
Generalization under Implication by using
Or-Introduction

Peter Idestam-Almquist

Department of Computer and Systems Sciences
Stockholm University

Electrum 230, 164 40 Kista, SWEDEN

Abstract . In the area of inductive learning, generalization is a main oP-
eration. Already in the early 1970's Plotkin described algorithms for com-
putation of least general generalizations of clauses under 0-subsumption.
However, there is a type of generalizations, called roots of clauses, that
is not possible to find by generalization under 0-subsumption. This in-
completeness is important, since almost all inductive learners that use
clausal representation perform generalization under 0-subsumption.
In this paper a technique to eliminate this incompleteness, by reducing
generalization under implication to generalization under 0-subsumption,
is presented. The technique is conceptually simple and is based on an
inference rule from natural deduction, called or-introduction. The tech-
nique is proved to be sound and complete, but unfortunately it suffers
from complexity problems.

1 I n t r o d u c t i o n

In recent years there has been a rising interest in clausal representation of knowl-
edge in machine learning. Generalization is a main operation for inductive al-
gorithms, and the usual definition of induction is based on logical implication
[13]. However, almost all inductive learners that use clausal representation, for
example CIGOL [10], GOLEM [11], LFP2 [19], ITOU [16], perform generalizations
under 0-subsumption, instead of generalization under implication. The reason is
that there are well, known and reasonably efficient algorithms to compute least
general generalizations under 0-subsumption [14].

The derivation rule used together with clausal representation, in logic pro-
gramming and automatic theorem proving, is resolution. Resolution is refutation
complete, but not derivation complete [15]. Therefore by inverting resolution
[10, 8, 17, 5] we have not obtained a complete generalization procedure.

There is a type of generalizations of self-recursive clauses, called roots of
clauses (see section 2.3), that is not possible to find by generalization under
0-subsumption or by inverse resolution. Consequently we need to add a new in-
ference rule to make it possible to find such generalizations. In natural deduction
there is an inference rule called or-introduction [18]. This rule has inspired us
to develop an algorithm to reduced generalization under implication to general-
ization under 0-subsumption. After such a reduction the well-known algorithms
for least general generalizations under 0-subsumption can be used to compute

57

least general generalizations under implication. Our technique for reduction of
generalization is proven to be sound and complete, but unfortunately it suffers
from complexity problems.

Recently the problem of generalization under implication has also been stud-
ied by Muggleton [9] and Lapointe and Matwin [6]. Lapointe and Matwin de-
scribe an efficient method to find two particular types of roots of clauses. But
these two types of roots only cover a fraction of all possible self-recursive clauses.
Muggleton consider the general problem of inverting implication, and gives a
theoretical comparison between implication and resolution. However, the algo-
rithms he presents are restricted to a subclass of self-recursive clauses, namely
single-recursive clauses.

We assume the reader to be familiar with the basic notions in logic pro-
gramming [7] or automatic theorem proving [2]. In particular we shall adopt the
notation in [7]. In section 2, a necessary background for our learning problem,
generalization of clauses, is given. In section 3, our technique for reduction of
generalization by or-introduction, is presented. Finally in section 4, related work
and contributions are discussed.

2 P r e l i m i n a r i e s

The basic definitions and terminology of generalization of clauses will be given
in this section. It includes generalization under 0-subsumption, generalization
under implication, and powers and roots of clauses. These notions will also be
related to each other.

2.1 Genera l iza t ion u n d e r 0 - subsumpt ion

As already mentioned in the introduction, least general generalization under 0-
subsumption is the most common form of generalization of clauses. The following
definitions are taken from [14], but the terminology is adapted to inductive logic
programming.

Defini t ion 1. A clause C O-subsumes a clause C, denoted C "< D, if and only
if there exists a substitution 0 such that CO C D.

Example i. The clause C -- (p(x) ~ p (f (x)) , p (y)) O-subsumes the clause D --
(p(a) +--p(f(a)), q(c)), since C{x /a , y / f (a) } C n .

