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Abs t r ac t .  In a discussion of the Vapnik Chervonenkis (VC) dimension 
([7]), which is closely related to the learnability of concept classes in 
Valiant's PAC-model ([6]), we win give an algorithm to compute it. Fur- 
thermore, we will take Natarajan's equivalent dimension for well-ordered 
classes into a more general scheme, by showing that these well-ordered 
classes happen to satisfy some general condition, which makes it possible 
to construct for a class a number of equivalent dimensions. We will give 
this condition, as well as a relatively efficien~ algorithm for the calcula- 
tion of one such dimension for well-ordered classes. 

1 Introduction 

The PAC-model  is concerned with learning concepts f (sets of strings f rom some 
domain X),  grouped together in a concept class F.  F is called PAC-learnable 
if, globally, an algorithm exists that  reads in examples (pairs x, y where x C X 
and y = 0 if x ~ f and y = 1 if x ~ f )  for some target concept f E F,  and 
outputs  a concept g ~ F that  is with tunable probabil i ty tunably close to f .  
We are interested in the number  of examples needed to PAC-learn F;  we call F 
polynomial sample learnable (PSL) if, globally, the number  of examples needed 
to learn any f E F is bounded by a polynomial  in the input parameters  of a 
PAC-algori thm, among which is n, the m a x i m u m  length of the example strings. 
For formal  definitions of the above notions, we refer to [2] and [4]. For the proofs 
omit ted in this article, regarding a number  of results, we refer to our research 
report  ([4]). 

2 Shattering and the VC-Dimens ion  

An impor tan t  notion in PAC-learning is shattering. 

Definit ion.  A class of concepts F on X shatters a set S C X if the set given 
by { f  N sir  E F} is the power set of S (denoted by 2s). 

Definit ion.  The VC-dimension of a concept class F on X is the greatest integer 
d such that  there exists a set S C X of cardinality d that  is shattered by F.  It  
is denoted by Dye(F). If no greatest d exists, Dvc(F) is infinite. 
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We can think of a set S, shattered by class F, partitioning F: f ,  g E F a r e  
equivalent if f M S = g M S, which gives a total  of 2 Isl equivalence classes. 

Our objective is to find an algorithm for the computation of D~r where 
I U ~FI is finite. Consider the following: 

Def in i t i on .  Let F shatter S. We call x E UF - S an extending element of S if 
for every A C_ S, we can split the equivalence class (denoted by FS,A) into two 
nonempty subclasses: the concepts that  contain x, and the ones that  do not. 

L e m m a l .  Let F sha t terS .  Then T = S U { x }  is shattered by F iff x is an 
extending element for S. (If  no extending element exists, S is called maximal.) 

Notice that  for a maximal set S, ISt does not always equal Dvr 
The algorithm we constructed computes D~r (F) by expanding in each itera- 

tion the shattered sets found in previous iterations. This is done by adding to 
these sets an extending element, if possible, until no extending element can be 
found for any generated set. Extending elements for previously found shattered 
sets are found by splitting the equivalence classes as in the definition. 

A l g o r i t h m :  
1. Let d = 0. Start with the empty set ~ and its equivalenc~: class Fr162 = F.  
2. Suppose d = n. Suppose also that  we have construc~:ed S1,...,Sk where 

every Si is shattered by F and ISil = n. For all x E UF - Si check if every 
FS,A (found in the previous iteration) can be divided into Fs~u{x),Au{,) 
and Fs~u{=},A, both nonempty. If yes, then let d = n + 1. Every Si U {x} is 
a shattered set of n + 1 elements. 

3. Repeat step 2 until no extending element exists for any Si: Dvr (F) = d. 

Example 1. Consider class F:  f l  = {0, 2, 3}, f2 = {0, 3, 4}, f3 = {1, 2, 3}, f4, = 
{0, 1,3,4}, .f5 = {0, 1,2,3}, f6 = {2,3,5}, f7 = {1,3,4}, fs = {3,4}. 
D,c(F)  can be found in the following way (we will only follow one "track"): 

can be extended to {0} because F can be divided into: F1 = {f~, f2, f4, f~} 
and F~ = {/3, Is, IT, Is}. {0} can be extended to {0, 1} because F1 can be 
divided into: Fs = {f4, fs} and F4 = {f~, f2}. Similarly {0, 1} can be extended 
to {0, 1, 2}. No 4-element shattered set can be found, so D,,c(F) = 3. 

