
Symbolic Bisimulation Minimisation

Amar Bouali 1 and Robert de Simone ~

ENSMP Centre de Math~matiques Appliqu~es
B.P. 207 F-06904 Sophia-Antipolis

FRANCE
amar~cma.cma.fr

2 I.N.R.I.A.
2004 route des Lucioles

F-06904 Sophia-Antipolis
FRANCE

rs@cma.cma.fr

Abs t rac t . We describe a set of algorithmic methods, based on symbolic
representation of state space, for minimisation of networks of parallel
processes according to bisimulation equivalence. We compute this with
the Coarsest Partition Refinement algorithm, using the Binary Decision
Diagram structures. The method applies to labelled synchronised vectors
of finite automata as the description of systems. We report performances
on a couple of examples of a tool being implemented.

1 Introduct ion

Bisimulation is a central notion in the domain of verification for parallel com-
municating systems [17]. It was defined as an equivalence in the abstract formal
setting of process algebras [17,2], through interpretation by labelled transition
systems.

Bisimulation's algorithmic properties in the finite au tomata ease have been
widely studied [15,19,10], leading to a large body of automata-theoretic meth-
ods, complexity theory results and experimental comparisons based on verifica-
tion tools [24,6,10,11]. Studies were also pursued with the additional concern of
observational bisimulations, with a particular hidden action. Various treatments
of this action were considered (weak, branching ...) [17,23].

The usual drawback of bisimulation is that, being defined on underlying au-
tomata , its computation requires all the informations (on states and transitions)
collected in this global structure. Building the full automaton can lead to combi-
natorial explosion, while recomputing information dynamically is a time penalty.
Several methods have nevertheless be proposed in the latter direction, either in
the general case or in specific subcases (bisimulation comparaison with a de-
terminate process for instance), with some success [12,3,20,18]. Anyhow most
of these methods require to keep track at least of the reachable state space - i f
not of the transitions-, even though the problem of efficient representation or
approximation of this state space has also been tackled [13,14].

In this paper we study one such efficient representation of the state space, us-
ing the symbolic Binary Decision Diagrams [4]. These data structures have been

97

now widely recognised for their ability to concisely represent sets and relations
in practice, and applied to generate state spaces in several frameworks [7,22,16].
They have also been already applied to the problem of bisimulation, but inside
a quite general setting, through formulation of the bisimulation property in gen-
eral logical terms, based on the #-calculus [5,9]. The solution here is more closely
algorithmic in a sense directly related to the early methods in bisimulation check-
ing. We first introduce a "concrete" formalism to represent Networks of Process
Automata and shortly discuss its relation to process algebraic constructions in
the finitary case. Then we recall the computational definition of bisimulation and
rephrase it in a way that anticipates on the functions and techniques available
with the particular BDD data structures. We then describe some of these func-
tions on BDD, that will be used in our approach. In the two following sections
we actually describe the algorithms for (symbolic) state space construction and
bisimulation refinement; we do this on the model of Process Automata Networks,
and in terms of the BDD functions just introduced. We end with a discussion
on efficiency and implementation, and experimental results.

2 T h e M o d e l a n d t h e V e r i f i c a t i o n M e t h o d

We now introduce our description model formally. Then we sketch its relations
with process algebraic static networks and its way of compilation into global
automata. Last in this section We introduce bisimulation and characterize it in
set-theoretic fashion.

We recall briefly the celebrated definition of automata:

N o t a t i o n 2.1 A finite labelled transition system (Its) A =< S, Sort(A) , s ~ T >
-or automaton- is a .~-uple with S and Sor t (A) finite sets of respectively states
and labels, s o E S an initial state and T E (S • Sor t (A) • S) a set of (labelled)
transitions.

T can be sorted by labels into relations Ta C S • S, a E Sort (A) . As usual we
note s a s' for (s, a, s') E T (or (s, s') ETa) . We shall assume w.l.o.g, all T~
to be nonempty.

Also T~ -1 = {(s' ,s) E S x S l (s ,s ') e t a } . For C C_ S, we hole s ~ , C if
3# E C such that s a ~ # .

