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Abs t rac t .  We describe a set of algorithmic methods, based on symbolic 
representation of state space, for minimisation of networks of parallel 
processes according to bisimulation equivalence. We compute this with 
the Coarsest Partition Refinement algorithm, using the Binary Decision 
Diagram structures. The method applies to labelled synchronised vectors 
of finite automata as the description of systems. We report performances 
on a couple of examples of a tool being implemented. 

1 Introduct ion  

Bisimulation is a central notion in the domain of verification for parallel com- 
municating systems [17]. It was defined as an equivalence in the abstract formal 
setting of process algebras [17,2], through interpretation by labelled transition 
systems. 

Bisimulation's algorithmic properties in the finite au tomata  ease have been 
widely studied [15,19,10], leading to a large body of automata-theoretic meth- 
ods, complexity theory results and experimental comparisons based on verifica- 
tion tools [24,6,10,11]. Studies were also pursued with the additional concern of 
observational bisimulations, with a particular hidden action. Various treatments 
of this action were considered (weak, branching ...) [17,23]. 

The usual drawback of bisimulation is that,  being defined on underlying au- 
tomata ,  its computation requires all the informations (on states and transitions) 
collected in this global structure. Building the full automaton can lead to combi- 
natorial explosion, while recomputing information dynamically is a time penalty. 
Several methods have nevertheless be proposed in the latter direction, either in 
the general case or in specific subcases (bisimulation comparaison with a de- 
terminate process for instance), with some success [12,3,20,18]. Anyhow most 
of these methods require to keep track at least of the reachable state space - i f  
not of the transitions-, even though the problem of efficient representation or 
approximation of this state space has also been tackled [13,14]. 

In this paper we study one such efficient representation of the state space, us- 
ing the symbolic Binary Decision Diagrams [4]. These data  structures have been 
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now widely recognised for their ability to concisely represent sets and relations 
in practice, and applied to generate state spaces in several frameworks [7,22,16]. 
They have also been already applied to the problem of bisimulation, but inside 
a quite general setting, through formulation of the bisimulation property in gen- 
eral logical terms, based on the #-calculus [5,9]. The solution here is more closely 
algorithmic in a sense directly related to the early methods in bisimulation check- 
ing. We first introduce a "concrete" formalism to represent Networks of Process 
Automata  and shortly discuss its relation to process algebraic constructions in 
the finitary case. Then we recall the computational definition of bisimulation and 
rephrase it in a way that anticipates on the functions and techniques available 
with the particular BDD data structures. We then describe some of these func- 
tions on BDD, that will be used in our approach. In the two following sections 
we actually describe the algorithms for (symbolic) state space construction and 
bisimulation refinement; we do this on the model of Process Automata  Networks, 
and in terms of the BDD functions just introduced. We end with a discussion 
on efficiency and implementation, and experimental results. 

2 T h e  M o d e l  a n d  t h e  V e r i f i c a t i o n  M e t h o d  

We now introduce our description model formally. Then we sketch its relations 
with process algebraic static networks and its way of compilation into global 
automata.  Last in this section We introduce bisimulation and characterize it in 
set-theoretic fashion. 

We recall briefly the celebrated definition of automata:  

N o t a t i o n  2.1 A finite labelled transition system (Its) A =< S, Sort(A) ,  s ~ T > 
-or automaton- is a .~-uple with S and Sor t (A)  finite sets of respectively states 
and labels, s o E S an initial state and T E (S • Sor t (A)  • S) a set of (labelled) 
transitions. 

T can be sorted by labels into relations Ta C S • S, a E Sort (A) .  As usual we 
note s a s' for (s, a, s') E T (or (s, s') ETa) .  We shall assume w.l.o.g, all T~ 
to be nonempty. 

Also T~ -1 = {(s' ,s) E S x S l (s ,s ' )  e t a } .  For C C_ S, we hole s ~ , C if  
3#  E C such that s a ~ # .  

2.1 N e t w o r k s  o f  P rocesses  

A Labelled Synchronised Automata Vector consists in a finite vector of automata  
components (individual processes), together with a set of Labelled Synchronisa- 
tion Vectors to constrain their relative behaviors. This model has been intro- 
duced by Arnold and Nivat [1]. The only difference here is that  our synchroni- 
sation vectors are themselves labelled, introducing compositionality: a network 
could itself be expanded into an automaton,  and act as component to a larger 
system. Another way to go is by flattening a structured description, with sub- 
networks used as components of larger networks, into a single vector, with only 
"leaf" individual processes remaining. 
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Still in this paper we shall concentrate on flat networks, so that  each rational 
process component is a finite labelled transition system. 

