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Abs t rac t .  This paper is concerned with the robustness of concept for- 
mation systems in the presence of concept drift. By concept drift is meant 
that the intension of a concept is not stable during the period of learn- 
ing, a restriction which is otherwise often imposed. The work is based 
upon the architecture of COBWEB, an incremental, probabilistic concep- 
tual clustering system. When incrementally and sequentially exposed to 
the extensions of a set of concepts, COBWEB retains all examples, dis- 
regards the age of a concept and may create different conceptual struc- 
tures dependent on the order of examples. These three characteristics 
make COBWEB sensitive to the effects of concept drift. Six mechanisms 
that can detect concept drift and adjust the conceptual structure are 
proposed. A variant of one of these mechanisms: dynamic deletion of old 
examples, is implemented in a modified COBWEB system called COBEIT. 
The relative performance of COBWEB and CORBIT in the presence of con- 
cept drift is evaluated. In the experiment the error index, i.e. the average 
of the ability to predict each attribute is used as the major instrument. 
The experiment is performed in a synthetical domain and indicates that 
COBBIT regain performance faster after a discrete concept shift. 

1 I n t r o d u c t i o n  

With a given data set, incremental or batch learning is a matter  of taste. Because 
the data is given, it is finite and therefore available for scrutiny by any available 
mode of preparation, clustering and post-processing. Such is the state of much 
scientific data: collected, stored, processed and analyzed at length. 

Reality throws a wild and evolving environment at us; dependencies between 
observable and non-observable features change over time. The ability to accu- 
rately categorize and associate phenomenon is highly valued in both people and 
machines, but there is a danger in the complacency that follows seemingly un- 
shakable competence. Knowledge that is not regularly confirmed runs the risk 
of becoming obsolete when concepts surreptitiously drift, nurturing a creeping 
knowledge rot. A carefully captured flow of experience may be invalidated by a 
sudden, single blow of altered environmental conditions. 

The problem of concept drift in the context of this paper is characterized by a 
change in the environment observed by an incremental machine learning system. 
The machine collects a number of samples from the environment and builds a 
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tree over the conditional probabilities that relate smaller groups of observations. 
Each such group represents a concept. 

Concept drift occurs when the environment change. The conditional prob- 
abilities reflected by the new observations change too and are no longer accu- 
rately represented by the concepts in the machine learning system. The occurence 
counts on which the probability estimates are based, include observations that 
the environment no longer can provide. 

Programs and systems that continuously updates their view of the world fall 
into two groups. In the first are those for which the tracking of concept drift 
follows involuntarily from the basic architecture of the system. In the second are 
the programs designed to behave like concept trackers. 

Common to the former kind of systems is their limited amount of storage for 
concepts or learned structures. Their ability to stay alert with recent trends is 
a side-effect of old knowledge being deleted. The deletion occurs simply because 
a section of storage used by old knowledge, is claimed for more recent data. Ex- 
amples of such architectures are neural network models and genetic algorithms. 

The group of systems designed to track concept drift include STAGGER 
[20, 19], FLORA [13], FLORA3 [21], FAVORIT [12] and RL [3]. These supervised 
learning systems focus on the ability to deal with training sequences involving 
concept drift. The FLORA system, for instance, employs a queue of recent train- 
ing examples. When the oldest example leave the queue, FLORA updates its set 
of induced classification rules to be consistent with the contents of the queue. 
Discarded rules are kept suspended, awaiting future rehabilitation. 

A shared behaviour of the systems that track concepts intentionally is that 
they maintain generalizations under a notion of recency and non-monotonicity. 
Objects that once supported general structures may be withdrawn, and the 
corresponding generalization diminished or made impotent. The difference these 
systems display from those that track concepts inadvertently, is that the decision 
to delete or inactivate old knowledge is conscious. 

This paper is concerned with concept drift in unsupervised learning and is 
based on Douglas Fisher's COBWEB [6], an incremental, probabilistic, conceptual 
clustering system. COBWEB is designed to work under a condition of concept con- 
stancy, just as most other machine learning systems. The presentation sequences 
created by the temporal ordering of examples while allowing a change of concepts 
over time (concept drift), coincide with those orderings that are least suitable 
for COBWEB. The concept hierarchy becomes skewed, in that a concept node 
is found to be subordinate to the node that optimally is its peer. For a recent 
treatment of ordering effects in COBWEB, see Fisher, Xu and Zard [5]. 