Defini t ion 2. A clause C is a least general generalization under O-subsumplion
(LGG0) of a set of clauses {C1,. . . , Cn}, denoted C = l ggs {C1 , . . . , C ,} , if and
only if:

1. C "< C1 , C ~_ Cn , and
2. for each clause D, such that D _ C1, . . . , D ~ Cn, then also D ~ C.

Example 2. Let C = (p(a) *- q(a), q(f (a))) and D = (p(b) *-- q(f(b))) be clauses.
Then both clauses E = (p(x) ~ q (f (x))) and F = (p(x) ~-- q(y), q (f (x))) are
LGG0s of C and D, which shows that LGG0s are not unique.

58

2.2 G e n e r a l i z a t i o n u n d e r I m p l i c a t i o n

We agree with Niblett [12] tha t there is no reason why the straight forward
notion of implication , instaed of 0-subsumption, should not be used as a basis
for generalization.

D e f i n i t i o n 3. A clause C implies a clause D, denoted C ~ D, if and only if
every model of C is a model of D (C ~ D).

It is easy to see that if a clause C 0-subsumes a clause D then C implies D.
But the converse does not hold which is shown by the following example.

Example 3. Let C = (p(x) ~--p(f(x))) and D = (p(x) *---p(f(f(x)))) be clauses.
Then C ~ D, but C does not 0-subsume D.

D e f i n i t i o n 4 . A clause C is a least general generalization under implication
(LGGI) of a set of clauses {C1 , Cn}, denoted C = lgg: ,{Cl , . . . , C,~}, if and
only if:

1. C ~ C 1 , . . . , C ~ C~, and
2. for each clause D such that D ~ C 1 , . . . , D =~ C~, then also D =# C.

Example 4. Let C = (p(a) ~-- p(f(a)), p(c)), and D = (p(b) (---- p(f(f(b))), p(c))
be clauses. Then for the clause E = (p(x) ,--- p(f(y)),p(a)), we have E =
lgg.~{C,D}, and for the clause F = (p(x) ~ p(f(x)),p(a)), we have F =
lgg~ (C, D}.

This example illustrates that LGG0s sometimes are over-generalizations (not
least general with respect to implication), since E ~ F but the converse does
not hold.

2.3 N t h P o w e r s a n d N t h R o o t s o f C l a u s e s

In [9] Muggleton introduces the notion of powers and roots of clauses, for a type
of specialization and generalization of self-recursive clauses, where the clauses
are resolved with themselves. The definitions of nth powers and nth roots of
clauses are based on a function s

D e f i n i t i o n 5 . Let T be a clausal theory. Then, the function s is recursively
defined as:

1. E l (T) -- T, and
2. s = {RIC e T ,D E/~n-l(T) and R i s a resolvent of C and D} (n > 1).

The resolution closure ~.*(T) = LI (T) 13 E2(T) t J . . .

D e f i n i t i o n 6. A clause D is an nth power of a clause C if and only if D is a
variant of a clause in s (n ~ 1). We also say that C is an nth root of D.

59

Exampleh. Let C = (p(x) ~-- p(f (x)) ,p(a)) be a clause. Then D = (p(x) ~--
p (f (f (x))) , p(a)) is a second power of C, and E = (p(x) *-- p (f (f (f (x)))) , p (a))
is a third power of C. The clause F = (p(x) ~ p (f (f (z))) , p(f (a)) ,p(a)) is also
a third power of C.

Note that E and F are not equivalent in any way. The difference between E
and F is due to that the resolving literals in the resolution of C and D are not
the same. Thus, this example illustrates that powers and roots of clauses are not
unique.

It might be the case that a clause C implies a clause D, C does not P-subsume
D, and C is not a root of D. For this relationship we define indirect powers and
indirect roots.

D e f i n i t i o n 7. A clause D is an indirect nth power of a clause if and only if there
exists a clause E such that E ~ D and E is an nth power of C. We also say that
C is an indirect nth root of D.