We proceed with a number of definitions and results, important for the following 
sections: 

Def in i t i on .  Let Xn be the set of strings in domain X of length _~ n. The class 
of projections Fn over X,~ is the set given by {f  M X,~ If E F}.  
A concept class F is said to be of polynomial VC-dimension if Dye (F,~) is O (p(n)) 
for some polynomial p. 

T h e o r e m  2 [1]. A class of concepts F is PSL if and only if F is of polynomial 
VC-dimension. 

L e m m a 3  [3]. Let F be a class of concepts on some finite domain X .  Then 
2 dVr _< IFI _< (IXl + 1) d'r where dye = D,,r 
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3 A l t e r n a t i v e  D i m e n s i o n  

Besides PSL another learnability criterion exists, called PSL with omission-only 
error from positive examples: only positive examples are given to the algorithm 
and its output concept should always be a subset of the target concept. For a 
class F to be thus learnable, it has to be well-ordered and have a polynomial 
VC-dimension or a polynomial dimension (see [2]). We will need the following 
definitions: 

Def in i t ion .  Let f E F. graph(f) is the set of all examples for f .  We call f 
consistent with a set of examples S if S C_ graph(f). A class F is called well- 
ordered if, for any set of positive examples E for some concept f in F,  there 
exists a concept g E F such that  g is consistent with S and g is a subset of any 
concept in F consistent with S. (We call g the least concept consistent with S, 
denoted by M(S).) 

Def in i t i on  d i m e n s i o n  ([2]). The dimension of a well-ordered class F of con- 
cepts, dim(F), is the least integer d such that for every concept f E F, there 
exists a set S], ISfl < d, such that  f = M(S]) .  

In [2] it is proved that  a well-ordered class is PSL with omission only error iff 
dim(F~) is O(p(n)) for some polynomial p. To find dim(F) we consider the sets 
S of elements in every f such that  f is M(S).  Any such S of minimal cardinaiity 
may be chosen as S]. Then we have: dim(F) = max{IS]l If  E F}.  We will 
proceed with a number of propositions concerning well-ordered classes. 

P r o p o s i t i o n 4  ([2]). A finite class of concepts F is well-ordered iff for any 
f, g E F, there exists an h E F such that h = f M g. 

P r o p o s i t i o n 5  ([2]). Let F be well-ordered. Let A and B be two sets of ele- 
ments. Then M(A  U B) = M(M(A)  U M(B))  

P r o p o s i t i o n 6 .  Let F be well-ordered. Then f E F is the least concept con- 
sistent with a set S C f iff there is no g E F such that S C g C f .  Also, let f be 
M(S) and let S' D S, S 1 C f .  Then f = M(S') .  

With these propositions the following (essential) theorem can be proved 

T h e o r e m  7. Let F be a well-ordered class over domain X.  If f E F and S is 
any set such that: 
1. f = M(S) 
2. there is no S I C S such that f = M(S  I) 
Then S is shattered by F and has no extending elements within f . ( We call S a 
minimal set of f . )  

Proof. f is not the least concept consistent with any proper subset of S. Suppose 
F does not shatter S. Then there exists a set S ~ C S such that there is no concept 
g E F with gAS = S'. Let h = M ( S  I) and T = hNS. Then T ~ S', so T N ( S - S ' )  
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is nonempty and I TI > I S'l. Since S = ( S -  T) U S' UT, it follows from Proposition 
5 that:  

M(S) = M(M(S - T) U M(S') U M(T)) . 

Now, from Proposition 6 it follows that  M(S') is the same concept as M(T). 
Therefore, and by Proposition 5: 

M(S) = M(M(S  - T) U M(S')) = M((S : T) U S') . 

So, f = M(S) = M ( ( S - T ) U S ' ) ,  but IS] > I ( S - T ) u S ' l : / i s  the least concept 
consistent with a subset of S, which gives us a contradiction: h N S = S I. We 
conclude that  S is shattered by F.  After this it is easily verifiable that  S has no 
extending elements within f .  

4 E q u i v a l e n t  D i m e n s i o n s  

We will define a more general property for concept classes than that  of well- 
orderedness; for classes having this property, a number of alternative dimensions 
(among which dim), all equivalent to Dvc, can be constructed. 

Consider this: let F be a concept class over finite domain X, such that  there 
exists an injective function # : F --+ 2 X, where I#(f)l ~ Dye(F) for every f e F.  
If we associate with # a number D~(F) = max{]#(f)l] f E F), then 

T h e o r e m 8 .  d~ < dye < d,  ~log(IX]+l),  where d~ = D~(F) and dvc = Dvc(F). 

