
C O B B I T A Control Procedure for C O B W E B
in the Presence of Concept Drift

Fredrik Kilander and Carl Gustaf Jansson

Department of Computer and Systems Sciences
Royal Institute of Technology and Stockholm University

Sweden

Abs t rac t . This paper is concerned with the robustness of concept for-
mation systems in the presence of concept drift. By concept drift is meant
that the intension of a concept is not stable during the period of learn-
ing, a restriction which is otherwise often imposed. The work is based
upon the architecture of COBWEB, an incremental, probabilistic concep-
tual clustering system. When incrementally and sequentially exposed to
the extensions of a set of concepts, COBWEB retains all examples, dis-
regards the age of a concept and may create different conceptual struc-
tures dependent on the order of examples. These three characteristics
make COBWEB sensitive to the effects of concept drift. Six mechanisms
that can detect concept drift and adjust the conceptual structure are
proposed. A variant of one of these mechanisms: dynamic deletion of old
examples, is implemented in a modified COBWEB system called COBEIT.
The relative performance of COBWEB and CORBIT in the presence of con-
cept drift is evaluated. In the experiment the error index, i.e. the average
of the ability to predict each attribute is used as the major instrument.
The experiment is performed in a synthetical domain and indicates that
COBBIT regain performance faster after a discrete concept shift.

1 I n t r o d u c t i o n

With a given data set, incremental or batch learning is a matter of taste. Because
the data is given, it is finite and therefore available for scrutiny by any available
mode of preparation, clustering and post-processing. Such is the state of much
scientific data: collected, stored, processed and analyzed at length.

Reality throws a wild and evolving environment at us; dependencies between
observable and non-observable features change over time. The ability to accu-
rately categorize and associate phenomenon is highly valued in both people and
machines, but there is a danger in the complacency that follows seemingly un-
shakable competence. Knowledge that is not regularly confirmed runs the risk
of becoming obsolete when concepts surreptitiously drift, nurturing a creeping
knowledge rot. A carefully captured flow of experience may be invalidated by a
sudden, single blow of altered environmental conditions.

The problem of concept drift in the context of this paper is characterized by a
change in the environment observed by an incremental machine learning system.
The machine collects a number of samples from the environment and builds a

245

tree over the conditional probabilities that relate smaller groups of observations.
Each such group represents a concept.

Concept drift occurs when the environment change. The conditional prob-
abilities reflected by the new observations change too and are no longer accu-
rately represented by the concepts in the machine learning system. The occurence
counts on which the probability estimates are based, include observations that
the environment no longer can provide.

Programs and systems that continuously updates their view of the world fall
into two groups. In the first are those for which the tracking of concept drift
follows involuntarily from the basic architecture of the system. In the second are
the programs designed to behave like concept trackers.

Common to the former kind of systems is their limited amount of storage for
concepts or learned structures. Their ability to stay alert with recent trends is
a side-effect of old knowledge being deleted. The deletion occurs simply because
a section of storage used by old knowledge, is claimed for more recent data. Ex-
amples of such architectures are neural network models and genetic algorithms.

The group of systems designed to track concept drift include STAGGER
[20, 19], FLORA [13], FLORA3 [21], FAVORIT [12] and RL [3]. These supervised
learning systems focus on the ability to deal with training sequences involving
concept drift. The FLORA system, for instance, employs a queue of recent train-
ing examples. When the oldest example leave the queue, FLORA updates its set
of induced classification rules to be consistent with the contents of the queue.
Discarded rules are kept suspended, awaiting future rehabilitation.

A shared behaviour of the systems that track concepts intentionally is that
they maintain generalizations under a notion of recency and non-monotonicity.
Objects that once supported general structures may be withdrawn, and the
corresponding generalization diminished or made impotent. The difference these
systems display from those that track concepts inadvertently, is that the decision
to delete or inactivate old knowledge is conscious.

This paper is concerned with concept drift in unsupervised learning and is
based on Douglas Fisher's COBWEB [6], an incremental, probabilistic, conceptual
clustering system. COBWEB is designed to work under a condition of concept con-
stancy, just as most other machine learning systems. The presentation sequences
created by the temporal ordering of examples while allowing a change of concepts
over time (concept drift), coincide with those orderings that are least suitable
for COBWEB. The concept hierarchy becomes skewed, in that a concept node
is found to be subordinate to the node that optimally is its peer. For a recent
treatment of ordering effects in COBWEB, see Fisher, Xu and Zard [5].