The experiments with COBWEB were performed on COBBIT, Kilander's im- 
plementation of COBWEB in C. The COBBIT system is an extension to the control 
system in COBWEB. COBBIT uses a queue of training instances just as FLORA3 
does and dynamically alters the size of the queue depending on its performance. 
This behaviour is intended to remove old knowledge from the hierarchy, leaving 
room for new, updated Concepts. 
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2 N o i s e  a n d  C o n c e p t  D r i f t  

The term concept drift is more easily defined in terms of incremental, supervised 
learning. The learning situation there is equipped with a strong source of feed- 
back on performance; the class label. The learning program creates a concept for 
each class, separating instances. If the program receives an object with a class 
label that is not what the concept assigns, the contradiction can be attributed 
either to noise (the label is wrong) or misconception of the concept (the induced 
concept is wrong). 

If previous training instances are stored by the system (or implicitly trusted 
through the concepts they generate) it is possible to find an old training object 
which is identical to the disturbing one, save for the class label. Noise must then 
be the problem, and the system can deal with it in several ways, for instance by 
rejecting the contradicting instances. If the source of the misclassification cannot 
be established the system's only recourse is to modify its concept description, in 
the hope that the concept definition is improved. 

The assumption that underlies the above incremental learning method is 
that the domain which is approximated by the concepts in the learning systems 
is fixed; that all examples are equally important regardless of when they were 
observed. The concepts in the domain are assumed to be eternal and stable. 
Removing this assumption allows for the possibility that a recent observation 
appears to contradict an earlier one, but the early observation can no longer be 
made and concepts built upon it are indeed wrong. Concept drift is present. 

Removing the constancy assumption introduces another restriction; if any 
distinction in temporal terms is to be meaningful, the examples must be pre- 
sented in the order they were labelled. 

In supervised learning concept drift can be seen as a change in the process 
that labels examples. In unsupervised learning (clustering) there is of course no 
explicit class labelling. However, there is a similar process which can be thought 
of as the assignment of attribute values to objects. Only certain combinations of 
attribute values can be observered at any one time, and it is this set of depen- 
dencies between attributes and their values that a clustering systems attempts 
to approximate by forming groups of objects. 

3 C o b w e b  

COBWEB is an incremental, probabilistic, conceptual clustering system [6]. COB- 
WEB is discussed both as an incremental learning system as well as a potential 
model for basic level effects in an indexed memory. This work concentrates on 
the former aspect of COBWEB's capabilities. 

From a stream of object instances, COBWEB creates and maintains a hier- 
archy, each level of which partitions the objects in an optimal way. Instances 
form the leafs of the hierarchy, the generalizations above form the concepts. The 
incremental nature of the system allows it to learn and perform at the same 
time. As expected, performance is limited until a representative sample of the 
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domain has been acquired, but the prediction of a missing piece of information 
may be attempted from the start. 

COBWEB is suitable as a normative system because it: 

1. is well known 
2. is easy to understand 
3. is fairly easy to implement 
4. is a foundation for other systems 
5. is susceptible to concept drift, and 
6. does not require parameters. 

The closest rival to COBWEB is CLASSIT [7] but CLASSIT only accepts linear 
attributes. Other conceptual clustering systems to choose from are not lacking; 
UNIMEM by Michael Lebowitz [14, 15], WIWW by Hanson and Bauer [9, 10], INC 
by Hadzikadic and Yun [8], OPUS by Bernd Nordhausen [18] and the works of 
Ryszard Michalski and Robert Stepp with the CLUSTER systems [16, 17]. 

UNIMEM is a forerunner of COBWEB but requires parameters. INC is a sys- 
tem very similar to COBWEB but it also needs parameters. WITT, OPUS and 
CLUSTER are batch clusterers. WITT can be set to learn incrementally using a 
series of smaller batches, but it still involves too many parameters. 

Recent COBWEB descendants that should be mentioned but has escaped eval- 
uation due to time-constraints are: ITERATE by Biswas et al. [2] and COBWEBR, 
a system by Allen and Thompson [1]. 

The emerging qualities of COBWEB are that it is incremental and that it 
lacks parameters which constrains an otherwise unwieldy number of examination 
and experiment dimensions. The fact that COBBIT reintroduces a number of 
parameters is lamentable but impossible to avoid. Hopefully further research 
will be able to advise automatic settings for them. 