2.1 N e t w o r k s o f P rocesses

A Labelled Synchronised Automata Vector consists in a finite vector of automata
components (individual processes), together with a set of Labelled Synchronisa-
tion Vectors to constrain their relative behaviors. This model has been intro-
duced by Arnold and Nivat [1]. The only difference here is that our synchroni-
sation vectors are themselves labelled, introducing compositionality: a network
could itself be expanded into an automaton, and act as component to a larger
system. Another way to go is by flattening a structured description, with sub-
networks used as components of larger networks, into a single vector, with only
"leaf" individual processes remaining.

98

Still in this paper we shall concentrate on flat networks, so that each rational
process component is a finite labelled transition system.

D e f i n i t i o n l . A Labelled Synchronised Au tomata Vector (L S A V) N (of size n)
is a 4-uple < A , V, S o r t (N) , label > consisting of:

- a n-ary Automata Vector A of Ai =< Si, S o r t (A i) , s ~ > as au tomata
components,

- a finite set V of n-ary Labelled Synchronisation Vectors, so that, for each
sv E V, svi E S o r t (A i) or svi = *. The particular s y m b o l , indicates inac-
tion: the corresponding component does not engage in this global behavior.

- a finite set of labels S o r t (N) .
- a labelling surjective function label : V --* S o r t (N)

N o t a t i o n 2.2 We noie n] the integer interval [1..n]. For sv a given synchroni-
salion vector we note support(sv) the sel {i �9 n], svi r *}.

D e f i n i t i o n 2 . Let N be a LSAV. The global automaton A N associated to N is
given by:

- S o r t (A N) = S o r t (N) as (global)label space,
- S = $1 x S~ x . . . x S,~, as (global) state space,
_ 8 0 0 0 = (sl , s 2 , . . . , s ~ as initial state,

I t
- T = { ((s l , s 2 , . . . , s n) , a , (s l , s 2 , . . . , s ~ n)) , 3 s v �9 V, label(sv) = aA

((si, svi, s~) �9 Ti V (si = s~ A svi = *))} as transition relation.

Later we shall of course only be interested in the global states that are reachable
from s ~ This subset will be computed symbolically, using BDDs.

We end this section with informal motivations of our description formalism
in the light of process algebraic constructors.

Because of closure by composition the LSAV model allows to represent a
large body of process calculi expressions, namely the non-recursive ones built
only from so-called static operators in [17]. Recursion is then only used for the
creation of individual automata components with dynamic operators. This was
shown in [8]. Shortly, such operators have SOS semantic rules such that the
residual expression keeps unchanged the shape of the term (parallel rewrites into
parallel, etc...). In this sense the various para l le l / scop ing / relabelling operators
describing the network can be thought of as an elegant syntax for shaping the
description of the network.

Note that , in addition to the static operators, production of actual synchro-
nisation vectors also require the Sorts of (uninstanciated) components.

While simplifying the construction of global state spaces and automata, since
a number of successive static constructions may here be combined at once, our
concrete formalism of LSA Vs do not favour compositional reduction (minimisa-
tion applied on subsystems). This latter method is dramatically used in AUTO
for example. This is not a penalty in the symbolic approach, where interme-
diate au tomata are not built anyway. Of course the two approaches could be
juxtaposed independantly, wherever more beneficial.

99

2.2 B i s i m u l a t i o n E q u i v a l e n c e

The present section recalls the notion of bisimulation, a "behavioral" equivalence
defined on transition systems. We derive from this definition a set-theoretic
formulation to compute it as a fix-point on finite transition systems.

We shall not motivate the philosophy behind bisimulation equivalence, see
[17]. Its main characteristic is that equivalent states all have the same behavior
ability, so that there exists a canonical minimal form, based on classes as states,
even for nondeterministic transition systems.

Bisimulation equivalence is used in the setting of verification both to reduce
an underlying automaton and to compare two distinct automata. We are here in-
terested in the former role, and we want to extract the equivalence classes, from
the LSAV description and a representation of the reachable state space. Actu-
ally constructing the minimal automaton is then straightforward (and possibly
useless).

N o t a t i o n 2.3 Given an equivalence relation T~ on a set E we note [e]~ the
equivalence class of e E E.

D e f i n i t i o n 3 . Let A = < S, Sort(A), s ~ T > be a lts. A binary symmetric rela-
tion R E S x S is a bisimulation if:

Vs, s' E S,(sT~s')::~ (V. e Sort(A),Vt E S,(s a t :~ 3t',(s' a t ')A(tRt ')))

We note ~ the largest bisimulation relation 7~ verifying the previous definition.