The experiments with COBWEB were performed on COBBIT, Kilander's im-
plementation of COBWEB in C. The COBBIT system is an extension to the control
system in COBWEB. COBBIT uses a queue of training instances just as FLORA3
does and dynamically alters the size of the queue depending on its performance.
This behaviour is intended to remove old knowledge from the hierarchy, leaving
room for new, updated Concepts.

246

2 N o i s e a n d C o n c e p t D r i f t

The term concept drift is more easily defined in terms of incremental, supervised
learning. The learning situation there is equipped with a strong source of feed-
back on performance; the class label. The learning program creates a concept for
each class, separating instances. If the program receives an object with a class
label that is not what the concept assigns, the contradiction can be attributed
either to noise (the label is wrong) or misconception of the concept (the induced
concept is wrong).

If previous training instances are stored by the system (or implicitly trusted
through the concepts they generate) it is possible to find an old training object
which is identical to the disturbing one, save for the class label. Noise must then
be the problem, and the system can deal with it in several ways, for instance by
rejecting the contradicting instances. If the source of the misclassification cannot
be established the system's only recourse is to modify its concept description, in
the hope that the concept definition is improved.

The assumption that underlies the above incremental learning method is
that the domain which is approximated by the concepts in the learning systems
is fixed; that all examples are equally important regardless of when they were
observed. The concepts in the domain are assumed to be eternal and stable.
Removing this assumption allows for the possibility that a recent observation
appears to contradict an earlier one, but the early observation can no longer be
made and concepts built upon it are indeed wrong. Concept drift is present.

Removing the constancy assumption introduces another restriction; if any
distinction in temporal terms is to be meaningful, the examples must be pre-
sented in the order they were labelled.

In supervised learning concept drift can be seen as a change in the process
that labels examples. In unsupervised learning (clustering) there is of course no
explicit class labelling. However, there is a similar process which can be thought
of as the assignment of attribute values to objects. Only certain combinations of
attribute values can be observered at any one time, and it is this set of depen-
dencies between attributes and their values that a clustering systems attempts
to approximate by forming groups of objects.

3 C o b w e b

COBWEB is an incremental, probabilistic, conceptual clustering system [6]. COB-
WEB is discussed both as an incremental learning system as well as a potential
model for basic level effects in an indexed memory. This work concentrates on
the former aspect of COBWEB's capabilities.

From a stream of object instances, COBWEB creates and maintains a hier-
archy, each level of which partitions the objects in an optimal way. Instances
form the leafs of the hierarchy, the generalizations above form the concepts. The
incremental nature of the system allows it to learn and perform at the same
time. As expected, performance is limited until a representative sample of the

247

domain has been acquired, but the prediction of a missing piece of information
may be attempted from the start.

COBWEB is suitable as a normative system because it:

1. is well known
2. is easy to understand
3. is fairly easy to implement
4. is a foundation for other systems
5. is susceptible to concept drift, and
6. does not require parameters.

The closest rival to COBWEB is CLASSIT [7] but CLASSIT only accepts linear
attributes. Other conceptual clustering systems to choose from are not lacking;
UNIMEM by Michael Lebowitz [14, 15], WIWW by Hanson and Bauer [9, 10], INC
by Hadzikadic and Yun [8], OPUS by Bernd Nordhausen [18] and the works of
Ryszard Michalski and Robert Stepp with the CLUSTER systems [16, 17].

UNIMEM is a forerunner of COBWEB but requires parameters. INC is a sys-
tem very similar to COBWEB but it also needs parameters. WITT, OPUS and
CLUSTER are batch clusterers. WITT can be set to learn incrementally using a
series of smaller batches, but it still involves too many parameters.

Recent COBWEB descendants that should be mentioned but has escaped eval-
uation due to time-constraints are: ITERATE by Biswas et al. [2] and COBWEBR,
a system by Allen and Thompson [1].

The emerging qualities of COBWEB are that it is incremental and that it
lacks parameters which constrains an otherwise unwieldy number of examination
and experiment dimensions. The fact that COBBIT reintroduces a number of
parameters is lamentable but impossible to avoid. Hopefully further research
will be able to advise automatic settings for them.

The following problems appear in various degrees of severity when COBWEB
is used on material which is subject to concept drift.