Example 5. Let C' = (p(x) ,-- p(f (x))) and D = (p(g(a)) ~ p(f (f (g(a)))) ,p(b) ,
q(c)) be clauses. Then there exists a clause E --= (p(x) ~ p (/ (/ (z)))) such that
E is a second power of C and E ___ D. Consequently D is an indirect second
power of (7, and C is an indirect second root of D.

Note that a root of a clause is also, by definition, an indirect root of that
clause. Impor tan t to point out is also that all generalizations of clauses under
implication are indirect roots of these clauses.

3 R e d u c t i o n o f G e n e r a l i z a t i o n b y O r - i n t r o d u c t i o n

Our main idea is to reduce generalization under implication to generalization
under ~-subsumption (reduction of generalization) by or-introduction. First we
present our idea, then we infer the notion of expansion of clauses, which covers
this idea. Last in this section, we prove soundness and completeness of our
technique for reduction of generalization.

3.1 T h e M a i n I d e a

As mentioned in the introduction, our technique for reduction of generalization
makes use of the sound natural deduction rule called or-introduction. This rule
says that if we have a formula E, then we can derive a new formula E V F , where
F is any formula. Let D be a disjunction, then we can derive D Y (A A -~A) by
or-introduction. This formula can be rewritten to (D V A) A (D V --,A). Thus in
clausal form we can derive a set of clauses {(D U {A}), (D U {~A})}, where A
is an a tom, from a clause D. It is of interest because we have found that if a
clause C is a second root of a clause D, then there exists an a tom A such that
C _ (D U {A}) and C -< (D U {-,A}). Consider the following example.

60

Example 7. Let D = (p(z) +-- p(f(f(x)))) be a clause. Then C = (p(x) +--
p (f (z))) is a second root of D, and we have C => D but C does not 0-subsume D.
Let A = p(f(z)), then by or-introduction of the contradiction (AA",A) we obtain
the clauses (Dto {A}) = (p(z), p(f(z)) *-- p(f (f (z)))) and (DU {-~A}) = (p(z)
p(f(z)), p(f (f (z)))) . Then we have C { z / f (z) } C_ (DU{A}) and C C_ (Dto{--,A}).
Consequently, C _ (D tO {A}) and C ___ (D tO {--,A}).

Our technique for reduction of generalization works just as well for nth roots
as for second roots. But then we have to or-introduce n - 1 contradictions,
instead of only one. For finding a third root we or-introduce two contradictions.
Let D be a clause and A and B atoms. Then by or-introduction we can get
D V (A A -~A) V (B A--,B), which in clausal form is a set of four clauses {(D tO
{A, B}), (DtO{A,-~B}), (Dto{-~A, B}), (Dto {--,A,--,B})}. I f C is a third root of D
and we have chosen the right a toms A and B, then we willhave C -'< (Dto{A, B}),
C _ (D tO {A,--,B}), C _ (D tO {--,A, B}) and C _ (D tO {-~A,-~B}). Tha t our
technique works for nth roots, and even for indirect nth roots, is indicated by
the following example.

Example 8. Let D = (p(a) *-- p(f (f (f (a))))) be a clause. Then the clause C =
(p(z) ~ p(f(z))) is an indirect third root of D, and we have C ::> D but C does
not 0-subsume D. Let A = p(f(a)) and B = p(f(f(a))), then by or-introduction
we obtain the clauses:

Da = (D tO {A, B}) = (p(a),p(f(a)),p(f(f(a))) *- p(f(f (f (a))))) ,
D2 = (D to {A, -~B}) -- (p(a), p(f(a)) +- p(f(f(a))), p(f (f (f (a))))) ,
D3 = (D to {-~A, B}) = (p(a), p(f(f(a))) +--- p(f(a)), p(f (f (f (a))))) ,
D4 =- (D tO {-~A, -~B}) = (p(a) +- p(f(a)), p(f(f(a))), p(f (f (f (a))))) .

Then we have C{z / f (f (a)) } C_ D,, C{z / f (a)} C_ D2, C{z /a} C_ D3 and
C{x/a} C D4, and thus C 0-subsumes all the clauses D1, D2, D3 and D4.