The bisimulation property above is defined recursively. Now consider the follow-
ing chain of equivalence relations:

7~0 = S x S

T~n+l : {(8, 8') E T~n I Va e Sort(A),

((s ~ sl) ~ (34, s' ~ 4 ^ (sl, 4) e 7e.)) ^

((~' ~ 4) ~ (3s1,~ --~ sl ^ (sl, 4) e 7e.))}

It is folklore that for finite au tomata Roo = [7 7~n corresponds to .v, and is
obtained through finite iteration: it exists no such that T~no = T~oo. Each T~j
belonging to the sequence of relations can be seen as a union of nj equivalence
classes, that is

n./

Tej = L_J Ci,~ x Ci,~
i=l

with the Ci,j ranging over the equivalence classes of Rj. To each R j , we associate
the related parti t ion Pj = {C~,j]i E hi]}

For convenience we introduce the auxiliary values:

t l j

E;,~ = U C',i x T~I(C, j)
i=.l

t00

Now we can rewrite the definition of Tdj+l from 7~j as

7"~Jq-1-'T~jr"l(aE SOt (A) {(Sl,S2) IVs,(((S, Sl)EEj,a<-....:z(s, s2) EEj,a)})

=Tdjn (\a~SO~(A) {(Sl'S2) I~3s'(((S'Sl)EEj'a r (s 's2) 'Ej 'a)})

This set-theoretic identity will base an algorithm to compute ~ by refinement in
the second part of the paper. Note already that each iteration requires a single
appl ica t ion of T~- 1 in the computation of Ej,a.

3 S y m b o l i c R e p r e s e n t a t i o n o f L S A V a n d B i s i m u l a t i o n

We now shortly discuss the symbolic encoding of state spaces into Binary De-
cision Diagrams. We describe the simple computation of their reachable parts,
and then the symbolic computation of bisimulation on (the encoding of) LSAVs.

3.1 Sets and BDD Encodings

A BDD is an acyclic graph representation of (the truth table of) a Boolean
propositional formula, on a finite predefined support of predicate variables. It
is based on decision trees, where branching splits according to the alternative
values of the variables, encountered in some fixed order. BDDs are then obtained
by sharing subtrees as much as possible. BDDs are canonical, relative to a given
ordering of the variables, in the sense that different syntaxic formulas with the
same truth values have identical (minimal) representations. See [4] for full details.

As usual in the BDD litterature we shall identify finite sets and relations
with their characteristic functions, and further with an encoding using boolean
variables of this characteristic functions. We shall now be more specific on our
notion of encoding.

Def in i t ion4. Let E be a finite set. An encoding for E consists of: a finite,
totally ordered encoding array of size m (say x = [xl < x~ < . . . < xm]) of
boolean variables together with a surjective partial function ~ : Bool "~ ~ E.

N o t a t i o n 3.1 We note z m the ordered (encoding) array [xl < x2 < ... < xm]
of propositional variables, x is then called the basename, and m the size. We
omit the size subscript and the underline when clear from context.

With our definition an element of E needs not be represented by a unique boolean
valuation, nor does any boolean valuation represent an element of E. Just a
boolean valuation may not be associated with two elements of E ambiguously.
As previously mentioned we will abusively call E for its encoding syntactic BDD
also (this makes an implicit reference to a specific encoding). We extend this and
note E for the BDD representing Bool" \~-I(E) on the proper encoding array.

101

The value m in the previous definition is not fixed a priori. Encodings of sets
usually range from those minimal variables numbers (m = [log(#E)] to One-
hot encodings where a variable is assigned to each element (m = #E) . Since a
key issue in BDDs lies not so much in the symbolic representation of states as
in this of transition relations, our choice of encoding should try and make the
encoding of transitions as small as possible. This was one reason why we gave
such a broad definition of encodings.

Encoding arrays are needed in the definition since boolean variables in BDDs
are syntactic elements. Later on we will need at places to introduce disjoint
samples of encoding sets for the same E and the same coding function, so they
will differ only by their explicit range of variables.

Coming down to our precise needs for symbolic modelisation, we shall have
to represent: local states, global states (as vectors of local states), Ta transition
relations and 7r equivalence relations (as couples of global states). So local states
will require basic encoding, from which we deduce the other encodings by taking
product encodings, on disjoint unions of encoding arrays.