The essence of the above is this: Suppose that  F is such, that for each f C F,  
there is a set S, ISI < Dye(F), somehow uniquely related to f .  Then, if the 
function # gives one such set for every f ,  D ,  (F) gives us a dimension with the 
properties of Theorem 8. Now suppose that  F is such, that  a # exists, which 
generates (for every n C N) for every fn E Fn a set of elements from Xn smaller 
than Dw(F~). Then our result would change to: 

D~,(Fn) < Dvc(Fn) < Du(F,~) 21og(lX~l + 1) . 

Since ~log(lX. I+ 1) grows only polynomially in n, Dvc(F.) is O(p(n)) iff D~ (Fn) 
is O(q(n)), where p and q are polynomials in n: D ,  is equivalent to D~.  

Thus, the property we were looking for is the existence of a function # as 
specified above. With any such # we can associate a new dimension equivalent 
to the VC-dimension. Clearly, well-ordered classes are an example of classes 
having this general property: # could be such that  #(fn) = Sf , .  Then D ,  (F~) = 
dim(F~), which is equivalent to Dv~(F~). 

5 An  Algor i thm For An  Al ternat ive  D imens ion  

We have constructed an algorithm to find, for any concept f in a well-ordered 
class F over domain X, a set R/,  such that f is M(R/).  Any subset R)- of R], 
that  is a minimal set (as in Theorem 7) of f ,  is shattered by F.  Furthermore, if 
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we define a new dimension as the cardinality of the greatest R)- for all f ,  then 
this dimension is equivalent to the VC-dimension (just as dim(F)). We need the 
following definitions: 

Def in i t ion .  0 is said to have 0 layers, f E F is said to have k layers if every 
g C f has less than k layers and there is at least one g C f that  has k - 1 layers. 

/ 

For every f E F,  a representation set R / i s  defined as follows: 
1. If f is 0, then R/  = ~. 
2. Suppose Rg is defined for every concept g with less than k layers. Consider 
the set H,  being {h I ~g, f D g D h}. Let H = {hi, ..., h~}. If f # Uh~, then pick 
any a E f - Uhi and let R /  = {a}. If f --- Uhl, then define R/  = URhi. 

Example 2. Consider Fig. la: In this figure concepts in a concept class over the 
integer domain are represented by Venn-diagrams. A representation set for the 
3-layer concept {1,2, 3, 4} is {2, 3, 4}. A representation set for the most outer 
concept is {9}. 

Fig. 1. Concept classes over the integer domain 

P r o p o s i t i o n  9. For any f E F, ~9 E F, with R/  C g C f .  So f is the least 
concept consistent with R]. 

From Theorem 7 of Sect. 3, it follows that any minimal set /~7 C R/  is 

shattered by F.  Proposition 9 guarantees that such an R)- exists. Suppose that  
Fn is well-ordered for each n. If we choose for every fn E F an R],, and if #(fn) 
is any R)-~, then we have: 

Theoreml0. Let D(F ) = max{IRT.I for each Then D is a 
dimension equivalent to Dye. 

All of the above leads immediately to an algorithm to find an R/  for every 
f E F:  first construct representative sets of the l-layer concepts, then the 2-layer 
concepts, etc. until every f E F has an R/ .  The efficiency lies in the fact that 
every R / i s  built up from at most IHI (as in the definition of R/)  sets of elements, 
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which are already known by the t ime R] is being calculated. Furthermore, the 
total number of elements involved in the calculation never exceeds IFI. The next 
thing to be done is to find a set R~- C R],  that  is a minimal set of f .  The largest 

such R~ gives us our dimension. 

Example3. Consider Fig. ]b, where the representative set of the most outer 
concept is {1, 2, 3, 4}. Minimal subsets of it are {1, 2, 3} and {1,4}. 

6 C o n c l u s i o n  

If a concept class F fulfils the required properties, we can define new dimensions, 
equivalent to Dvr with respect to functions over F .  After proving that a minimal 
set for some concept in a well-ordered class is shattered, we can compute such 
a dimension by a relatively efficient algorithm, using a representation set R / f o r  
every concept f and a minimal subset R-f C__ R] of f .  

7 F u t u r e  W o r k  

Since we find a strong correspondence between concepts in PAC-learning and 
models in first order logic, we are currently working on applying complexity 
dimension theory to classes of models. More about this can be found in [5]. 
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