D e f i n i t i o n l .  A Labelled Synchronised Au tomata  Vector ( L S A V )  N (of size n) 
is a 4-uple < A ,  V, S o r t ( N ) ,  label > consisting of: 

- a n-ary Automata  Vector A of Ai =< Si, S o r t ( A i ) , s ~  > as au tomata  
components, 

- a finite set V of n-ary Labelled Synchronisation Vectors, so that,  for each 
sv E V,  svi E S o r t ( A i )  or svi = *. The particular s y m b o l ,  indicates inac- 
tion: the corresponding component does not engage in this global behavior. 

- a finite set of labels S o r t ( N ) .  
- a labelling surjective function label : V --* S o r t ( N )  

N o t a t i o n  2.2 We noie n] the integer interval [1..n]. For sv a given synchroni- 
salion vector we note support(sv)  the sel {i  �9 n], svi r *}. 

D e f i n i t i o n 2 .  Let N be a LSAV. The global automaton A N  associated to N is 
given by: 

- S o r t ( A N ) =  S o r t ( N )  as (global)label  space, 
- S = $1 x S~ x . . .  x S,~, as (global) state space, 
_ 8 0 0 0 = (sl ,  s 2 , . . .  , s ~  as initial state, 

I t 
- T = { ( ( s l , s 2 , . . . , s n ) , a , ( s l , s 2 , . . . , s ~ n ) ) , 3 s v  �9 V, label(sv) = aA 

((si,  svi, s~) �9 Ti V (si = s~ A svi = *))} as transition relation. 

Later we shall of course only be interested in the global states that  are reachable 
from s ~ This subset will be computed symbolically, using BDDs. 

We end this section with informal motivations of our description formalism 
in the light of process algebraic constructors. 

Because of closure by composition the LSAV model allows to represent a 
large body of process calculi expressions, namely the non-recursive ones built 
only from so-called static operators in [17]. Recursion is then only used for the 
creation of individual automata  components with dynamic operators. This was 
shown in [8]. Shortly, such operators have SOS semantic rules such that  the 
residual expression keeps unchanged the shape of the term (parallel rewrites into 
parallel, etc...). In this sense the various para l le l / scop ing  / relabelling operators 
describing the network can be thought of as an elegant syntax for shaping the 
description of the network. 

Note that ,  in addition to the static operators, production of actual synchro- 
nisation vectors also require the Sorts of (uninstanciated) components. 

While simplifying the construction of global state spaces and automata,  since 
a number of successive static constructions may here be combined at once, our 
concrete formalism of LSA Vs do not favour compositional reduction (minimisa- 
tion applied on subsystems). This latter method is dramatically used in AUTO 
for example. This is not a penalty in the symbolic approach, where interme- 
diate au tomata  are not built anyway. Of course the two approaches could be 
juxtaposed independantly, wherever more beneficial. 
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2.2 B i s i m u l a t i o n  E q u i v a l e n c e  

The present section recalls the notion of bisimulation, a "behavioral" equivalence 
defined on transition systems. We derive from this definition a set-theoretic 
formulation to compute it as a fix-point on finite transition systems. 

We shall not motivate the philosophy behind bisimulation equivalence, see 
[17]. Its main characteristic is that  equivalent states all have the same behavior 
ability, so that  there exists a canonical minimal form, based on classes as states, 
even for nondeterministic transition systems. 

Bisimulation equivalence is used in the setting of verification both to reduce 
an underlying automaton and to compare two distinct automata.  We are here in- 
terested in the former role, and we want to extract the equivalence classes, from 
the LSAV description and a representation of the reachable state space. Actu- 
ally constructing the minimal automaton is then straightforward (and possibly 
useless). 

N o t a t i o n  2.3 Given an equivalence relation T~ on a set E we note [e]~ the 
equivalence class of e E E. 

D e f i n i t i o n 3 .  Let A = <  S, Sort(A), s ~ T > be a lts. A binary symmetric rela- 
tion R E S x S is a bisimulation if: 

Vs, s' E S,(sT~s')::~ (V. e Sort(A),Vt E S,(s a t :~ 3t',(s' a t ' )A( tRt ' ) ) )  

We note ~ the largest bisimulation relation 7~ verifying the previous definition. 