The following problems appear in various degrees of severity when COBWEB 
is used on material which is subject to concept drift. 

1. COBWEB does not distinguish between new and old training examples. New 
features must therefore appear in ever larger numbers if they are to replace 
their predecessors. 

2. COBWEB retains every training example. Learning must therefore eventually 
stop at the limits of the computational or practical resources. 

3. COBWEB may create different concept hierarchies depending on the input 
ordering. The input ordering found in material affected by concept drift is 
among the worst. 

4 C o b b i t  

COBBIT is built around an implementation of COBWEB which for the larger 
part duplicates the original. No significant extensions have been applied to the 
COBWEB model of storing nodes and concepts in the concept hierarchy, the 
classification or prediction algorithms. 
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4.1 Detecting Concept Dr i f t  

In applications where COBWEB is used to make predictions about unseen objects 
one would certainly want the prediction mechanism to pay greater attention to 
recent information than to old and early one (unless a static domain is ensured). 
Mechanisms capable of detecting changes in concept stability are interesting 
because they may serve as triggers of automatic actions; relearning or adjustment 
of the internal structure. 

Here follows six algorithmic devices to survey changes in the COBWEB hier- 
archy, two of which are strategies to deactivate undesirable objects: 

1. T r e n d s  in  past preference counters. For each attribute,  past preference 
[4] will be established at the node where the most common value of the 
at tr ibute is the majority value averaged over all examples beneath the node. 
If extra disjunctive structure is imposed on the category (i.e. novel data  
coming from changes) the level of past preference is expected to drop to a 
lower node, or even be split among several nodes. This can be monitored by 
following the development of the correct-at-node and correct-at-descendant 
counts. A major change in majority values among nodes beneath the node 
under surveillance can be suspected if the latter counter is increasing faster 
than the former. An immediate application of this is with the prediction 
mechanism which upon detecting this kind of phenomenon should ignore a 
higher correct-at-node count in favour of a prediction further down. 

2. O p e r a t o r s  u s e d  to  c lass i fy  a n e w  e x a m p l e .  In a well established hi- 
erarchy most of the domain can be expected to have been observed. The 
presence of a new example can therefore signal either change or a very rare 
event. The example will be placed by itself at some level as its own category. 
The level (relative the size of the hierarchy) is an indication of novelty. This 
only works for true novelty, a cyclic reoccurrence will not be noticed. 

3. U p d a t e  f r e q u e n c y  a n d  i ts  c o r r e l a t i o n  t o  e x p e c t e d  r e l a t i v e  f re -  
q u e n c y .  If the domain is changing one can expect differences in the rel- 
ative frequencies between two time periods. Although a possible case of the 
gambler's fallacy, one may expect certain observations to appear with a rate 
that  corresponds to their previous exposure. If this frequency distribution is 
changing more than is likely to be at tr ibuted to random variation, one can 
suspect that  it is an effect of an altered domain. 

4. C o n t i n u o u s  m o n i t o r i n g  o f  p e r f o r m a n c e .  As each example is presented 
to COBBIT, it a t tempts to predict each and every at tr ibute that  has a known 
value. The percentage of correctly predicted attributes is output  as the cur- 
rent performance index. The trend of this index allows for corrective action 
as soon as a drop in performance is observed. 

5. M o n o t o n i c  de l e t i on .  Its a simple matter  to modify COBWEB and obtain 
the kind of short term memory used in FLORA. A first-in-first-out (FIFO) 
queue facilitates subtraction of each example after a suitable time. 

6. D y n a m i c  de l e t i on .  The insensitive nature of the previous approach can 
be cushioned by using one or more of the detection mechanisms outlined 



249 

above. The idea is that a concept suspected to be no longer present in the 
domain is to be removed. The motive for removing the object is in this case 
based on more than simply the time spent within the system, and there is 
an ambition to retain objects that  are beneficial. 

Deletion of an object can be achieved by marking it as inactive, or subtract- 
ing it from the hierarchy. Removal from the central concept hierarchy does not 
necessarily imply ejection from the system; several schemes of retaining objects 
backstage are plausible. 