1. COBWEB does not distinguish between new and old training examples. New
features must therefore appear in ever larger numbers if they are to replace
their predecessors.

2. COBWEB retains every training example. Learning must therefore eventually
stop at the limits of the computational or practical resources.

3. COBWEB may create different concept hierarchies depending on the input
ordering. The input ordering found in material affected by concept drift is
among the worst.

4 C o b b i t

COBBIT is built around an implementation of COBWEB which for the larger
part duplicates the original. No significant extensions have been applied to the
COBWEB model of storing nodes and concepts in the concept hierarchy, the
classification or prediction algorithms.

248

4.1 Detecting Concept Dr i f t

In applications where COBWEB is used to make predictions about unseen objects
one would certainly want the prediction mechanism to pay greater attention to
recent information than to old and early one (unless a static domain is ensured).
Mechanisms capable of detecting changes in concept stability are interesting
because they may serve as triggers of automatic actions; relearning or adjustment
of the internal structure.

Here follows six algorithmic devices to survey changes in the COBWEB hier-
archy, two of which are strategies to deactivate undesirable objects:

1. T r e n d s in past preference counters. For each attribute, past preference
[4] will be established at the node where the most common value of the
at tr ibute is the majority value averaged over all examples beneath the node.
If extra disjunctive structure is imposed on the category (i.e. novel data
coming from changes) the level of past preference is expected to drop to a
lower node, or even be split among several nodes. This can be monitored by
following the development of the correct-at-node and correct-at-descendant
counts. A major change in majority values among nodes beneath the node
under surveillance can be suspected if the latter counter is increasing faster
than the former. An immediate application of this is with the prediction
mechanism which upon detecting this kind of phenomenon should ignore a
higher correct-at-node count in favour of a prediction further down.

2. O p e r a t o r s u s e d to c lass i fy a n e w e x a m p l e . In a well established hi-
erarchy most of the domain can be expected to have been observed. The
presence of a new example can therefore signal either change or a very rare
event. The example will be placed by itself at some level as its own category.
The level (relative the size of the hierarchy) is an indication of novelty. This
only works for true novelty, a cyclic reoccurrence will not be noticed.

3. U p d a t e f r e q u e n c y a n d i ts c o r r e l a t i o n t o e x p e c t e d r e l a t i v e f re -
q u e n c y . If the domain is changing one can expect differences in the rel-
ative frequencies between two time periods. Although a possible case of the
gambler's fallacy, one may expect certain observations to appear with a rate
that corresponds to their previous exposure. If this frequency distribution is
changing more than is likely to be at tr ibuted to random variation, one can
suspect that it is an effect of an altered domain.

4. C o n t i n u o u s m o n i t o r i n g o f p e r f o r m a n c e . As each example is presented
to COBBIT, it a t tempts to predict each and every at tr ibute that has a known
value. The percentage of correctly predicted attributes is output as the cur-
rent performance index. The trend of this index allows for corrective action
as soon as a drop in performance is observed.

5. M o n o t o n i c de l e t i on . Its a simple matter to modify COBWEB and obtain
the kind of short term memory used in FLORA. A first-in-first-out (FIFO)
queue facilitates subtraction of each example after a suitable time.

6. D y n a m i c de l e t i on . The insensitive nature of the previous approach can
be cushioned by using one or more of the detection mechanisms outlined

249

above. The idea is that a concept suspected to be no longer present in the
domain is to be removed. The motive for removing the object is in this case
based on more than simply the time spent within the system, and there is
an ambition to retain objects that are beneficial.

Deletion of an object can be achieved by marking it as inactive, or subtract-
ing it from the hierarchy. Removal from the central concept hierarchy does not
necessarily imply ejection from the system; several schemes of retaining objects
backstage are plausible.

4.2 C o b w e b M o d i f i e d

This section deals with the consequences of equipping COBWEB with a version
of the sixth device, dynamic deletion of old examples. This is implemented in
COBBIT with a queue of examples and continuous monitoring of performance
(device 4). Together they uphold an interval of examples; when an example
leaves the queue it is subtracted from the hierarchy. The performance index is
used to determine the size of the queue (within certain boundaries).

It can be expected (assuming a fair description language and input ordering)
that a basic hierarchy is established and that further input either confirms what
is already learned or is one of the following two cases: a new example that adds
knowledge, because there is still more to learn or a new example that replaces
old knowledge, because the domain is evolving.