The bisimulation property above is defined recursively. Now consider the follow- 
ing chain of equivalence relations: 

7~0 = S x S  

T~n+l : {(8, 8') E T~n I Va e Sort(A), 

((s ~ sl) ~ (34,  s' ~ 4 ^ (sl, 4 )  e 7e.)) ^ 

((~' ~ 4)  ~ (3s1,~ --~ sl ^ (sl, 4 )  e 7e.))} 

It is folklore that  for finite au tomata  Roo = [7 7~n corresponds to .v, and is 
obtained through finite iteration: it exists no such that  T~no = T~oo. Each T~j 
belonging to the sequence of relations can be seen as a union of nj equivalence 
classes, that  is 

n./ 

Tej = L_J Ci,~ x Ci,~ 
i=l 

with the Ci,j ranging over the equivalence classes of Rj. To each R j ,  we associate 
the related parti t ion Pj = {C~,j]i E hi]} 

For convenience we introduce the auxiliary values: 

t l j  

E;,~ = U C',i x T~I(C, j )  
i=.l 
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Now we can rewrite the definition of Tdj+l from 7~j as 

7"~Jq-1-'T~jr"l(aE SOt (A) {(Sl,S2) IVs,(((S, Sl)EEj,a<-....:z(s, s2) EEj,a)}) 

=Tdjn (\a~SO~(A) {(Sl'S2) I~3s'(((S'Sl)EEj'a r (s 's2) 'Ej 'a)})  

This set-theoretic identity will base an algorithm to compute ~ by refinement in 
the second part of the paper. Note already that each iteration requires a single 
appl ica t ion  of T~- 1 in the computation of Ej,a. 

3 S y m b o l i c  R e p r e s e n t a t i o n  o f  L S A V  a n d  B i s i m u l a t i o n  

We now shortly discuss the symbolic encoding of state spaces into Binary De- 
cision Diagrams. We describe the simple computation of their reachable parts, 
and then the symbolic computation of bisimulation on (the encoding of) LSAVs. 

3.1 Sets and  BDD Encodings  

A BDD is an acyclic graph representation of (the truth table of) a Boolean 
propositional formula, on a finite predefined support of predicate variables. It 
is based on decision trees, where branching splits according to the alternative 
values of the variables, encountered in some fixed order. BDDs are then obtained 
by sharing subtrees as much as possible. BDDs are canonical, relative to a given 
ordering of the variables, in the sense that different syntaxic formulas with the 
same truth values have identical (minimal) representations. See [4] for full details. 

As usual in the BDD litterature we shall identify finite sets and relations 
with their characteristic functions, and further with an encoding using boolean 
variables of this characteristic functions. We shall now be more specific on our 
notion of encoding. 

Def in i t ion4.  Let E be a finite set. An encoding for E consists of: a finite, 
totally ordered encoding array of size m (say x = [xl < x~ < . . .  < xm]) of 
boolean variables together with a surjective partial function ~ : Bool "~ ~ E. 

N o t a t i o n  3.1 We note z m the ordered (encoding) array [xl < x2 < ... < xm] 
of propositional variables, x is then called the basename, and m the size. We 
omit the size subscript and the underline when clear from context. 

With our definition an element of E needs not be represented by a unique boolean 
valuation, nor does any boolean valuation represent an element of E. Just a 
boolean valuation may not be associated with two elements of E ambiguously. 
As previously mentioned we will abusively call E for its encoding syntactic BDD 
also (this makes an implicit reference to a specific encoding). We extend this and 
note E for the BDD representing Bool" \~-I(E) on the proper encoding array. 
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The value m in the previous definition is not fixed a priori. Encodings of sets 
usually range from those minimal variables numbers (m = [log(#E)] to One- 
hot encodings where a variable is assigned to each element (m = #E) .  Since a 
key issue in BDDs lies not so much in the symbolic representation of states as 
in this of transition relations, our choice of encoding should try and make the 
encoding of transitions as small as possible. This was one reason why we gave 
such a broad definition of encodings. 

Encoding arrays are needed in the definition since boolean variables in BDDs 
are syntactic elements. Later on we will need at places to introduce disjoint 
samples of encoding sets for the same E and the same coding function, so they 
will differ only by their explicit range of variables. 

Coming down to our precise needs for symbolic modelisation, we shall have 
to represent: local states, global states (as vectors of local states), Ta transition 
relations and 7r equivalence relations (as couples of global states). So local states 
will require basic encoding, from which we deduce the other encodings by taking 
product encodings, on disjoint unions of encoding arrays. 

The "good encoding" issue now splits into: first, find appropriate local encod- 
ings; second, find interesting order extensions when putting different (disjoint) 
encodings together in disjoint union. 