The "good encoding" issue now splits into: first, find appropriate local encod-
ings; second, find interesting order extensions when putting different (disjoint)
encodings together in disjoint union.

We now introduce two natural ordering extensions of encodings in case of
cartesian products E k.

Def in i t ionh. Let {x__l,..., x_k}, compose k pairwise disjoint encoding arrays of
size m for a common set E (with the same encoding function), such that Vi E
k], x i = [x~,.. . , z/~]. We introduce two extensions ,..< and <~ of the total orders
on the ~ ' s by

< : Vie (k - 1)]x/m < x~ +J

: vi �9 (k - 1)], vj e
1 v j e (k -

i i + 1 xj <~ xj

We call << the concatenated extension, for it will not mix (variables from) dif-
ferent coding sets. On the contrary <~ the shuffled extension will put as close as
possible corresponding variables from various coding sets.

The ordering extension to (vector) global states here should also he discussed.
A brute force solution consists in concatenating these orders without mixing. A
more insighful solution should bring as close as possible those variables which
are correlated, no matter which local component they encode. This corresponds
to an attempt at bringing together (when feasible) the different local aspects of
a same global event. Still, it will be the case that, in the encoding of a global
state, each variable helps in encoding exactly one local component. We note
z~ the subarray obtained by collecting in increasing order all boolean variables
that deal with automata component Ai, and z_~o for the concatenation (still in
increasing order) of the x i , i E support(sv).

We end this section by recalling some less familiar boolean operators to be
used later in algorithms.

102

D e f i n i t i o n 6 . Let f be a boolean function. The smoothing of f by boolean
variables X = (x i l , . . . , xip) is defined as

. . . , = 1 o . . . o (y)

S~,j (f) = fx,1 ' "4- f~,p where

f~: i (Zl , . . . , z i - l , z i , z i+l , . . . , z r) = (z l , . . . , z i - 1 , 1 , x i + l , . . . , z r) and

f ~ / ' (Z l , . . . , x i - 1 , x i , x i q - 1 , . . . , ;gr) = (:gl, �9 �9 z i - 1 , 0 , Z i + l , . . . , Zr)

Logically, the smoothing operator performs existential quantification on the
smoothed variables: S(z,1, : ,p) (f) = 3zi~ . . .3xip f .

D e f i n i t i o n 7 . Let f be a boolean function. Substitution of array of boolean
variables X = [zx, z2 , . . . , zp] by array Y = [Yl, Y2,.--, Yp] in f , noted [Y ~ X]f,
consists of the simultaneous replacement of (boolean variables) array items zi
by corresponding Yi. Formally

The resulting BDD may be very different from f due to different respective
ordering of x's and y's and other variables.

A third boolean operator we shall use on BDD is the cofacr operation. For
lack of room we shall not describe it here. Intuitively co factor(B, C) represents
"B provided C', or what is strictly needed to recover B under the assumption

of C being true.

3.2 T h e R e a c h a b l e S t a t e s A l g o r i t h m

The space of all reachable states in a LSAV will be attained in a breadth-first
search iterative manner, where at each iteration all states directly following the
ones just obtained are reached. To do this, one should just apply the transition
relation once. The main problem here is that encoding the full transition relation
proves in practice to be much more space consuming than the state space itself.
We solve this problem by splitting the application of the transition relation
according to the synchronisation vectors. We now discuss this issue in relation
with our model.

When building a global (unlabelled) transition relation T(z, y) from the syn-
chronisation vectors and the local transitions of individual automata, one needs
to encode the identity where * (inaction) is indicated (leading to stablei BDDs
in [9]). This completion does not seem too dramatic when considering a single
synchronisation vector, but when building the union of all transitions it does
not behave friendly according to sharing of subtrees. The resulting BDD is thus
frequently very large.

On the other hand, if one considers building Tso the part of the transition re-
lation corresponding to an only synchronisation vector sv, nice features show up.

103

Then the full transition is then applied in steps by iteration on synehronisation
vectors. The algorithm is shown in figure 1.

Nice features just mentioned are:

- first, the synchronisation vector allows a priori any combination of local
transitions properly labelled. Thus the union of equaly labelled transitions
can be formed locally, and this indicates natural sharing,

- second, T,~ can be defined and applied on support(sv) only, disregarding the
other components, which will therefore he left unchanged. This drops the
need for the stable completion.