4.2 C o b w e b  M o d i f i e d  

This  section deals with the consequences of equipping COBWEB with a version 
of the sixth device, dynamic deletion of old examples. This is implemented in 
COBBIT with a queue of examples and continuous monitoring of performance 
(device 4). Together they uphold an interval of examples; when an example 
leaves the  queue it is subtracted from the hierarchy. The performance index is 
used to determine the size of the queue (within certain boundaries). 

It can be expected (assuming a fair description language and input ordering) 
that  a basic hierarchy is established and that  further input either confirms what 
is already learned or is one of the following two cases: a new example that  adds 
knowledge, because there is still more to learn or a new example that  replaces 
old knowledge, because the domain is evolving. 

Both cases contain new knowledge, and both cases should be added to the 
knowledge structure. So the problem is really one of identifying old knowledge 
and data structures. The simplest way to do this is using a queue, which assumes 
that  the oldest example no longer can be trusted and ejects it, using a FIFO- 
strategy for deletion. If the features represented by a deleted node are still active 
in the domain, then they will manifest themselves again soon, if not already 
present in the queue. 

Another approach is to remove concepts that have not been referenced or 
reinforced by the domain within a reasonable time. This is the least-recently- 
used (LRU) strategy for selecting a node to be deleted. However, under LRU the 
property of the queue (and the hierarchy) being a proper statistical sample of the 
domain is lost. LRU favours rare but regularly recurring events and disfavours 
short manifestations. 

COBBIT'S modification to COBWEB resides in the control system, the way 
learning, predictive performance and training are combined to a complete sys- 
tem. The following implements have been produced: 

1. A procedure to subtract nodes from the COBWEB concept hierarchy. 
2. A function that  samples the the predictive performance of the concept hier- 

archy and COBWEB's prediction algorithm. 
3. A function that  provides a mapping from performance (as measured by the 

function in item 2) to a target size of the COBWEB concept hierarchy. The 
size is expressed as the number of training examples found at leaf level of 
the concept hierarchy. 
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4. A FIFO queue for training examples. 
5. An extended control algorithm. The COBWEB standard control loop (read- 

learn, see table 2) has been extended to read-evaluate- learn-tr im by using 
the queue in item 4. 

Table 1. The Extract_Object procedure. 

Extract_Object(object) 
begin 

P = Paren tOf (ob jec t ) .  
While P # N U L L  do 
begin 

P = P - object 
R = P a r e n t O f ( P )  
If P is empty then delete P 
P = R  

end 
end 

Table 2. Control loop in COBWEB. 

While not eof do 
begin 

object = the next object from the input. 
If object is a training instance then 

root = Cobweb(object, root) 
else 

predict missing values and report. 
end 

4.3 C o b b i t ' s  C o n t r o l  A l g o r i t h m  

The algorithm used to classify new examples in COBBtT is the same as in COB- 
WEB. The change is introduced in the next upper level of the control hierarchy. 

A new procedure tha t  extracts objects from the hierarchy is shown in table 
1. An empty  node occurs when all its children have been subtracted from under 
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T a b l e  3. Control loop in COBBIT. 

While not eof do 
begin 

object = the next instance from the input. 
IF object is a training instance then 
begin 

Error = PredictionError(object) .  
root  = Cobweb(object, root). 
Queue = Queue + object. 
M a x Q S i z e  = ((1 - Error) * (u - 1)) + 1. 
IF Length(Queue) > MaxQSi ze  then 
begin 

N = I +  ( L e n y t h ( Q  . . . .  4 ) - - M a x • S i z e )  , 

While N > 0 do 
begin 

Extract_Object(Head(Queue)). 
Queue = Queue - Head(Queue).  
N = N - 1 .  

end 
end 

end 
else 

predict missing values and report. 
end 

a generalization. All counters in the empty  node are zero, but  it still occupies 
space in the concept hierarchy and is therefore deleted from the tree. 

The idealized control loop of COBBIT is described in table 3. The parameters  
u and l control the upper and lower bounds on the number  of elements in the 
queue at any time. The queue can only grow one instance at a time, but  it can 
shrink faster. The division by 4 when determining the number  of objects to be 
ejected (N),  dampens  the effect of noisy examples which otherwise may cause 
an overly rapid depletion of objects. The quantity 4 was chosen a rb i t r a r i ly - -  
the effect of other values is not evaluated. Notice also the call to Cobweb(),  
COBWEB'S classification procedure. 

