Hoare. Communicating Sequen-
tial Processes. Prentice-Hall, London, 1985.

[Kri89] B. Krieg-Briickner. Algebraic specifica-
tion and functionals for transformational pro-
gram and meta program development. In
J. Diaz and F. Orejas, editors, Proc. TAP-
SOFT '89, LNCS 352. Springer-Verlag, 1989.

[Lam86] L. Lamport. On interproccss communi-
cations II. Distributed Comp., 1:86-101, 1986.

[LG89] N.A. Lynch and K.J. Goldman. Dis-
tributed algorithms. Technical Report
MIT/LCS/RSS 5 6.852 Fall 1988, MIT, 1989.

[LT89] N.A. Lynch and M.R. Turtle. An intro-
duction to input/ouput automata. Technical
Report CWbQuaterly 2(3), CWl, 1989.

[Mi189] g. Milner. Communication and Concur-
rency. Prentice Hall, London, 1989.

[Mor99] C. Morgan. Programming from Specific-
tions. Prentice Hall, London, 1990.

[MP91] Z. Manna and A. Pnueli. The Tempo-
ral Logic of Reactive and Concurrent Systems
- Specification. Springer-Verlag, 1991.

[Old91a] E.-K. Olderog. Nets, Terms and For-
mulas: Three Views of Concurrent Processes
and Their Relationship. Cambridge University
Press, 1991.

[Old91b] E.-R. Olderog. Towards a Design Cal-
culus for Communicating Programs. In J.C.M.
Baeten and J.F. Groote, editors, Proc. CON-
CUR 'gl, LNCS 527, pages 61-77. Springer-
Verlag, 1991. invited paper.

[OILSS92] E.-K. Olderog, S. RSssig, J. Sander,
and M. Schenke. ProCoS at Oldenburg: The
Interface between Specification Language and
occam-like Programming Language. Technical
Report Bericht 3/92, Univ. Oldenburg, Fach-
bereich Informatik, 1992.

[RS91] S. RSssig and M. Schenke. Specification
and stepwise development of communicat!ng
systems. In S. Prehn and W.J. Toetenel, ed-
itors, VDM'91 Formal Software Development
Methods, LNCS 551, pages 149-163. Springer-
Verlag, 1991.

[Spi89] J.M, Spivey. The Z Notation: A Refer-
ence Manual. Prentice IIall, London, 1989.

[Spr92] A. Sprock. Spezifikatiou yon Registern
und Verifikation der Implementation yon Reg-
istern. Studienarbeit, Univ. Oldenburg, 1992.

[Zwi89] J. Zwiers. Compositionalty, Concurrency
and Partial Correctness - Proof Theories for
Networks of Processes and Their Relationship.
LNCS 321. Springer-Verlag, 1989.

