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Abstract .  In the area of inductive learning, generalization is a main oP- 
eration. Already in the early 1970's Plotkin described algorithms for com- 
putation of least general generalizations of clauses under 0-subsumption. 
However, there is a type of generalizations, called roots of clauses, that 
is not possible to find by generalization under 0-subsumption. This in- 
completeness is important, since almost all inductive learners that use 
clausal representation perform generalization under 0-subsumption. 
In this paper a technique to eliminate this incompleteness, by reducing 
generalization under implication to generalization under 0-subsumption, 
is presented. The technique is conceptually simple and is based on an 
inference rule from natural deduction, called or-introduction. The tech- 
nique is proved to be sound and complete, but unfortunately it suffers 
from complexity problems. 

1 I n t r o d u c t i o n  

In recent years there has been a rising interest in clausal representation of knowl- 
edge in machine learning. Generalization is a main operation for inductive al- 
gorithms, and the usual definition of induction is based on logical implication 
[13]. However, almost all inductive learners that  use clausal representation, for 
example CIGOL [10], GOLEM [11], LFP2 [19], ITOU [16], perform generalizations 
under 0-subsumption, instead of generalization under implication. The reason is 
that  there are well, known and reasonably efficient algorithms to compute least 
general generalizations under 0-subsumption [14]. 

The derivation rule used together with clausal representation, in logic pro- 
gramming and automatic theorem proving, is resolution. Resolution is refutation 
complete, but not derivation complete [15]. Therefore by inverting resolution 
[10, 8, 17, 5] we have not obtained a complete generalization procedure. 

There is a type of generalizations of self-recursive clauses, called roots of 
clauses (see section 2.3), that is not possible to find by generalization under 
0-subsumption or by inverse resolution. Consequently we need to add a new in- 
ference rule to make it possible to find such generalizations. In natural  deduction 
there is an inference rule called or-introduction [18]. This rule has inspired us 
to develop an algorithm to reduced generalization under implication to general- 
ization under 0-subsumption. After such a reduction the well-known algorithms 
for least general generalizations under 0-subsumption can be used to compute 



57 

least general generalizations under implication. Our technique for reduction of 
generalization is proven to be sound and complete, but unfortunately it suffers 
from complexity problems. 

Recently the problem of generalization under implication has also been stud- 
ied by Muggleton [9] and Lapointe and Matwin [6]. Lapointe and Matwin de- 
scribe an efficient method to find two particular types of roots of clauses. But 
these two types of roots only cover a fraction of all possible self-recursive clauses. 
Muggleton consider the general problem of inverting implication, and gives a 
theoretical comparison between implication and resolution. However, the algo- 
rithms he presents are restricted to a subclass of self-recursive clauses, namely 
single-recursive clauses. 

We assume the reader to be familiar with the basic notions in logic pro- 
gramming [7] or automatic theorem proving [2]. In particular we shall adopt the 
notation in [7]. In section 2, a necessary background for our learning problem, 
generalization of clauses, is given. In section 3, our technique for reduction of 
generalization by or-introduction, is presented. Finally in section 4, related work 
and contributions are discussed. 

2 P r e l i m i n a r i e s  

The basic definitions and terminology of generalization of clauses will be given 
in this section. It includes generalization under 0-subsumption, generalization 
under implication, and powers and roots of clauses. These notions will also be 
related to each other. 

2.1 Genera l iza t ion  u n d e r  0 - subsumpt ion  

As already mentioned in the introduction, least general generalization under 0- 
subsumption is the most common form of generalization of clauses. The following 
definitions are taken from [14], but the terminology is adapted to inductive logic 
programming. 

Defini t ion 1. A clause C O-subsumes a clause C, denoted C "< D, if and only 
if there exists a substitution 0 such that CO C D. 

Example i. The clause C -- (p(x) ~ p ( f ( x ) ) , p ( y ) )  O-subsumes the clause D -- 
(p(a) +--p(f(a)), q(c)), since C{x /a ,  y / f ( a ) }  C n .  