We now introduce two natural ordering extensions of encodings in case of 
cartesian products E k. 

Def in i t ionh.  Let {x__l,..., x_k}, compose k pairwise disjoint encoding arrays of 
size m for a common set E (with the same encoding function), such that Vi E 
k], x i = [x~,.. . ,  z/~]. We introduce two extensions ,..< and <~ of the total orders 
on the ~ ' s  by 

< :  Vie  ( k -  1)]x/m < x~ +J 

: vi  �9 (k - 1)], vj  e 
1 v j  e (k - 

i i + 1  xj <~ xj 

We call << the concatenated extension, for it will not mix (variables from) dif- 
ferent coding sets. On the contrary <~ the shuffled extension will put as close as 
possible corresponding variables from various coding sets. 

The ordering extension to (vector) global states here should also he discussed. 
A brute force solution consists in concatenating these orders without mixing. A 
more insighful solution should bring as close as possible those variables which 
are correlated, no matter which local component they encode. This corresponds 
to an attempt at bringing together (when feasible) the different local aspects of 
a same global event. Still, it will be the case that, in the encoding of a global 
state, each variable helps in encoding exactly one local component. We note 
z~ the subarray obtained by collecting in increasing order all boolean variables 
that deal with automata component Ai, and z_~o for the concatenation (still in 
increasing order) of the x i , i E support(sv). 

We end this section by recalling some less familiar boolean operators to be 
used later in algorithms. 
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D e f i n i t i o n 6 .  Let f be a boolean function. The smoothing of f by boolean 
variables X = (x i l , . . . ,  xip) is defined as 

. . . ,  = 1 o . . .  o ( y )  

S~,j (f) = fx,1 ' "4- f~,p where 

f~: i (Zl , . . . , z i - l , z i ,  z i+l , . . . , z r )  = ( z l , . . . , z i - 1 ,  1 , x i + l , . . . , z r )  and 

f ~ / ' ( Z l , . . . ,  x i - 1 ,  x i ,  x i q - 1 , . . . ,  ;gr) = (:gl,  �9 �9  z i - 1 , 0 ,  Z i + l , . . .  , Zr )  

Logically, the smoothing operator performs existential quantification on the 
smoothed variables: S(z,1, : ,p ) ( f )  = 3zi~ . . .3xip f .  

D e f i n i t i o n 7 .  Let f be a boolean function. Substitution of array of boolean 
variables X = [zx, z2 , . . . ,  zp] by array Y = [Yl, Y2,.--, Yp] in f ,  noted [Y ~ X]f,  
consists of the simultaneous replacement of (boolean variables) array items zi 
by corresponding Yi. Formally 

The resulting BDD may be very different from f due to different respective 
ordering of x's and y's and other variables. 

A third boolean operator we shall use on BDD is the cofacr operation. For 
lack of room we shall not describe it here. Intuitively co factor(B, C) represents 
"B provided C', or what is strictly needed to recover B under the assumption 

of C being true. 

3.2 T h e  R e a c h a b l e  S t a t e s  A l g o r i t h m  

The space of all reachable states in a LSAV will be attained in a breadth-first 
search iterative manner, where at each iteration all states directly following the 
ones just obtained are reached. To do this, one should just apply the transition 
relation once. The main problem here is that  encoding the full transition relation 
proves in practice to be much more space consuming than the state space itself. 
We solve this problem by splitting the application of the transition relation 
according to the synchronisation vectors. We now discuss this issue in relation 
with our model. 

When building a global (unlabelled) transition relation T(z,  y) from the syn- 
chronisation vectors and the local transitions of individual automata,  one needs 
to encode the identity where * (inaction) is indicated (leading to stablei BDDs 
in [9]). This completion does not seem too dramatic when considering a single 
synchronisation vector, but when building the union of all transitions it does 
not behave friendly according to sharing of subtrees. The resulting BDD is thus 
frequently very large. 

On the other hand, if one considers building Tso the part of the transition re- 
lation corresponding to an only synchronisation vector sv, nice features show up. 
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Then the full transition is then applied in steps by iteration on synehronisation 
vectors. The algorithm is shown in figure 1. 

Nice features just mentioned are: 

- first, the synchronisation vector allows a priori any combination of local 
transitions properly labelled. Thus the union of equaly labelled transitions 
can be formed locally, and this indicates natural sharing, 

- second, T,~ can be defined and applied on support(sv) only, disregarding the 
other components, which will therefore he left unchanged. This drops the 
need for the stable completion. 