Def in i t i~ Tsv(X-sv,Y_4v) =dey AiEsupport(,v) (Vt,ET,,.b~,(..,) Tt,(x-{i},Y{i}))

where Tt(x_, y_) encodes transition t 's local source/target states with respective
encoding arrays x__ and y.

Application of transitions corresponding to sv to a state space St is expressed
a s :

Apply(Ts v (x__, v, Y-4 v)' St (z_)) = [~ ~ ~-- Y-,v] Sx_.~ (St (z_) A Ts ~ (x, ~, Y-4 v))

(1) States(x) = S~
(2) New(x)= star,,(=)
(3) while New # 0
(4) begin
(5) Temp(x)=Sta tes (x)
(6) fo r each sv 6 V do
(7) begin
(8) States(x) = States(x) VApply(T,~(x,y),States(x))
(9) end
(10) New(x)=Sta tes (x) ^Temp(x)
(11) end

Fig. 1. Reachable states with vector transition relation

3.3 T h e R e a l T r a n s i t i o n R e l a t i o n

No mat ter whether it is fully constructed or applied by chunks along the synchro-
nisation vectors, the transition relation above is actually syntactically derived
as a superset of the real one: not everything needs to be applicable. Certain
conjunctions of local transitions, while legible from the synchronisation point of
view, may leave from non-reachable states and therefore not be fireable. More
generally, the transition relation may pay attention to behaviors outside the
state space.

104

We define below the (very simple) way to restrict this relation to its useful
part. We shall need this in the bisimulation partitioning algorithm.

D efinit ion 9.

T'~(x'Y-) =def T'~(~s~"Y'v) AStates(x) ^ (,~support(~v)A Stablei)

label(sv)=a

3.4 B D D Bis imula t ion

With explicit reference to variables encoding, the relation between Rj and Rj+I
can now be expressed as:

Zj,,(x, z) = Su(Rj(x, y) ^ Ta(Y, z))

Badi(x' Y) = [x -- z] (vaoort(N) S~ ([Y ~-- z]Ei'a(Z' z) r Ei'a(X' z)))

One starts with Ro = SN x SN , or taking coding sets into account: Ro(x, y) =
SN(X) A SN(y). The algorithm of figure 2 implements this: lines (8-9) compute
Ej,a, while lines (10-14) compute bad couples on a label, not with a XOR op-
eration but as a two-fold union, this due to the fact that our implementation
package allowed to perform simultaneously the conjunction and smoothing in
lines 13 or 14, which is an interesting save-up in complexity. The loop at lines
(5-17) accumulates bad couples for all actions. Lines 18 computes the termina-
tion test.

Figure 2 refines the computation at lines 1 and 8, where the cofactor function
is introduced, so that all sets are given "provided" SN X SN, into which they are
all included.

4 O b s e r v a t i o n a l B i s i m u l a t i o n E q u i v a l e n c e s

Two main variations on bisimulation have been proposed in order to deal with
a specific actions (r) as invisible: weak bisimulation and branching bisimulation.
We shall not detail them here. We briefly indicate how to modify our previous
algorithms to cope with these two extensions.

Weak bisimulation equivalence simply uses a new transition relation, deduced
straightforwardly from the original one.

Def in i t ion10. The weak transition relation :O of a Its A is:

s =~=~z s' iff 3so,Sl,...,s~,n >_ O,s= so sl , . . .) s, =
s = ~ s' iff 3sl , s~, s - -~ sl ~ s2 = ~ s'

105

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(IS)
(17)
(16)
(18)
(19)
(20) end

N ew R(x, y) = co factor(Ro(x, y), Ro(x, y))
i = 0
while NewR(x , y) i~ 0
begin

Bad#(x, y) = 0
For a l l a E Sor t (N)
begin

trans(z, y) = [z .-- x]co f actor(To(x, y), Ro(x,))
Ei,o(~, z) = Sy(R,(~, y) ^ tr .ns(~, y))

,o(~,y) [y -- ~]E~,o(~,~)

T~(x, y) = E~,.(x, y)
B, (z, y) = Sx(E~,,,(z, z) ^ T2(z, y))
B2(z,y) = S~:(T~ (x, z) ^ E~,a(x,y))
Badj (z, y) = Badj(x, y) V Ix - - zl(Bx(z, y) V B2(z, y))

end
Ri+a (x, y) = Ri (x, y) A Badj (x, y)
N e w R (z , y) = R~(x, y) A Ri+l (x, y)
i = i + l