Defini t ion 2. A clause C is a least general generalization under O-subsumplion 
(LGG0) of a set of clauses {C1,. . . ,  Cn}, denoted C = l ggs {C1 , . . . ,  C ,} ,  if and 
only if: 

1. C "< C1 . . . .  , C ~_ Cn , and 
2. for each clause D, such that D _ C1, . . . ,  D ~ Cn, then also D ~ C. 

Example 2. Let C = (p(a) *- q(a), q(f (a)) )  and D = (p(b) *-- q( f(b)))  be clauses. 
Then both clauses E = (p(x) ~ q ( f (x ) ) )  and F = (p(x) ~-- q(y), q ( f ( x ) ) )  are 
LGG0s of C and D, which shows that LGG0s are not unique. 
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2.2 G e n e r a l i z a t i o n  u n d e r  I m p l i c a t i o n  

We agree with Niblett [12] tha t  there is no reason why the straight forward 
notion of implication , instaed of 0-subsumption, should not be used as a basis 
for generalization. 

D e f i n i t i o n  3. A clause C implies a clause D, denoted C ~ D, if and only if 
every model of C is a model of D (C ~ D). 

It  is easy to see that  if a clause C 0-subsumes a clause D then C implies D. 
But the converse does not hold which is shown by the following example. 

Example 3. Let C = (p(x) ~--p(f(x))) and D = (p(x) *---p(f(f(x)))) be clauses. 
Then C ~ D, but  C does not 0-subsume D. 

D e f i n i t i o n 4 .  A clause C is a least general generalization under implication 
(LGGI)  of a set of clauses {C1 . . . .  , Cn}, denoted C = lgg: ,{Cl , . . . ,  C,~}, if and 
only if: 

1. C ~ C 1 , . . . , C  ~ C~, and 
2. for each clause D such that  D ~ C 1 , . . . , D  =~ C~, then also D =# C. 

Example 4. Let C = (p(a) ~-- p(f(a)), p(c)), and D = (p(b) (---- p(f(f(b))), p(c)) 
be clauses. Then for the clause E = (p(x) ,--- p(f(y)),p(a)), we have E = 
lgg.~{C,D}, and for the clause F = (p(x) ~ p(f(x)),p(a)), we have F = 
lgg~ (C, D}. 

This example illustrates that  LGG0s sometimes are over-generalizations (not 
least general with respect to implication), since E ~ F but  the converse does 
not hold. 

2.3 N t h  P o w e r s  a n d  N t h  R o o t s  o f  C l a u s e s  

In [9] Muggleton introduces the notion of powers and roots of clauses, for a type 
of specialization and generalization of self-recursive clauses, where the clauses 
are resolved with themselves. The definitions of nth powers and nth roots of 
clauses are based on a function s  

D e f i n i t i o n 5 .  Let T be a clausal theory. Then, the function s is recursively 
defined as: 

1. E l ( T )  -- T, and 
2. s = {RIC e T ,D E/~n-l(T) and R i s  a resolvent of C and D} (n > 1). 

The resolution closure ~.*(T) = LI (T)  13 E2(T) t J . . .  

D e f i n i t i o n  6. A clause D is an nth power of a clause C if and only if D is a 
variant of a clause in s (n ~ 1). We also say that  C is an nth root of D. 
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Exampleh. Let C = (p(x) ~-- p( f (x)) ,p(a))  be a clause. Then D = (p(x) ~-- 
p ( f ( f ( x ) ) ) ,  p(a)) is a second power of C, and E = (p(x) *-- p ( f ( f ( f ( x ) ) ) ) , p (a ) )  
is a third power of C. The clause F = (p(x) ~ p ( f ( f ( z ) ) ) ,  p( f (a)) ,p(a))  is also 
a third power of C. 

Note that  E and F are not equivalent in any way. The difference between E 
and F is due to that  the resolving literals in the resolution of C and D are not 
the same. Thus, this example illustrates that  powers and roots of clauses are not 
unique. 

It  might be the case that  a clause C implies a clause D, C does not P-subsume 
D, and C is not a root of D. For this relationship we define indirect powers and 
indirect roots. 

D e f i n i t i o n  7. A clause D is an indirect nth power of a clause if and only if there 
exists a clause E such that  E ~ D and E is an nth power of C. We also say that  
C is an indirect nth root of D. 

Example 5. Let C' = (p(x) ,-- p( f (x)))  and D = (p(g(a)) ~ p( f ( f (g(a)))) ,p(b) ,  
q(c)) be clauses. Then there exists a clause E --= (p(x) ~ p ( / ( / ( z ) ) ) )  such that  
E is a second power of C and E ___ D. Consequently D is an indirect second 
power of (7, and C is an indirect second root of D. 

Note that  a root of a clause is also, by definition, an indirect root of that  
clause. Impor tan t  to point out is also that  all generalizations of clauses under 
implication are indirect roots of these clauses. 