5 Experiments 

Kibler and Langley [11] suggests several ways to measure performance.  One is 
the general measure of "the ability to predict a missing attribute's value, aver- 
aged across all attributes". For incremental systems, they suggest tha t  learning 
is turned off every nth instance for testing against a test set of examples.  Al- 
ternatively, every instance is treated as both  a test and training object. This is 
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the major instrument of measurement in these experiments. For each training 
example an error index is calculated thus: 

nof correctly predicted attributes 
1 -  

nof attributes 
This averages the ability to predict each attribute, and uses every example for 
both testing and training. 

Kibler and Langley continues to remark that  the learning curve (resulting 
from such a performance measure) can be informative, but that the information 
can be condensed into the asymptotic performance and the number of examples 
required to reach it. This fails to be immediately applicable under concept drift 
as the asymptotic target constantly is redefined. 

It should be pointed out the concept trees generated by COBWEB are not 
evaluated in terms of cluster analysis. The interest is focussed on the system's 
ability to predict missing at tr ibute values. 

5.1 Experiment Design 
The synthetic domain which provides the training examples is designed to con- 
dition its concept drift on a particular attribute, the c u e  attribute. When this 
at tr ibute is active the language is complete and concept drift not present (al- 
though ordering effects remain). Holding the value of the cue at tr ibute fixed, it 
can no longer be used to predict the values of the other attributes and concept 
drift can be simulated. 

The first experiment shows the effect on COBWEB when the cue at tr ibute is 
locked. There is no concept drift in the da ta - - the  next state of the domain is 
chosen at random. Even so, one could view this as a demonstration of a situation 
where the rate of concept drift is beyond the sampling rate of the input collectors. 

The second experiment intends to show COBWEB's behaviour when the rate 
of concept drift is sufficiently slow to follow. The data provides a single alteration 
of state at the 1 l th  example. 

T h e  third experiment is in two parts. It shows the effect of applying COBBIT's 
queue mechanism on the same data  sets as in the second experiment. Variation 
of the lower and upper queue size parameters shows the effect of the queue device 
on performance. 

The fourth experiment compares COBWEB and COBBIT on a complex do- 
main with six independent substates, altering their state cyclically and each at 
a different rate. The interference of state changes is intended to stress the per- 
formance capacity of both systems, and give an indication of what performance 
can be expected under complicated input. 

Finally a comparison is provided which reflects the cost of assimilation for the 
next example. As expected, COBWEB needs more and more time while COBBIT 
stays bounded by the size of the queue. 

The primary sources of evaluation are the graphs over prediction error and 
queue sizes, as presented later in this section. In most instances the graphs 
display averages from 10 data-sets. The fraction of error used as a measure of 
performance quality, is a sum over several attributes~ 
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5.2 De sc r ip t ion  Language  

The domain used is equal-not equal. It corresponds to an ideal situation using 
three binary attributes. Attributes A1 and A2 are regular attributes. They take 
their values from 0, 1. Attribute A0 is the cue attribute, it supplies information 
about the state of the domain, the state that will be changed during learning. 
Table 4 gives all combinations of values. Since the complete set of possible ex- 
amples quickly is exhausted, examples are repeated many times during learning. 

Table 4. Domain equal-not equal. 

A0 A1 I A2 
0 0 1 

l 0 
1 0 0 

1 1 

5.3 Cobweb wi th  and  w i t h o u t  Cue 

Figure 1 shows the effect of hiding the cue attribute. The domain consists of 
three binary attributes from the equal--not equal domain. Each line represents 
the performance index averaged over i0 independent data sets, with 30 examples 
in each data set. 

0.6 
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~o0.3 
b 
b 
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I V\ , ,  . / \ .  
i'0 2'0 3'0 
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Fig. 1. Errors with visible ~nd locked cue attributes. 

The dotted line is the domain where the cue attribute reveals the state of the 
two other attributes. The state shifts randomly, but COBWEB quickly acquires 
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the pat tern.  The  solid line shows the performance when the cue at t r ibute  is set 
to zero, regardless of the state of the domain. COBWEB has no way to discern 
between the two states and prediction does not improve as more examples are 
seen. Note that  the with-cue line begins at a higher level of error than without 
cue. The reason for this is that  with the cue is always set to zero, it cannot be 
mispredicted. The resulting error average is kept around 50 % of 2/3. 