Fig. 2. Bisimulation with BDD

One may either computes these relations symbolically, or composes dynamically
the application of three relations (T~ 1, then T~-1 and Tv-. 1 again). We use the
iterative squaring method (see [22]) to compute : : ~ as the fixpoint of

F(x , y) = (x : : ~ y) V 3 z (F (x , z) A F (z , y))

Branching bisimulation instead restricts the above application of surrounding
7"* to state inverse images that preserve equivalence (so far). It can be proven
in this case that 7"* need only be applied once (either before or after the "real
action"), without affecting the resulting equivalence. Also, when r is used as the
discriminating action, only r transitions joining (already) non-equivalent states
need be applied. Thus, we define a set of transition relations T/P" at each step
in the equivalence partitioning. Noticeably these sets are very easy to recom-
pute dynamically, as all they do is gather two informations already present: 7~j
equivalence, and the fixed global r* transition relation.

Iner t~ . = T~-. n "R.i

TY'~ = Ine , ' t~ . o Ta

T g : Inert{ . o (Vr n

106

5 Applications

5.1 Encod ing and Variable Order ing

It is shown in [9] that the interleaved order extension was theoretically best for
the representation of transitions and states, during the Reachable State Space
construction. Now the question is: would the same considerations apply for the
representation of equivalen t state couples during the Partition Refinement step?

As a rule of thumb it seems that, while the interleaved order gets better as
the final relation is more discriminating and states are less identified, the con-
catenated order takes advantage of coarser cases where classes are fewer and
more state identifications take place. This is understandable: in this order, the
description of either instance of the class is factorised independantly (as first or
second component of couples). In the former case use of BDDs may be ques-
tioned, for its interest is based on gain of sharing for sets representation. As
more elements are isolated, they each tend to consume space individually in the
BDD. Of course this is rough estimation. Weak bisimulation often allows more
identifications to take place, specially when not all actions are kept visible. This
case is certainly the most beneficial for the symbolic approach to bisimulation
minimisation.

Sensibility to the alternative (<< /<1) variable orderings is illustrated and
contrasted below on two examples with opposite teachings.

5.2 Test Examples

Two examples are exposed in this section. The first one is the LSAV specification
of the scheduler with different number of cyclers. The second one is the Dekker
Mutual Exclusion algorithm. For a precise presentation of these examples, the
reader should refer to [17] for the former example, and [21] for the latter.

Table displayed in figure 3 shows the results obtained on the different in-
stanciations of the scheduler specification problem, namely 4, 8, 16, 18, and 20
cyclers for which a specific row is attributed in the table, and for the Dekker
algorithm whose results row begins with a "D". All results have been obtained
on a SPARC Station 2 with 24 MBytes of memory. Each row contains from letf
to right: the concerned example, the number of reachable states followed by the
size of the corresponding BDD and the time taken by the tool to compute it;
for each type of variable order in (<3, <:<), the related time taken to, compute
the bisimulation equivalence on the reachable state space and the size of the
corresponding BDD; finally, the number of equivalent pairs under bisimulation.
The symbol "-" means that the tool was oborted during execution, due to lack
of memory. In the case of the scheduler example, the <1 order is better than <<
,unlike in the other examples.

Conclusion

We have described an implementation of Bisimulation Minimisation based on
symbolic representation using Binary Decision Diagrams. This implementation

107

[[[States

4 128

8 4096

16 2097152

18 9437184

2041943040

D 1126 74

Fig. 3. Performances of the tool

BDD Time[[Varl,--, T i m e - BDD I P~irsl[

16 0.29 <I 4.88 59 256
<< 24.83 859

16 0.29 <l 4.88 59 256
<< 24.83 859

64 Ii.99 <] 131.11 251 4194304
<<-

72 16.26 <I 165.42 283 18874368
<<-

80 22.47 <I 213.90 315 83886080

<<- "I
1.36 <l 104.20 962 450 I

I

<< 20.50 686 450

tried to optimize computations and BDD sizes wherever possible, and in partic-
ular:

- works on LSAV as a compound version of process algebraic networks, so that
several operators may be applied at once, and impossible behaviors detected
as soon as possible,

- applies transitions as events individually, eliminating the need for storing the
full transitions, with its out-of-support intricacies. Event-parted transitions
allow well BDD sharing,

- applies backward behavior image only once for the coarsest parti t ion fixpoint
algo- r i thm (instead of on both components of equivalent couples),

- performs simultaneous splitting of all classes by all classes.