Def in i t i~  Tsv(X-sv,Y_4v) =dey AiEsupport(,v) (Vt,ET,,.b~,(..,) Tt,(x-{i},Y{i})) 

where Tt(x_, y_) encodes transition t 's local source/target  states with respective 
encoding arrays x__ and y. 

Application of transitions corresponding to sv to a state space St is expressed 
a s :  

Apply(Ts v (x__, v, Y-4 v )' St (z_)) = [~ ~ ~-- Y-,v ] Sx_.~ (St (z_) A Ts ~ (x,  ~, Y-4 v )) 

(1) States(x) = S~ 
(2) New(x)= star,,(=) 
(3) while New # 0 
(4) begin 
(5) Temp(x)=Sta tes (x )  
(6) fo r  each sv 6 V do 
(7) begin 
(8) States(x) = States(x) VApply(T,~(x,y),States(x)) 
(9) end 
(10) New(x)=Sta tes (x )  ^Temp(x )  
(11) end 

Fig. 1. Reachable states with vector transition relation 

3.3 T h e  R e a l  T r a n s i t i o n  R e l a t i o n  

No mat ter  whether it is fully constructed or applied by chunks along the synchro- 
nisation vectors, the transition relation above is actually syntactically derived 
as a superset of the real one: not everything needs to be applicable. Certain 
conjunctions of local transitions, while legible from the synchronisation point of 
view, may leave from non-reachable states and therefore not be fireable. More 
generally, the transition relation may pay attention to behaviors outside the 
state space. 
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We define below the (very simple) way to restrict this relation to its useful 
part. We shall need this in the bisimulation partitioning algorithm. 

D efinit  ion 9. 

T'~(x'Y-) =def T'~(~s~"Y'v) AStates(x) ^ ( ,~support(~v)A Stablei) 

label(sv)=a 

3.4 B D D  Bis imula t ion  

With explicit reference to variables encoding, the relation between Rj and Rj+I 
can now be expressed as: 

Zj,,(x, z) = Su( Rj(x, y) ^ Ta(Y, z)) 

Badi(x' Y) = [x -- z] ( vaoort(N) S~ ([Y ~-- z]Ei'a(Z' z) r Ei'a(X' z)) ) 

One starts with Ro = SN x SN , or taking coding sets into account: Ro(x, y) = 
SN(X) A SN(y). The algorithm of figure 2 implements this: lines (8-9) compute 
Ej,a, while lines (10-14) compute bad couples on a label, not with a XOR op- 
eration but as a two-fold union, this due to the fact that our implementation 
package allowed to perform simultaneously the conjunction and smoothing in 
lines 13 or 14, which is an interesting save-up in complexity. The loop at lines 
(5-17) accumulates bad couples for all actions. Lines 18 computes the termina- 
tion test. 

Figure 2 refines the computation at lines 1 and 8, where the cofactor function 
is introduced, so that all sets are given "provided" SN X SN, into which they are 
all included. 

4 O b s e r v a t i o n a l  B i s i m u l a t i o n  E q u i v a l e n c e s  

Two main variations on bisimulation have been proposed in order to deal with 
a specific actions (r) as invisible: weak bisimulation and branching bisimulation. 
We shall not detail them here. We briefly indicate how to modify our previous 
algorithms to cope with these two extensions. 

Weak bisimulation equivalence simply uses a new transition relation, deduced 
straightforwardly from the original one. 

Def in i t ion10.  The weak transition relation :O of a Its A is: 

s =~=~z s' iff 3so,Sl,...,s~,n >_ O,s= so sl , . . .  ) s, = 
s = ~  s' iff 3sl ,  s~, s - -~  sl ~ s2 = ~  s' 
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(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 
(IS) 
(17) 
(16) 
(18) 
(19) 
(20) end 

N ew R( x, y) = co factor( Ro( x, y ), Ro( x, y ) ) 
i = 0  
while NewR(x ,  y) i~ 0 
begin 

Bad#(x, y) = 0 
For a l l  a E Sor t (N)  
begin 

trans( z, y) = [z .-- x]co f actor(To( x, y), Ro( x, )) 
Ei,o(~, z) = Sy( R,(~, y) ^ tr .ns(  ~, y) ) 

,o(~,y) [y -- ~]E~,o(~,~) 