3 R e d u c t i o n  o f  G e n e r a l i z a t i o n  b y  O r - i n t r o d u c t i o n  

Our main idea is to reduce generalization under implication to generalization 
under ~-subsumption (reduction of generalization) by or-introduction. First we 
present our idea, then we infer the notion of expansion of clauses, which covers 
this idea. Last in this section, we prove soundness and completeness of our 
technique for reduction of generalization. 

3.1 T h e  M a i n  I d e a  

As mentioned in the introduction, our technique for reduction of generalization 
makes use of the sound natural  deduction rule called or-introduction. This rule 
says that  if we have a formula E, then we can derive a new formula E V F ,  where 
F is any formula. Let D be a disjunction, then we can derive D Y (A A -~A) by 
or-introduction. This formula can be rewritten to (D V A) A (D V --,A). Thus in 
clausal form we can derive a set of clauses {(D U {A}), (D U {~A})}, where A 
is an a tom,  from a clause D. It is of interest because we have found that  if a 
clause C is a second root of a clause D, then there exists an a tom A such that  
C _ (D U {A}) and C -< (D U {-,A}). Consider the following example.  
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Example 7. Let D = (p(z) +-- p(f( f(x))))  be a clause. Then C = (p(x) +-- 
p ( f ( z ) ) )  is a second root of D, and we have C => D but C does not 0-subsume D. 
Let A = p(f(z)),  then by or-introduction of the contradiction (AA",A) we obtain 
the clauses (Dto {A}) = (p(z),  p(f(z))  *-- p( f ( f (z)) ) )  and (DU {-~A}) = (p(z) 
p(f(z)),  p( f ( f (z)))) .  Then we have C { z / f ( z ) }  C_ (DU{A}) and C C_ (Dto{--,A}). 
Consequently, C _ (D tO {A}) and C ___ (D tO {--,A}). 

Our technique for reduction of generalization works just  as well for nth roots 
as for second roots. But then we have to or-introduce n -  1 contradictions, 
instead of only one. For finding a third root we or-introduce two contradictions. 
Let D be a clause and A and B atoms. Then by or-introduction we can get 
D V (A A -~A) V (B A--,B), which in clausal form is a set of four clauses {(D tO 
{A, B}), (DtO{A,-~B}), (Dto{-~A, B}), (Dto {--,A,--,B})}. I f C  is a third root of D 
and we have chosen the right a toms A and B, then we willhave C -'< (Dto{A, B}), 
C _ (D tO {A,--,B}), C _ (D tO {--,A, B}) and C _ (D tO {-~A,-~B}). Tha t  our 
technique works for nth roots, and even for indirect nth roots, is indicated by 
the following example. 

Example 8. Let D = (p(a) *-- p( f ( f ( f (a)))))  be a clause. Then the clause C = 
(p(z) ~ p(f(z)))  is an indirect third root of D, and we have C ::> D but C does 
not 0-subsume D. Let A = p(f(a)) and B = p(f(f(a))),  then by or-introduction 
we obtain the clauses: 

Da = (D tO {A, B}) = (p(a),p(f(a)),p(f(f(a))) *- p( f( f ( f (a))))) ,  
D2 = (D to {A, -~B}) -- (p(a), p(f(a)) +- p(f(f(a))),  p( f ( f ( f (a))))) ,  
D3 = (D to {-~A, B}) = (p(a), p(f(f(a))) +--- p(f(a)), p( f ( f ( f (a))))) ,  
D4 =- (D tO {-~A, -~B}) = (p(a) +- p(f(a)), p(f(f(a))),  p( f ( f ( f (a))))) .  

Then we have C{z / f ( f (a ) ) }  C_ D,, C{z / f (a )}  C_ D2, C{z /a}  C_ D3 and 
C{x/a} C D4, and thus C 0-subsumes all the clauses D1, D2, D3 and D4. 

3.2 E x p a n s i o n  o f  C l a u s e s  

In the previous subsection it was illustrated how a reduction of generalization 
can be achieved by replacing a clause by a set of clauses. Here we will show 
how this set of clauses equivalently can be described by a single clause, which 
also is an expansion of the original clause. We start  by describing our idea of 
or-introduction more formally. 

D e f i n i t i o n 8 .  Let I2 be a set of atoms, and {I2i, I22} a part i t ion of 12, where 
J2~ = {Aa, . . . ,An) .  Then ~ = ~a tO {-~A1,...,-~A,~} is a sign assignment o f ~ .  