R e f e r e n c e s

1. A. Arnold and M. Nivat. Comportements de processus. In Les Mathgmatiques de
l'Informatique, pages 35-68. Colloque AFCET, 1982.

2. D. Austry and G. Boudol. Alg~bre de processus et synchronisation. Theorical
Computer Sciences, 1(30), 1984.

3. A. Bouali. Weak and branching bisimulation in fctool. Technical Report 1575,
INRIA, 1991.

4. Randal E. Bryant. Graph-based algorithms for boolean function manipulaiton.
Transactions on Computers, C-35(8):677-691, August 1986.

5. J.R. Burch, E.M. Clarke, L. McMillan, D.L. Dill, and J. Hwang. Symbolic model
checking: 102~ and beyond. In 5 th IEEE Symposium on Logic in Computer Science,
pages 428-439, Philadelphia, 1990.

6. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench. In Auto-
matic Verification Methods for Finite State Systems, pages 24-37. LNCS, 1989.

108

7. O. Coudert, C.. Berthet, and J.C. Madre. Verification of sequential machines using
boolean vectors. In IFIP Internationnal Workshop, Applied Formal Methods for
Correct VLSI design, Leuven, November 1990.

8. R. de Simone and A. Bouali. Causal models for rationnal algebraic processes. In
J.C.M. Baeten and J.F. Groote, editors, 2nd internationnai Conference on Con.
currency Theory, Amsterdam, August 1991. CONCUR'91, Springer-Verlag.

9. R. Enders, T. Filkorn, and D. Taubner. Generating bdds for symbolic model
checking. In Third Workshop on Computer Aided Verification, volume 1, pages
263-278. University of Aaiborg, July 1991.

10. J.C. Fernandez. Aldgbaran: un syst~me de vdrificatoin par rdduction de processus
communiquants. PhD thesis, Grenoble, 1989.

11. J.C. Godskesen, K.G. Larsen, and M. Zeeberg. Tar, tools for automatic verifica-
tion. In Automatic Verification Methods For Finite State Systems, pages 232-246,
Grenoble, France, 1989. LNCS, Springer-Verlag.

12. J.F. Groote and F. Vaandrager. An efficient algorithm for branching bisimulation
and stuttering equivalence. ICALP '90, 1990.

13. G.J. Holzmann. Algorithms for automated protocol validation. In International
Workshop on Automatic Verification Methods for Finite State Systems, Grenoble,
France, June 1989.

14. C. Jard and T. J~ron. Bounded-memory algorithm for verification on-the-fly. In
Larsen.K.G. and A. Skou, editors, Third Workshop on Computer Aided Verifica-
tion, volume 1, pages 251-262, July 1991.

15. P.C. Kanellakis and S.A. Smolka. Ccs expressions, finite state processes, and three
problems of equivalence. In A CM Symposium on Principles of Distributed Com-
puting, pages 228-240, 1983.

16. B. Lin and A.R. Newton. Efficient manipulation of equivalence relations and
classes. In ACM International Workshop on Formal Methods in VLSI design,
Miami, January 1991.

17. Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

18. Laurent Mounier. Mgthodes de vdrification de spgcifications comportementales:
gtude et raise en oeuvre. PhD thesis, LGI Grenoble, 1991.

19. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM, 16(6),
1987.

20. Huajun Qin. Efficient verification of determinate processes. Technical report, Dep.
of Comp. Sc., SUNY, Stony Brook, 1991.

21. M. Raynal. Algorithmes du Paralldlisme: le Probl~me de l'Exclusion Mutuelle.
Dunod Informatique, 1984.

22. H.J. Touati, H. Savoj, B. Lin, and Sangiovanni-Vincentelli. Implicit state enu-
meration of finite state machines using bdd's. In Internationnal Conference on
Computer Aided Design, 1990.

23. R.J. Van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics (extended abstract). Information processing '89 (G.X. Ritter,
ed.) Elsevier Science, pages 613-618, 1984.

24. D. Vergamini. Vgrification de rgseau d'automates finis par equivalence observa-
tionnelle: le syst~me AUTO. PhD thesis, Universitg de Nice, 1987.

