
Verifying a Logic Synthesis Tool in Nuprl:
A Case Study in Software Verification

Mark Aagaard, Miriam Leeser*

School of Electrical Engineering, Cornell University, Ithaca NY 14853, USA

Abst rac t . We have proved a logic synthesis tool with the Nuprl proof
development system. The logic synthesis tool, Pbs, implements the weak
division algorithm, and is part of the Bedroc hardware synthesis sys-
tem. Our goal was to develop a proven and usable implementation of a
hardware synthesis tool. Pbs consists of approximately 1000 lines of code
implemented in a functional subset of Standard ML. The program was
verified by embedding this subset of SML in Nuprl and then verifying
the correctness of the implementation of Pbs in Nuprl. In the process of
doing the proof we learned many lessons which can be applied to efforts
in verifying functional software. In particular, we were able to safely per-
form several optimizations to the program. In addition, we have invested
effort into verifying software which will be used many times, rather than
verifying the output of that software each time the program is used. The
work required to verify hardware design tools and other similar software
is worthwhile because the results of the proofs will be used many times.

1 I n t r o d u c t i o n

This paper describes our experiences in using the Nuprl proof development sys-
tem to verify the correctness of a logic synthesis tool. The lessons that we have
learned are applicable to researchers using theorem proving based methods to
verify functional programs.

We have implemented and proved Pbs: Proven Boolean Simplification. Pbs
is based on Brayton and MeMullen's weak division algorithm for logic synthe-
sis [BM82]. The implementation of Pbs required approximately 1000 lines of
Standard ML code. The proof of Pbs consists of a formal description of the
properties to be proved, a formal semantics for the implementation language
(a functional subset of Standard ML), and a mechanized formal proof showing
that the implementation satisfies the properties claimed by the weak division
algorithm. The proof was done in the Nuprl proof development system [C+86],
and involved emulating a subset of SML in Nuprl, verifying the implementation
of Pbs in Nuprl and showing that the semantics for the subset of SML that we

* Mark Aagaard is supported by a fellowship from Digital Equipment Corporation.
This research was supported in part by the National Science Foundation under Award
No. MIP-9100516.

70

emulated in Nuprl are equivalent to those defined for SML. Although the devel-
opment of the proof required a significant amount of time, the results are used
over and over again. Thus, the expenditure was well worth the effort.

The weak division algorithm was first described in a paper by Brayton and
McMullen in 1982 [BM82]. It is currently used in several CAD tools, including
Mis, which is part of the Berkeley Synthesis System [BR+87]. Our work is based
upon the definitions, algorithms, and proof outlines presented in these articles.
In some cases we have clarified previous definitions and algorithms, and in many
instances we have developed formal proofs from the informal outlines presented
earlier. The aim of this work is to prove an implementation of the weak division
algorithm. Because of this, we reason about the algorithm at a much more specific
and lower level than that of earlier efforts.

Theorem proving based formal methods have used mathematics to model
and reason about a wide variety of different subjects. Originally, most theorem
proving based work in digital hardware was done by pro~;ing the correctness
of an implementation after it was designed [CGM86, Hun86]. This methodol-
ogy suffers from the fact that such a post hoc verification process is invariably
time-consuming and labor intensive. Many researchers are proving hardware de-
sign tools correct and investigating synthesis by proven transformations. For
example, Martin [Mar90] uses proved correct transformations to synthesize de-
lay insensitive circuits, Chin [Chi90] uses verified design procedures to synthesize
array multipliers. More recently, McFarland [McF91] found several errors in the
System Architect's Workbench [TDW+88] while proving their transformations
correct. Pbs is the only work being done in applying formal methods to logic
synthesis.

Our implementation of Pbs is described in Sect. 2. We outline our proof
techniques in Sect. 3. Sect. 4 analyzes the results of the verification of Pbs. More
detailed descriptions of the algorithms used in Pbs can be found elsewhere [AL91,
Aag92].

2 I m p l e m e n t a t i o n o f P B S

Pbs implements the weak division algorithm, which is a global approach to
Boolean simplification. This means that the algorithm works with an entire
system of Boolean equations at once. In contrast, local optimization techniques
examine and optimize individual or small sets of equations independently.

The weak division algorithm seeks to decrease circuit area by removing redun-
dant combinational logic. A sub-circuit contains redundant logic if it implements
precisely the same function as another. Weak division removes redundant logic
by finding common subexpressions among the divisors of different functions. The
common subexpressions are replaced by new intermediate variables. This results
in the duplicated logic being implemented only once, thereby reducing the area
of the circuit.

For example, (1) contains two functions, one defining the variable p and one
defining the variable q.