Both cases contain new knowledge, and both cases should be added to the
knowledge structure. So the problem is really one of identifying old knowledge
and data structures. The simplest way to do this is using a queue, which assumes
that the oldest example no longer can be trusted and ejects it, using a FIFO-
strategy for deletion. If the features represented by a deleted node are still active
in the domain, then they will manifest themselves again soon, if not already
present in the queue.

Another approach is to remove concepts that have not been referenced or
reinforced by the domain within a reasonable time. This is the least-recently-
used (LRU) strategy for selecting a node to be deleted. However, under LRU the
property of the queue (and the hierarchy) being a proper statistical sample of the
domain is lost. LRU favours rare but regularly recurring events and disfavours
short manifestations.

COBBIT'S modification to COBWEB resides in the control system, the way
learning, predictive performance and training are combined to a complete sys-
tem. The following implements have been produced:

1. A procedure to subtract nodes from the COBWEB concept hierarchy.
2. A function that samples the the predictive performance of the concept hier-

archy and COBWEB's prediction algorithm.
3. A function that provides a mapping from performance (as measured by the

function in item 2) to a target size of the COBWEB concept hierarchy. The
size is expressed as the number of training examples found at leaf level of
the concept hierarchy.

250

4. A FIFO queue for training examples.
5. An extended control algorithm. The COBWEB standard control loop (read-

learn, see table 2) has been extended to read-evaluate- learn-tr im by using
the queue in item 4.

Table 1. The Extract_Object procedure.

Extract_Object(object)
begin

P = Paren tOf (ob jec t) .
While P # N U L L do
begin

P = P - object
R = P a r e n t O f (P)
If P is empty then delete P
P = R

end
end

Table 2. Control loop in COBWEB.

While not eof do
begin

object = the next object from the input.
If object is a training instance then

root = Cobweb(object, root)
else

predict missing values and report.
end

4.3 C o b b i t ' s C o n t r o l A l g o r i t h m

The algorithm used to classify new examples in COBBtT is the same as in COB-
WEB. The change is introduced in the next upper level of the control hierarchy.

A new procedure tha t extracts objects from the hierarchy is shown in table
1. An empty node occurs when all its children have been subtracted from under

251

T a b l e 3. Control loop in COBBIT.

While not eof do
begin

object = the next instance from the input.
IF object is a training instance then
begin

Error = PredictionError(object) .
root = Cobweb(object, root).
Queue = Queue + object.
M a x Q S i z e = ((1 - Error) * (u - 1)) + 1.
IF Length(Queue) > MaxQSi ze then
begin

N = I + (L e n y t h (Q 4) - - M a x • S i z e) ,

While N > 0 do
begin

Extract_Object(Head(Queue)).
Queue = Queue - Head(Queue).
N = N - 1 .

end
end

end
else

predict missing values and report.
end

a generalization. All counters in the empty node are zero, but it still occupies
space in the concept hierarchy and is therefore deleted from the tree.

The idealized control loop of COBBIT is described in table 3. The parameters
u and l control the upper and lower bounds on the number of elements in the
queue at any time. The queue can only grow one instance at a time, but it can
shrink faster. The division by 4 when determining the number of objects to be
ejected (N), dampens the effect of noisy examples which otherwise may cause
an overly rapid depletion of objects. The quantity 4 was chosen a rb i t r a r i ly - -
the effect of other values is not evaluated. Notice also the call to Cobweb(),
COBWEB'S classification procedure.

5 Experiments

Kibler and Langley [11] suggests several ways to measure performance. One is
the general measure of "the ability to predict a missing attribute's value, aver-
aged across all attributes". For incremental systems, they suggest tha t learning
is turned off every nth instance for testing against a test set of examples. Al-
ternatively, every instance is treated as both a test and training object. This is

252

the major instrument of measurement in these experiments. For each training
example an error index is calculated thus:

nof correctly predicted attributes
1 -

nof attributes
This averages the ability to predict each attribute, and uses every example for
both testing and training.

Kibler and Langley continues to remark that the learning curve (resulting
from such a performance measure) can be informative, but that the information
can be condensed into the asymptotic performance and the number of examples
required to reach it. This fails to be immediately applicable under concept drift
as the asymptotic target constantly is redefined.