D e f i n i t i o n  9. Let D be a clause and J2 a set of atoms. Then a set of clauses 
or-introduced from D with ~ ,  denoted {D-4-$2}, is the set of clauses {C tO Z I Z  
is a sign assignment of ~}.  

Example 0. Let D = (p(a) ,--- p( f ( f ( f (a)))))  be a clause, and I2 = {p(f(a)), 
p(f( f(a)))} a set of atoms. Then {D =t= I2} = {O1, D2, 03, D4}, where O1, 02,  
D3 and D4 are the same as in example 8. 
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By definition 2, if a clause C 0-subsumes every clause in a set of clauses, 
then C will also 0-subsume the LGG0 of the set of clauses. This leads us to our 
definition of expansion of clauses. 

D e f i n i t i o n  10. Let {D -4- 12} be a set of clauses or-introduced from D with 12. 
Then E = lgg~_ {D -4- 12} is an expansion of D by 12. 

Example 10. Let D and 12 be as in example 9. Then the expansion of D by 12 
is E = lgg~_ {D -4- 12} = (p(a), p(x) ~ p(f(x)) ,  p ( f ( f ( f (a ) ) ) ) ) .  Hence, the third 
root C = (p(x) ~-- p( f (x)) )  of D, which does not 0-subsume D, 0-subsumes the 
expansion E of D. 

Expansion can be regarded as a transformation technique, since the expan- 
sion of a clause C is logically equivalent to the clause C. More important  is that  
there always exists an expansion of a clause C such that every generalization 
under implication of C is reduced to a generalization under 0-subsumption. Both 
these results are proved in the next subsection. 

A l g o r i t h m  1 E x p a n s i o n  o f  c lauses  
Input: a non-tautological clause D. 
Output:  a clause E such that E r D, and C --< E for every indirect root C of D 
(C ::~ D). 
1. Find the desirable set of atoms 12. 
2. Compute the expansion E = lgg-<{D :l= 12}. 

The algorithm is non-deterministic, since we have not described how the set 
of atoms 12 can be found. In [4] a technique to find such a set of atoms for 
single-recursive clauses is described, and it is not hard to extend this technique 
to cover arbitrary clauses. But in this paper we are satisfied with an indetermin- 
istic version of the algorithm, since it will turn out that  the second part of the 
algorithm is computationally intractable anyway. 

3.3 S o u n d n e s s  a n d  C o m p l e t e n e s s  

Soundness and completeness of our expansion technique of clauses, which reduces 
generalization under implication to generalization under 0-subsumtion, are guar- 
anteed by the following theorems. Theorem 12 and corollary 13 are taken from 
[9], and use the function s which is defined in section 2.3. 

T h e o r e m  11 S o u n d n e s s  o f  e x p a n s i o n  o f  c lauses .  Let C be a clause and 12 
a set of atoms. Then lgg~_ {C =t= 12} r C. 

Proof. Let E = lgg~_ {C -4- 12}. Then for each D E {C -4- 12) we have E ~ D and 
thus E ~ {C + 12}. We also have {C + 12} t- C (by resolution). Consequently 
E ~ C. Each literal Li E C is included in every clause in {C + 12}, and since 
lgg~_(Li,Li) = Li we have C C_ lgg.~{C+ 12}, and thus C _ E. Consequently 
C ~ E, and thus E ~ C. 
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T h e o r e m  12 S u b s u m p t i o n  theorem.  Let T be a set of clauses and C a non- 
tautological clause. Then T ~ C if and only if there exists a clause D E f~*(T) 
such that D ~ C. 

Proof. A proof can be found in [1]. 

Corol lary  13 Impl ica t ion  b e t w e e n  clauses using resolut ion.  Let C be a 
clause and D a non-tautological clause. Then C ~ D (C ~ D) if and only if 
there exists a clause E E s such'that E ~ D. 

Proof. Follows directly as a special case of theorem 12. 

L e m m a  14 Comple t enes s  of  o r - in t roduc t ion  for roo ts  of  clauses. Let C 
be a clause an Dn an nth power of C. Then there exists a set of atoms ~2n such 
that C "< (D,~ W Sn)  for each sign assignment Sn of ~ , .  