5.4 S ing le  Sh i f t  at Example  1 1 - - C o b w e b  

This domain consists of three binary at tr ibutes from the equal--not equal do- 
main. The training sequence begins in the unequal state and shifts to the equal 
s tate  at the l l t h  example.  I t  then holds that  s tate to the end. The  graph in 
figure 2 is an average of 10 independent da ta  sets, with 30 examples in each da ta  
set. With  the cue at t r ibute  locked the max imum error is 2/3. 
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Objects 

Fig. 2. Error for a single state, shifting at example 11. 

Competence is gained as COBWEB begins to process the training set and the 
error level is low at the 10th example. When the domain changes, prediction 
suffers and the error soars to the max imum level. It takes another 11 examples 
before the error drops in earnest, but perfect performance as shown before the 
shift appears  less likely. 

The  training instances in this run are identical to those in section 5.3, where 
COBWEB failed to learn (the solid line). The difference between the two ex- 
periments is that  in the previous one the two states were randomly mingled. 
Here the states are sequentially separated, and COBWEB has t ime to accumulate 
conditional probabilities. After the shift has occurred, it takes almost the same 
number  of examples to turn the accumulated counts the other way and perform 
well in the new state of the domain. 
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5.5 Single Shift  at ex.  l l - - C o b b i t  V a r y i n g  Q u e u e  Size  

The graph in figure 3 is composed from four independent runs of COBBIT, using 
the queue mechanism. The data sets are in each case identical with the one used 
in the previous experiment, section 5.4. The parameter  that  is varied between 
each run is u, the upper limit of queue size. The lower limit l, was fixed at a size 
of 5 in all four runs. 
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Fig. 3. Errors when varying the queue's upper limit. 

The lines show the different settings of the u parameter; 5 (dotted),  l0 (wide 
dash), 15 (long dash) and 30 (solid). Settings 20 and 25 are omit ted but their 
positions are easily interpolated. 

The graph shows how performance is regained must faster when the older 
examples (and their associated probabilities) are removed from the classification 
tree by the queue. Notice also that the difference between u = 5 and u = 10 
is much larger than between u = 15 and u = 30. The reason for this is the 
simple domain; the short queue will flush out the old objects much faster. One 
should not be deceived into believing that  a small value of u is beneficial under 
all circumstances; that  would imply that all knowledge is harmful. 

The queues for the four runs (figure 4) grows linearly until the shift occurs 
(with the exception of u = 5 and u = 10). At this point they level out and 
delay further growth of the queue until the error peak has diminished. When 
performance again is improving (error lessening) the queue again is allowed to 
grow. 

A second collection of curves in figure 5 shows the behaviour when the queue's 
lower limit (l) is varied between 5 (dotted), 10 (wide dash), 15 (long dash) and 
30 (solid). The upper limit was fixed at 30 in each instance. 

The first striking difference is that  all curves (except for l = 5) indicates a 
w o r s e  performance compared to figure 3. The curve for l = 30, u = 30 coincides 
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Fig. 4. Queue sizes when varying the queue's upper limit. 
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Fig. 5. Errors when varying the queue's lower limit. 

with the performance for COBWEB as there are only 30 thir ty examples and the 
queue never overflows. When the difference between the upper and lower limits 
is increased, COBBIT's control algorithm can, and does, use the queue to delete 
early examples. 

The curve with the greatest range, 5-30 (l = 5, u = 30), is common to figures 
3 and 5 both. It also appears to be the pivot point between the two graphs; in 
the former it appears as the worst case and in the latter as the best. Although 
the figures appear to advocate small settings of I and u this will only facilitate 
swift adaptation in the most trivial of cases. 

Comparing the graphs that shows the evolution of the queue-size, a similar 
pivotal property is evident: in figure 4 the l = 5, u = 30 settings displays the 
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queue w i th  the most examples, in figure 6 i t  is the one w i th  the fewest. 
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Fig. 6. Queue sizes when varying the queue's lower limit. 

The queue must give the best performance for the most complex throughput 
and there is no simple strategy to guide the settings of the l and u parameters. 
A compromise appears unavoidable. If both parameters are set to similar values, 
the scope for dynamic behaviour lessens. Therefore is appears better to set u 
high, and provide COBSIT with the ability to exercise various queue sizes. The 
setting of I should be regarded as a minimal number of examples, beneath which 
generalization and induction becomes meaningless. 