It should be pointed out the concept trees generated by COBWEB are not
evaluated in terms of cluster analysis. The interest is focussed on the system's
ability to predict missing at tr ibute values.

5.1 Experiment Design
The synthetic domain which provides the training examples is designed to con-
dition its concept drift on a particular attribute, the c u e attribute. When this
at tr ibute is active the language is complete and concept drift not present (al-
though ordering effects remain). Holding the value of the cue at tr ibute fixed, it
can no longer be used to predict the values of the other attributes and concept
drift can be simulated.

The first experiment shows the effect on COBWEB when the cue at tr ibute is
locked. There is no concept drift in the da ta - - the next state of the domain is
chosen at random. Even so, one could view this as a demonstration of a situation
where the rate of concept drift is beyond the sampling rate of the input collectors.

The second experiment intends to show COBWEB's behaviour when the rate
of concept drift is sufficiently slow to follow. The data provides a single alteration
of state at the 1 l th example.

T h e third experiment is in two parts. It shows the effect of applying COBBIT's
queue mechanism on the same data sets as in the second experiment. Variation
of the lower and upper queue size parameters shows the effect of the queue device
on performance.

The fourth experiment compares COBWEB and COBBIT on a complex do-
main with six independent substates, altering their state cyclically and each at
a different rate. The interference of state changes is intended to stress the per-
formance capacity of both systems, and give an indication of what performance
can be expected under complicated input.

Finally a comparison is provided which reflects the cost of assimilation for the
next example. As expected, COBWEB needs more and more time while COBBIT
stays bounded by the size of the queue.

The primary sources of evaluation are the graphs over prediction error and
queue sizes, as presented later in this section. In most instances the graphs
display averages from 10 data-sets. The fraction of error used as a measure of
performance quality, is a sum over several attributes~

253

5.2 De sc r ip t ion Language

The domain used is equal-not equal. It corresponds to an ideal situation using
three binary attributes. Attributes A1 and A2 are regular attributes. They take
their values from 0, 1. Attribute A0 is the cue attribute, it supplies information
about the state of the domain, the state that will be changed during learning.
Table 4 gives all combinations of values. Since the complete set of possible ex-
amples quickly is exhausted, examples are repeated many times during learning.

Table 4. Domain equal-not equal.

A0 A1 I A2
0 0 1

l 0
1 0 0

1 1

5.3 Cobweb wi th and w i t h o u t Cue

Figure 1 shows the effect of hiding the cue attribute. The domain consists of
three binary attributes from the equal--not equal domain. Each line represents
the performance index averaged over i0 independent data sets, with 30 examples
in each data set.

0.6

~40-5

~0.4

~o0.3
b
b
~0.2

0.i

I V\ , , . / \ .
i'0 2'0 3'0

Objects

Fig. 1. Errors with visible ~nd locked cue attributes.

The dotted line is the domain where the cue attribute reveals the state of the
two other attributes. The state shifts randomly, but COBWEB quickly acquires

\

the pat tern. The solid line shows the performance when the cue at t r ibute is set
to zero, regardless of the state of the domain. COBWEB has no way to discern
between the two states and prediction does not improve as more examples are
seen. Note that the with-cue line begins at a higher level of error than without
cue. The reason for this is that with the cue is always set to zero, it cannot be
mispredicted. The resulting error average is kept around 50 % of 2/3.

5.4 S ing le Sh i f t at Example 1 1 - - C o b w e b

This domain consists of three binary at tr ibutes from the equal--not equal do-
main. The training sequence begins in the unequal state and shifts to the equal
s tate at the l l t h example. I t then holds that s tate to the end. The graph in
figure 2 is an average of 10 independent da ta sets, with 30 examples in each da ta
set. With the cue at t r ibute locked the max imum error is 2/3.

0.6

3 0.5

~ 0 . 4

o~0.3

toO.2

0 I o

254

Objects

Fig. 2. Error for a single state, shifting at example 11.

Competence is gained as COBWEB begins to process the training set and the
error level is low at the 10th example. When the domain changes, prediction
suffers and the error soars to the max imum level. It takes another 11 examples
before the error drops in earnest, but perfect performance as shown before the
shift appears less likely.

The training instances in this run are identical to those in section 5.3, where
COBWEB failed to learn (the solid line). The difference between the two ex-
periments is that in the previous one the two states were randomly mingled.
Here the states are sequentially separated, and COBWEB has t ime to accumulate
conditional probabilities. After the shift has occurred, it takes almost the same
number of examples to turn the accumulated counts the other way and perform
well in the new state of the domain.