Proof. The proof is by mathematical induction on n. 
Base step (n=1): D1 is a first power of C, that is D1 = C. Consequently, 

C _ (D1 t.J $1) for each sign assignment $1 of any set of atoms 121. 
Induction hypothesis (n=k): If Dk is a kth power of C then there exists a set 

of atoms Ok such that C ___ (Dk U Sk) for each sign assignment Sk of 12k. 
Induction step (n=k-I-1): Let C = {A} U F and Dk = {B} U A, such that 

AOA = BOB, where OA t20B is an mgu for {A,~}. Then a (k+l) th  power of 
C will be Dk+l = F/9A W A/gB. Let 12k+l = 12k/9B U {AOA} if A/gA is an atom, 
or 12k+l = 12k/gB 12 {A/gA} if AOOA is an atom. Then we distinguish between two 
different cases. A sign assignment Sk+l of 12k+l could be either: 

1. Sk+l = Sk/gB U {A/gA}, where Sk is a sign assignment of 12k, or 
2. Sk+l = Sk/gB tJ{B/gB} (since A/gA = B/gB), where Sk is a sign assignment 

of 12k. 
Case 1: Dk+l tA 5:k+l = FOOA tA A/gB tA {A/gA} tA 5:k/gB, and thus C/gA C_ 

(Dk+l tA 5:~+1). Consequently C ~ (Dk+l U Sk+l), which completes the proof 
for case 1. 

Case 2: Dk+i U Sk+i = F/gA U A/gB U {BOOB } U 5:k/gB, and thus (D U 5:k)ooB C__ 
(D~+I U Sk+l). Consequently (D U Sk) __. (Dk+i U ,Uk+l). By the induction 
hypothesis C ___ (D U Sk), and thus C ~ (Dk+l U Sk+l) (since 5 is transitive), 
which completes the proof for case 2. 

T h e o r e m  15 Comple t eness  of  expans ion  of  clauses. Let C and D be non- 
tautological clauses such that C ~ D. Then there exists a set of atoms 12 such 
that C --< lgg 5 {D + 1-2}. 

Proof. By corollary 13, there exists a clause Dn such that Dn is an nth power 
of C and D n _  D. Hence there exists a substitution/9 such that D,~/9 C D. By 
lemma 14, there exists a set of literals 12n such that C -~ (Dn t2 5:n) for each 
sign assignment 5:~ of 12,. Then let 12 = D,~/9, and thus (Dn U Sn)  "< (D W S )  
for each sign assignment 5: of 12, where S = 5:noo. Consequently C ~ (D U 5:) 
for each sign assignment 57 of 12 (since _ is transitive). Then by definition 2, we 
have C ~ Igg~_ {D + 0} .  
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4 Concluding Remarks 

Almost all inductive learners that use clausal representation perform generaliza- 
tions under 0-subsumption. But generalizations of a certain type, roots of clauses, 
are not possible to find by generalization under 0-subsumption. To eliminate this 
incompleteness, we have presented a technique to expand clauses so that, gener- 
alization under implication are reduced to generalization under 0-subsumption. 
The expansion technique has been proved to be sound and complete. It is also 
conceptually simple. 

Recently two other approaches to the problem of generalization under im- 
plication have been presented, one by Muggleton [9] and one by Lapointe and 
Matwin [6]. The algorithms described in [9] are non-deterministic and restricted 
to single-recursive clauses. In [6] it is described how two particular types of re- 
cursive clauses, which they call purely recursive and left recursive, efficiently 
can be learned. However, these two types of clauses only cover a fraction of all 
possible self-recursive clauses. 

In a recent work by Idestam-Almquist [3], which is a development of the 
work in [6], the class of efficiently learnable clauses is extended to cover most 
single-recursive clauses. By the teclmique he presents, the generalizations are 
also guaranteed to be minimally general with respect to implication. 

As we have shown our expansion technique of clauses is sound and complete, 
which is our main contribution. Now finally we will discuss its main disadvan- 
tage, its computational complexity. The complexity of the second part of the 
algorithm is terrible. The or-introduced set of clauses grows exponentially with 
the cardinality of the set of atoms used in the or-introduction. As noted in [11] 
the size of an LGG0 may also grow exponentially with the number of input 
clauses. We recommend that an LGG0 of two clauses is reduced, by removing 
all redundant literals, before the next input clause is taken into account. By 
that the size explosion can be handled, but the time complexity problem of our 
technique still remains. 

A question for future research is to investigate if there is a way to reduce 
the complexity, of the presented technique, by using some approximative and 
more efficient computation of LGG0s. Another direction for future research is to 
further extend the class of efficiently learnable clauses by the technique based 
on the work in [6]. 
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