T~(x, y) = E~,.(x, y) 
B, (z, y) = Sx(E~,,,(z, z) ^ T2(z, y)) 
B2(z,y)  = S~:(T~ (x, z) ^ E~,a(x,y)) 
Badj (z, y) = Badj(x,  y) V Ix - -  zl(Bx(z, y) V B2(z, y)) 

end 
Ri+a (x, y) = Ri (x, y) A Badj (x, y) 
N e w R ( z ,  y) = R~(x, y) A Ri+l (x, y) 
i = i + l  

Fig. 2. Bisimulation with BDD 

One may either computes these relations symbolically, or composes dynamically 
the application of three relations (T~ 1, then T~-1 and  Tv-. 1 again). We use the 
iterative squaring method (see [22]) to compute : : ~  as the fixpoint of 

F(x ,  y) = (x : : ~  y) V 3 z ( F ( x ,  z) A F ( z ,  y))  

Branching bisimulation instead restricts the above application of surrounding 
7"* to state inverse images that preserve equivalence (so far). It can be proven 
in this case that 7"* need only be applied once (either before or after the "real 
action"), without affecting the resulting equivalence. Also, when r is used as the 
discriminating action, only r transitions joining (already) non-equivalent states 
need be applied. Thus, we define a set of transition relations T/P" at each step 
in the equivalence partitioning. Noticeably these sets are very easy to recom- 
pute dynamically, as all they do is gather two informations already present: 7~j 
equivalence, and the fixed global r* transition relation. 

Iner t~ .  = T~-. n "R.i 

TY'~ = Ine , ' t~ .  o Ta 

T g  : Inert{ .  o (Vr n 
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5 Applications 

5.1 Encod ing  and  Variable Order ing  

It is shown in [9] that the interleaved order extension was theoretically best for 
the representation of transitions and states, during the Reachable State Space 
construction. Now the question is: would the same considerations apply for the 
representation of equivalen t state couples during the Partition Refinement step? 

As a rule of thumb it seems that, while the interleaved order gets better as 
the final relation is more discriminating and states are less identified, the con- 
catenated order takes advantage of coarser cases where classes are fewer and 
more state identifications take place. This is understandable: in this order, the 
description of either instance of the class is factorised independantly (as first or 
second component of couples). In the former case use of BDDs may be ques- 
tioned, for its interest is based on gain of sharing for sets representation. As 
more elements are isolated, they each tend to consume space individually in the 
BDD. Of course this is rough estimation. Weak bisimulation often allows more 
identifications to take place, specially when not all actions are kept visible. This 
case is certainly the most beneficial for the symbolic approach to bisimulation 
minimisation. 

Sensibility to the alternative (<< /<1) variable orderings is illustrated and 
contrasted below on two examples with opposite teachings. 

5.2 Test Examples  

Two examples are exposed in this section. The first one is the LSAV specification 
of the scheduler with different number of cyclers. The second one is the Dekker 
Mutual Exclusion algorithm. For a precise presentation of these examples, the 
reader should refer to [17] for the former example, and [21] for the latter. 

Table displayed in figure 3 shows the results obtained on the different in- 
stanciations of the scheduler specification problem, namely 4, 8, 16, 18, and 20 
cyclers for which a specific row is attributed in the table, and for the Dekker 
algorithm whose results row begins with a "D". All results have been obtained 
on a SPARC Station 2 with 24 MBytes of memory. Each row contains from letf 
to right: the concerned example, the number of reachable states followed by the 
size of the corresponding BDD and the time taken by the tool to compute it; 
for each type of variable order in (<3, <:<), the related time taken to, compute 
the bisimulation equivalence on the reachable state space and the size of the 
corresponding BDD; finally, the number of equivalent pairs under bisimulation. 
The symbol "-" means that the tool was oborted during execution, due to lack 
of memory. In the case of the scheduler example, the <1 order is better than << 
,unlike in the other examples. 

Conclusion 

We have described an implementation of Bisimulation Minimisation based on 
symbolic representation using Binary Decision Diagrams. This implementation 
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Fig. 3. Performances of the tool 
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tried to optimize computations and BDD sizes wherever possible, and in partic- 
ular: 

- works on LSAV as a compound version of process algebraic networks, so that  
several operators may be applied at once, and impossible behaviors detected 
as soon as possible, 

- applies transitions as events individually, eliminating the need for storing the 
full transitions, with its out-of-support intricacies. Event-parted transitions 
allow well BDD sharing, 

- applies backward behavior image only once for the coarsest parti t ion fixpoint 
algo- r i thm (instead of on both components of equivalent couples), 

- performs simultaneous splitting of all classes by all classes. 
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