3.2 E x p a n s i o n o f C l a u s e s

In the previous subsection it was illustrated how a reduction of generalization
can be achieved by replacing a clause by a set of clauses. Here we will show
how this set of clauses equivalently can be described by a single clause, which
also is an expansion of the original clause. We start by describing our idea of
or-introduction more formally.

D e f i n i t i o n 8 . Let I2 be a set of atoms, and {I2i, I22} a part i t ion of 12, where
J2~ = {Aa, . . . ,An) . Then ~ = ~a tO {-~A1,...,-~A,~} is a sign assignment o f ~ .

D e f i n i t i o n 9. Let D be a clause and J2 a set of atoms. Then a set of clauses
or-introduced from D with ~ , denoted {D-4-$2}, is the set of clauses {C tO Z I Z
is a sign assignment of ~}.

Example 0. Let D = (p(a) ,--- p(f (f (f (a))))) be a clause, and I2 = {p(f(a)),
p(f(f(a)))} a set of atoms. Then {D =t= I2} = {O1, D2, 03, D4}, where O1, 02,
D3 and D4 are the same as in example 8.

61

By definition 2, if a clause C 0-subsumes every clause in a set of clauses,
then C will also 0-subsume the LGG0 of the set of clauses. This leads us to our
definition of expansion of clauses.

D e f i n i t i o n 10. Let {D -4- 12} be a set of clauses or-introduced from D with 12.
Then E = lgg~_ {D -4- 12} is an expansion of D by 12.

Example 10. Let D and 12 be as in example 9. Then the expansion of D by 12
is E = lgg~_ {D -4- 12} = (p(a), p(x) ~ p(f(x)) , p (f (f (f (a))))) . Hence, the third
root C = (p(x) ~-- p(f (x))) of D, which does not 0-subsume D, 0-subsumes the
expansion E of D.

Expansion can be regarded as a transformation technique, since the expan-
sion of a clause C is logically equivalent to the clause C. More important is that
there always exists an expansion of a clause C such that every generalization
under implication of C is reduced to a generalization under 0-subsumption. Both
these results are proved in the next subsection.

A l g o r i t h m 1 E x p a n s i o n o f c lauses
Input: a non-tautological clause D.
Output: a clause E such that E r D, and C --< E for every indirect root C of D
(C ::~ D).
1. Find the desirable set of atoms 12.
2. Compute the expansion E = lgg-<{D :l= 12}.

The algorithm is non-deterministic, since we have not described how the set
of atoms 12 can be found. In [4] a technique to find such a set of atoms for
single-recursive clauses is described, and it is not hard to extend this technique
to cover arbitrary clauses. But in this paper we are satisfied with an indetermin-
istic version of the algorithm, since it will turn out that the second part of the
algorithm is computationally intractable anyway.

3.3 S o u n d n e s s a n d C o m p l e t e n e s s

Soundness and completeness of our expansion technique of clauses, which reduces
generalization under implication to generalization under 0-subsumtion, are guar-
anteed by the following theorems. Theorem 12 and corollary 13 are taken from
[9], and use the function s which is defined in section 2.3.

T h e o r e m 11 S o u n d n e s s o f e x p a n s i o n o f c lauses . Let C be a clause and 12
a set of atoms. Then lgg~_ {C =t= 12} r C.

Proof. Let E = lgg~_ {C -4- 12}. Then for each D E {C -4- 12) we have E ~ D and
thus E ~ {C + 12}. We also have {C + 12} t- C (by resolution). Consequently
E ~ C. Each literal Li E C is included in every clause in {C + 12}, and since
lgg~_(Li,Li) = Li we have C C_ lgg.~{C+ 12}, and thus C _ E. Consequently
C ~ E, and thus E ~ C.

62

T h e o r e m 12 S u b s u m p t i o n theorem. Let T be a set of clauses and C a non-
tautological clause. Then T ~ C if and only if there exists a clause D E f~*(T)
such that D ~ C.

Proof. A proof can be found in [1].