255

5.5 Single Shift at ex. l l - - C o b b i t V a r y i n g Q u e u e Size

The graph in figure 3 is composed from four independent runs of COBBIT, using
the queue mechanism. The data sets are in each case identical with the one used
in the previous experiment, section 5.4. The parameter that is varied between
each run is u, the upper limit of queue size. The lower limit l, was fixed at a size
of 5 in all four runs.

0.6

xmO-5

~0.4

~ 0.3
HO.2

0.i

0
0

5-30

..... 5-15

.... 5-10

..... 5-5

!I
..

2'O 3~
Objects

Fig. 3. Errors when varying the queue's upper limit.

The lines show the different settings of the u parameter; 5 (dotted), l0 (wide
dash), 15 (long dash) and 30 (solid). Settings 20 and 25 are omit ted but their
positions are easily interpolated.

The graph shows how performance is regained must faster when the older
examples (and their associated probabilities) are removed from the classification
tree by the queue. Notice also that the difference between u = 5 and u = 10
is much larger than between u = 15 and u = 30. The reason for this is the
simple domain; the short queue will flush out the old objects much faster. One
should not be deceived into believing that a small value of u is beneficial under
all circumstances; that would imply that all knowledge is harmful.

The queues for the four runs (figure 4) grows linearly until the shift occurs
(with the exception of u = 5 and u = 10). At this point they level out and
delay further growth of the queue until the error peak has diminished. When
performance again is improving (error lessening) the queue again is allowed to
grow.

A second collection of curves in figure 5 shows the behaviour when the queue's
lower limit (l) is varied between 5 (dotted), 10 (wide dash), 15 (long dash) and
30 (solid). The upper limit was fixed at 30 in each instance.

The first striking difference is that all curves (except for l = 5) indicates a
w o r s e performance compared to figure 3. The curve for l = 30, u = 30 coincides

256

30

20 ~ N

~ lO

5-30

_ ~ 5-i0

.................... %-5.

3'0
Objects

Fig. 4. Queue sizes when varying the queue's upper limit.

0.6

~0.5

 0.4
o~0.3

toO.2

0.1 ~ .

0 1'o

%%%

i

l

Objects
210 3'0

_ _ 30-30

15-30

10-30

5-30

Fig. 5. Errors when varying the queue's lower limit.

with the performance for COBWEB as there are only 30 thir ty examples and the
queue never overflows. When the difference between the upper and lower limits
is increased, COBBIT's control algorithm can, and does, use the queue to delete
early examples.

The curve with the greatest range, 5-30 (l = 5, u = 30), is common to figures
3 and 5 both. It also appears to be the pivot point between the two graphs; in
the former it appears as the worst case and in the latter as the best. Although
the figures appear to advocate small settings of I and u this will only facilitate
swift adaptation in the most trivial of cases.

Comparing the graphs that shows the evolution of the queue-size, a similar
pivotal property is evident: in figure 4 the l = 5, u = 30 settings displays the

257

queue w i th the most examples, in figure 6 i t is the one w i th the fewest.

30

m 2O
N

~n

G)

o lO

_ _ 30-30 /

. 15-30 j / ~ #
_ _ _ i o - 3 o

. 5 - 3 o

11o 21o 310
Objects

Fig. 6. Queue sizes when varying the queue's lower limit.

The queue must give the best performance for the most complex throughput
and there is no simple strategy to guide the settings of the l and u parameters.
A compromise appears unavoidable. If both parameters are set to similar values,
the scope for dynamic behaviour lessens. Therefore is appears better to set u
high, and provide COBSIT with the ability to exercise various queue sizes. The
setting of I should be regarded as a minimal number of examples, beneath which
generalization and induction becomes meaningless.

5.6 C o m p l e x D o m a i n , M u l t i p l e Shif ts

This test features a complex domain consisting of six concatenated attribute
triplets from the equal--not equal domain. This yields a description language
consisting of 6*3 = 18 attributes. Each triplet is set up to alter its state cyclically,
but the cycles are tuned to be out of phase so the resulting input data is shifting
fast. The cycles used are 7, 15, 19, 29, 33 and 39. The resulting behaviour
is that the three attributes {Ao,A1,A2} alter their state every 7th example;
attributes {A3, A4, As} alter their state every fifteenth example, and so on. All
cue attributes {A0, A3, A6, A9, A12, AI~} are locked to the value zero, giving a
maximum error of 2/3. COBBIT~s queues are set to 1 = 10, u = 40.