5.6 C o m p l e x  D o m a i n ,  M u l t i p l e  Shif ts  

This test features a complex domain consisting of six concatenated attribute 
triplets from the equal--not  equal domain. This yields a description language 
consisting of 6*3 = 18 attributes. Each triplet is set up to alter its state cyclically, 
but the cycles are tuned to be out of phase so the resulting input data  is shifting 
fast. The cycles used are 7, 15, 19, 29, 33 and 39. The resulting behaviour 
is that  the three attributes {Ao,A1,A2} alter their state every 7th example; 
attributes {A3, A4, As} alter their state every fifteenth example, and so on. All 
cue attributes {A0, A3, A6, A9, A12, AI~} are locked to the value zero, giving a 
maximum error of 2/3. COBBIT~s queues are set to 1 = 10, u = 40. 

Figure 7 gives the performance graphs for COBWEB (dotted) and COBB]T 
(solid). The origin of each data point is an average from 10 runs, but the graph 
shows rolling averages over 10 adjacent data  points. The purpose of this is to 
clearly show the trend in the material. 

Both systems behave almost identically up to the 29th example where the 
projected limit on the queue is reached (see figure 8). COBBIT begins to eject old 
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Fig. 7. Errors from Cobweb and Cobbit in the complex domain. 

material, some of which apparently was important  for prediction at this stage, 
since the level of error rise above COBWEB's . But COBBIT regains competence 
and displays a lower prediction error than COBWEB in the region of the 42nd 
example and onwards. 
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Fig. 8. Cobbit's queue size in the complex domain. 

Also obvious in the graph is that COBWEB's error level also is dropping. 
This is because the number of possible examples in the domain are limited 
and COBWEB's collection of training examples is swelling. Should the run be 
extended, COBWEB will match COBBIT in predictive performance, because pre- 
vious input will return. But the point is that COBBIT reacquires predictive per- 
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formance faster than does COBWEB, and that COBWEB makes no difference 
between P(A) = 100/1000 and P(A) = 1/10. 

The final graph (figure 9) compares COBWEB and COBBIT on the cost of 
assimilating an object into the hierarchy. The absolute times per object are not 
interesting here; the curves show rolling averages of 10 adjacent data points, each 
of which is an average from 10 independent runs. The input data is the same 
as in figure 7. Note how COBBIT requires more processing time per example 
from (approximately) 20 to 36 objects. After that break-even is achieved and 
COBWEB continues to increase, while COBBIT stays behind. 
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Fig. 9. COBWEB and COBBIT's object assimilation times. 

6 Summary 

The desirable properties of COBBIT include: 

1. Predictions are based on recent input. 
2. It is not burdened by lingering base rates. 
3. Update time is bounded by a parameter. 
4. It requires no change to COBWEBg classification procedure. 

The experiments confirm that COBBIT recovers faster than COBWEB from 

drastic concept drift. The experiments also confirm that COBBIT in the long 
run require less processing time than COBWEB, due to COBWEB's monotonic 
accumulation of training examples, a behaviour avoided in COBBIT. 

Among the undes i rab le  properties of COBBIT are found: 

1. Training examples and induced knowledge is lost (thrown away). 
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2. Examples are discarded indiscriminately, without regard for informative con- 
tent. 

3. It introduces two parameters, I and u which must be set by the user. 

Section 3 provided a list of problems that  appeared when COBWEB was used 
on data with concept drift. The COBBIT system introduce a list of devices: the 
two lists relate to each other in the following way. 

COBWEB does not distinguish between new and old material, requiring new 
features to replace previous ones by quantity. In COBBIT, old instances are sub- 
tracted from the concept hierarchy when they reach the end of the queue. Their  
statistics are subtracted from all parents and they are effectively unlearned, using 
the Extract_Object 0 procedure. 

COBWEB retains every training example and must stop when the resources 
for further learning are exhausted. In COBBIT it is the size of the queue that  
controls the number of examples retained. The size is continuously adjusted to 
approach a number determined by the recent performance, in the range between 
the I and u parameters. 

The concept hierarchies created by COBWEB are usually dependent on the 
ordering of the training examples. The orderings found in data affected by con- 
cept drift are especially difficult. COBBIT does not alter the input ordering in any 
way. However, because of the queue mechanism and the subtraction of examples, 
ordering effects are only applicable to the training instances in the queue. 
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