Corol lary 13 Impl ica t ion b e t w e e n clauses using resolut ion. Let C be a
clause and D a non-tautological clause. Then C ~ D (C ~ D) if and only if
there exists a clause E E s such'that E ~ D.

Proof. Follows directly as a special case of theorem 12.

L e m m a 14 Comple t enes s of o r - in t roduc t ion for roo ts of clauses. Let C
be a clause an Dn an nth power of C. Then there exists a set of atoms ~2n such
that C "< (D,~ W Sn) for each sign assignment Sn of ~ , .

Proof. The proof is by mathematical induction on n.
Base step (n=1): D1 is a first power of C, that is D1 = C. Consequently,

C _ (D1 t.J $1) for each sign assignment $1 of any set of atoms 121.
Induction hypothesis (n=k): If Dk is a kth power of C then there exists a set

of atoms Ok such that C ___ (Dk U Sk) for each sign assignment Sk of 12k.
Induction step (n=k-I-1): Let C = {A} U F and Dk = {B} U A, such that

AOA = BOB, where OA t20B is an mgu for {A,~}. Then a (k+l) th power of
C will be Dk+l = F/9A W A/gB. Let 12k+l = 12k/9B U {AOA} if A/gA is an atom,
or 12k+l = 12k/gB 12 {A/gA} if AOOA is an atom. Then we distinguish between two
different cases. A sign assignment Sk+l of 12k+l could be either:

1. Sk+l = Sk/gB U {A/gA}, where Sk is a sign assignment of 12k, or
2. Sk+l = Sk/gB tJ{B/gB} (since A/gA = B/gB), where Sk is a sign assignment

of 12k.
Case 1: Dk+l tA 5:k+l = FOOA tA A/gB tA {A/gA} tA 5:k/gB, and thus C/gA C_

(Dk+l tA 5:~+1). Consequently C ~ (Dk+l U Sk+l), which completes the proof
for case 1.

Case 2: Dk+i U Sk+i = F/gA U A/gB U {BOOB } U 5:k/gB, and thus (D U 5:k)ooB C__
(D~+I U Sk+l). Consequently (D U Sk) __. (Dk+i U ,Uk+l). By the induction
hypothesis C ___ (D U Sk), and thus C ~ (Dk+l U Sk+l) (since 5 is transitive),
which completes the proof for case 2.

T h e o r e m 15 Comple t eness of expans ion of clauses. Let C and D be non-
tautological clauses such that C ~ D. Then there exists a set of atoms 12 such
that C --< lgg 5 {D + 1-2}.

Proof. By corollary 13, there exists a clause Dn such that Dn is an nth power
of C and D n _ D. Hence there exists a substitution/9 such that D,~/9 C D. By
lemma 14, there exists a set of literals 12n such that C -~ (Dn t2 5:n) for each
sign assignment 5:~ of 12,. Then let 12 = D,~/9, and thus (Dn U Sn) "< (D W S)
for each sign assignment 5: of 12, where S = 5:noo. Consequently C ~ (D U 5:)
for each sign assignment 57 of 12 (since _ is transitive). Then by definition 2, we
have C ~ Igg~_ {D + 0} .

63

4 Concluding Remarks

Almost all inductive learners that use clausal representation perform generaliza-
tions under 0-subsumption. But generalizations of a certain type, roots of clauses,
are not possible to find by generalization under 0-subsumption. To eliminate this
incompleteness, we have presented a technique to expand clauses so that, gener-
alization under implication are reduced to generalization under 0-subsumption.
The expansion technique has been proved to be sound and complete. It is also
conceptually simple.

Recently two other approaches to the problem of generalization under im-
plication have been presented, one by Muggleton [9] and one by Lapointe and
Matwin [6]. The algorithms described in [9] are non-deterministic and restricted
to single-recursive clauses. In [6] it is described how two particular types of re-
cursive clauses, which they call purely recursive and left recursive, efficiently
can be learned. However, these two types of clauses only cover a fraction of all
possible self-recursive clauses.

In a recent work by Idestam-Almquist [3], which is a development of the
work in [6], the class of efficiently learnable clauses is extended to cover most
single-recursive clauses. By the teclmique he presents, the generalizations are
also guaranteed to be minimally general with respect to implication.