Figure 7 gives the performance graphs for COBWEB (dotted) and COBB]T
(solid). The origin of each data point is an average from 10 runs, but the graph
shows rolling averages over 10 adjacent data points. The purpose of this is to
clearly show the trend in the material.

Both systems behave almost identically up to the 29th example where the
projected limit on the queue is reached (see figure 8). COBBIT begins to eject old

258

0 - 4 1 T Z ~ ~ ,-, .-- ,

1
f -SC-" ,,, obweb.

-,"-t

~4
~o 2

0 1 (5 i~3 2~3 3~] 4~3 5~0 610 7~0 gO
Objects

Fig. 7. Errors from Cobweb and Cobbit in the complex domain.

material, some of which apparently was important for prediction at this stage,
since the level of error rise above COBWEB's . But COBBIT regains competence
and displays a lower prediction error than COBWEB in the region of the 42nd
example and onwards.

4O

3O

2o

lo

o

-,-I

C~

Fig. 8. Cobbit's queue size in the complex domain.

Also obvious in the graph is that COBWEB's error level also is dropping.
This is because the number of possible examples in the domain are limited
and COBWEB's collection of training examples is swelling. Should the run be
extended, COBWEB will match COBBIT in predictive performance, because pre-
vious input will return. But the point is that COBBIT reacquires predictive per-

259

formance faster than does COBWEB, and that COBWEB makes no difference
between P(A) = 100/1000 and P(A) = 1/10.

The final graph (figure 9) compares COBWEB and COBBIT on the cost of
assimilating an object into the hierarchy. The absolute times per object are not
interesting here; the curves show rolling averages of 10 adjacent data points, each
of which is an average from 10 independent runs. The input data is the same
as in figure 7. Note how COBBIT requires more processing time per example
from (approximately) 20 to 36 objects. After that break-even is achieved and
COBWEB continues to increase, while COBBIT stays behind.

1200000
0

i000000

-H ~ 800000

600000
~-~
m ~ 400000

�9 200000

0
0

Cobweb

i"o 2:0 3:0 s% 6:o 7:o 8:0
Objects

Fig. 9. COBWEB and COBBIT's object assimilation times.

6 Summary

The desirable properties of COBBIT include:

1. Predictions are based on recent input.
2. It is not burdened by lingering base rates.
3. Update time is bounded by a parameter.
4. It requires no change to COBWEBg classification procedure.

The experiments confirm that COBBIT recovers faster than COBWEB from

drastic concept drift. The experiments also confirm that COBBIT in the long
run require less processing time than COBWEB, due to COBWEB's monotonic
accumulation of training examples, a behaviour avoided in COBBIT.

Among the undes i rab le properties of COBBIT are found:

1. Training examples and induced knowledge is lost (thrown away).

260

2. Examples are discarded indiscriminately, without regard for informative con-
tent.

3. It introduces two parameters, I and u which must be set by the user.

Section 3 provided a list of problems that appeared when COBWEB was used
on data with concept drift. The COBBIT system introduce a list of devices: the
two lists relate to each other in the following way.

COBWEB does not distinguish between new and old material, requiring new
features to replace previous ones by quantity. In COBBIT, old instances are sub-
tracted from the concept hierarchy when they reach the end of the queue. Their
statistics are subtracted from all parents and they are effectively unlearned, using
the Extract_Object 0 procedure.

COBWEB retains every training example and must stop when the resources
for further learning are exhausted. In COBBIT it is the size of the queue that
controls the number of examples retained. The size is continuously adjusted to
approach a number determined by the recent performance, in the range between
the I and u parameters.

The concept hierarchies created by COBWEB are usually dependent on the
ordering of the training examples. The orderings found in data affected by con-
cept drift are especially difficult. COBBIT does not alter the input ordering in any
way. However, because of the queue mechanism and the subtraction of examples,
ordering effects are only applicable to the training instances in the queue.

Acknowledgement

Thanks to our collegues in the Stockholm Machine Learning Group (ILP project
members and others). This research was funded by the Swedish National Board
for Industrial and Technical development under grant no. 9001734.

References

1. John A. Allen and Kevin Thompson. Probabilistic concept formation in relational
domains. In Machine Learning--Proceedings of the Eighth International Workshop
(ML91), pages 375-379. Morgan Kaufmann Publishers, Inc, 1991.

2. Gautam Biswas, Jerry Weinberg, Qun Yang, and Glenn R. Koller. Conceptual
clustering and exploratory data analysis. In Machine Learning--Proceedings of
the Eighth International Workshop (ML91), pages 591-595. Morgan Kaufmann
Publishers, Inc, 1991.

3. Scott Clearwater, Tze-Pin Cheng, Haym Hirsch, and Bruce Buchanan. Incremental
batch learning. In Proceedings of the Sixth International Workshop on Machine
Learning, pages 366-370. Morgan Kaufmann Publishers, Inc, 1989.

4. Douglas Fisher. Noise-tolerant conceptual clustering. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, volume 1, pages
825-830. Morgan Kaufmann Publishers, Inc, 1989.

5. Douglas Fisher, Ling Xu, and Nazih Zard. Ordering effects in clustering. In
Machine Learning: Proceedings of the Ninth International Workshop (ML92), pages
163-168. Morgan Kaufmann Publishers, Inc, 1992.

261

6. Douglas Hayes Fisher. Knowledge Acquisition via Incremental Conceptual Clus-
tering. PhD thesis, University of California, Irvine, 1987.

7. John Gennari, Pat Langley, and Doug Fisher. Models of incremental concept
formation. Artificial Intelligence , (40):11-61, 1989.

8. Mirsad Hadzikadic and David Y. Y. Yun. Concept formation by incremental con-
ceptual clustering. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, pages 831-836, 1989.

9. Stephen Jos~ Hanson and Malcolm Bauer. Machine learning, clustering and poly-
morphy. In Uncertainty in artificial intelligence, pages 415-428. Elsevier Science
Publishers, 1986.

10. Stephen Jos~ Hanson and Malcolm Bauer. Conceptual clustering, categorization
and polymorphy. Machine Learning, (3):343-372, 1989.

11. Dennis Kibler and Pat Langley. Machine learning as an experimental science. In
Proceedings of the Third European Working Session on Learning. Morgan Kauf-
mann Publishers, Inc, 1988.

12. Miroslav Kubat and Ivana Krizakova. Forgetting and ageing of knowledge in con-
cept formation. Technical report, Computer Centre, Brno Technical University,
Udolni 19, 60200 Brno, 1989.

13. Miroslav Kubat and Jirina Pavlickova. System flora: Learning from time-varying
training sets. In Yves Kodratoff, editor, Machine Learning--EWSL-91, number
482 in Lecture Notes in Artificial Intelligence. Springer-Verlag , 1991.

14. Michael Lebowitz. Concept learning in a rich input domain: Generalization-based
memory. Technical report, Department of Computer Science, Columbia University,
New York, 1984.

15. Michael Lebowitz. Experiments with incremental concept formation: Unimem.
Machine Learning, (2):103-138, 1987.

16. Ryszard S. Michalski and Robert E. Stepp. Learning from observation: Conceptual
clustering. In Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell,
editors, Machine Learning: An Artificial Intelligence Approach, pages 331-363.
Tioga publishing company, 1983.

17. Ryszard S. Michalski and Robert E. Stepp. A theory and methodology of inductive
learning. In Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell, ed-
itors, Machine Learning: An Artificial Intelligence Approach, pages 83-129. Tioga
publishing company, 1983.

18. Bernd Nordhausen. Conceptual clustering using relational information. In Pro-
ceedings aaai-86 Fifth National Conference on Artificial intelligence, pages 508-
512, 1986.

19. Jeffrey Schlimmer and Richard Granger, Junior. Beyond incremental processing:
Tracking concept drift. In Proceedings anal.86 Fifth National Conference on Arti-
ficial intelligence, pages 502-507, 1986.

20. Jeffrey Schlimmer and Richard Granger, Junior. Incremental learning from noisy
data. Machine Learning, 1(3):317-354, 1986.

21. Gerhard Widmer and Miroslav Kubat. Effective learning in dynamic environments
by explicit context tracking. In Proceedings of the European Conference on Ma-
chine Learning (ECML-93, Vienna, Austria, 1993.