As we have shown our expansion technique of clauses is sound and complete,
which is our main contribution. Now finally we will discuss its main disadvan-
tage, its computational complexity. The complexity of the second part of the
algorithm is terrible. The or-introduced set of clauses grows exponentially with
the cardinality of the set of atoms used in the or-introduction. As noted in [11]
the size of an LGG0 may also grow exponentially with the number of input
clauses. We recommend that an LGG0 of two clauses is reduced, by removing
all redundant literals, before the next input clause is taken into account. By
that the size explosion can be handled, but the time complexity problem of our
technique still remains.

A question for future research is to investigate if there is a way to reduce
the complexity, of the presented technique, by using some approximative and
more efficient computation of LGG0s. Another direction for future research is to
further extend the class of efficiently learnable clauses by the technique based
on the work in [6].

Acknowledgement

This work was partially supported by NUTEK, the Swedish National Board for
Technical and Industrial Development under the contract 9001734, and is a part
of the work in the ESPRIT BRA ILP project 6020. The author would also like
to thank Douglas Busch for inspiring discussions, and Carl-Gustaf Jansson and
Fredrik Kilander for help with writing the final version of this paper.

64

R e f e r e n c e s

1. M. B~in and S. Muggleton. Non-monotonic learning. Machine Intelligence, 12,
1991.

2. Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem
Proving. John Wiley & Sons, 1987.

3. P. Idestam-Almquist. Generalization under implication by recursive anti-
unification. Submitted to the International Workshop on Inductive Logic Pro-
gramming 1993.

4. P. Idestam-Almquist. Generalization under implication. Technical report, De-
partment of Computer and Systems Sciences, Stockholm University, 1992. Report
92-020-SYSLAB.

5. P. Idestam-Almquist. Learning missing clauses by inverse resolution. In Proceed-
ings of the International Conference on Fifth Generation Computer Systems 1992,
Ohmsha, Tokyo, 1992.

6. St~phane Lapointe and Stan Matwin. Sub-unification: A tool for efficient induction
of recursive programs. In Proceedings of the Ninth International Conference on
Machine Learning. Morgan Kaufmann, 1992.

7. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. Second
edition.

8. Stephen Muggleton. Inductive logic programming. New Generation Computing,
8(4):295-318, 1991.

9. Stephen Muggleton. Inverting implication. In Stephen Muggleton, editor, Pro-
ceedings of the International Workshop on lnductive Logic Programming, 1992.

10. Stephen Muggleton and Wray Buntine. Machine invention of first-order predicates
by inverting resolution. In Proceedings of the Fifth International Conference on
Machine Learning. Morgan Kaufinann, 1988.

11. Stephen Muggleton and C. Feng. Efficient induction of logic programs. In Pro-
~ceedings of the First Conference on Algorithmic Learning Theory, Tokyo, 1990.

Ohmsha Publishers.
12. Tim Niblett. A study of generalization in logic programs. In Proceedings of the

Third European Working Session on Learning. Pitman, 1988.
13. Nilsson and Genesereth. Logic Foundations of Artificial Intelligence. Morgan

Kaufmann, 1987.
14. G. D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edinburgh

University, 1971.
15r J. Robinson. A machine-oriented logic based on the resolution principle. Journal

of the ACM, 12(1), 1965.
16. Cdline Rouveirol. Extensions of inversion of resolution applied to theory com-

pletion. In Stephen Muggleton, editor, Inductive Logic Programming. Academic
Press, San Diego, CA, 1992.

17. C61ine Rouveriol and Jean Francois Puget. Beyond inversion of resolution. In
Proceedings of the Seventh International Conference on Machine Learning. Morgan
Kaufmann, 1990.

18. Richmond H. Thoma.son. Symbolic Logic--An Introduction. McMillan Publishers,
1970.

19. Ruediger Wirth. Completing logic programs by inverse resolution. In Proceedings
of the Fourth Working Session on Learning. Pitman, 1989.