71

p--(aAbAc) V(aAbAd) V(aAbAe)
q--(gAc) V (gAd) V h (1)

There is one common subexpression, (c V d), among the divisors of p and q.
We can substitute a new variable z into the equations in place of (c V d). Next,
we can substitute a new variable (~) for the term (a A b), which appears twice
in the expression for p. This results in the set of equations shown below.

p = x A z V x A e
q = (g A ,) v h
z = c V d
z = a A b (2)

These substitutions have reduced the size of the circuit from twelve two input
gate equivalents to seven, because the factors (c V d) and (a A b) are now
only implemented once. The substitutions increased the delay through the circuit
from two gate delays to three, because the signals z and z added an additional
layer of logic to the circuit. We have found that as the size of circuits increase
the reduction in area increases significantly, but the additional delay converges
rapidly: we are able to achieve reductions in area of 88% for circuits with more
than three thousand gates, but yet add only nine additional layers of logic.

Our goals were for Pbs to be a proven and usable implementation of the
weak division algorithm. In order to meet these two goals, we decided to embed
a functional subset of the Standard ML (SML) programming language in the
Nuprl proof development system. This allows the code for Pbs to be reasoned
about in Nuprl and compiled and run using an SML compiler. Thus there is
a very high degree of confidence that the SML implementation has the same
behavior as the Nuprl implementation.

Standard ML is a very high level programming language and is based upon a
formal definition which prescribes the precise semantics of the language [RM90].
SML is primarily a higher order functional language, but it does support some
non-functional features, such as sequential operations, references, and exception
handling. SML is strongly typed and polymorphic, thus it closely parallels much
of the Nuprl type system.

Nuprl [C+86] is a mechanical proof development system based upon Martin-
L6f's constructive type theory. In Nuprl, the user begins by entering a theorem
to be proved. The theorem represents the goal of a proof. The user applies lac*ics
which manipulate the goal, usually by breaking it down into a set of subgoals.
This process of using tactics to break goals down into subgoals creates a structure
known as a proof tree. In order to successfully complete a proof, the subgoals
should become increasingly simple. Eventually an individual sub-goal will be
simple enough that it matches one of the primitive rules in the Nuprl logic.
When all of the leaves of the proof tree have been shown to be true, the proof
is completed and the original theorem is proved.

Nuprl contains a set of primitive operations which are the basis for its com-
putation system. Many SML instructions are very similar to these primitive op-
erations. By limiting Pbs to use only these instructions, we were able to emulate

72

a subset of SML in Nuprl. The primitive operations upon which we based our
subset include integer arithmetic, list recursion, integer equality, string equality,
and pairing. The principal features which we did not include in our subset (be-
cause of the difficulty of implementing them in terms of the Nuprl primitives)
are: references, exceptions, sequentiality, explicit recursion, pattern matching,
real numbers, modules, streams, and records.

We now demonstrate this method by showing the definition of our primi-
tive list recursion function in Nuprl and SML. Nuprl provides a primitive list
recursion operation (list_ind), while SML does explicit recursion (the name of
the function appears within the body of the function). Equation (3) shows the
semantics for list_ind in Nuprl by describing its behavior on an empty list and
on a non-empty list.

list_ind(nit; nit_va# h,t, rest. f (h)(t)(rest)) = nil_vat
tist_ind(hd::tl; nil_vat; h,t, rest.](h)(t)(rest)) =

f(hd)(tt)(list_ind(tt;nil_val; h,t, rest. f(h)(t)(rest)) (3)

Following the approach outlined above, we wrote a function (recurse) in
SML (Equation (4)) which has the same behavior as the list recursion primitive
in Nuprl.

fun recurse f niLval nil = niLval
I recnrse f nil_val (hd::tl) = f (hd) (tl) (recurse f nil_vat tl) (4)

Equation (5) shows the definition of recurse in Nuprl. All other recursive
functions in Pbs are written in terms of recurse. By using this methodology we
have isolated the functions that are dependent upon primitives in Nuprl down
to a very small number of low level functions.

recurse f niLval a_list =
list_ind(a_list; niLvai; h,t, rest. f(h)(t)(rest)) (5)

To complete the process, we proved Thins 1 and 2, which show that the
Nuprl definition of recurse has the same behavior as the SML function. Using
this methodology we defined and verified each of the constructs in the subset
of SML that we emulated. Having defined the function recurse, we can now
use it in our implementation of other functions and can use Thins 1 and 2 to
prove theorems describing the behavior of functions built upon recurse. Using
this methodology, the SML code for a function is identical to the Nuprl object
representing the function.

The only informal link in the connection between Nuprl and SML arises
because Nuprl uses lazy evaluation and SML uses eager evaluation. In reality,
this does not pose a problem for us, because the subset of SML that we are
using is purely functional and all of the functions are guaranteed to terminate.
(We are able to prove termination because the only recursion done in Pbs is
list recursion using Nuprl's list induction primitive, which always terminates.)
Purely functional programs with guaranteed termination will exhibit identical

73

T h m 1 Recurse - base case

f-V f, nil_val.
recurse f niLval nil = niLval

Thin 2 Recurse - inductive case

f-V f, hd, tl, niLval.
recurse f niLval (hd::tl) = j~ hd)(t l) (reeurse f niLval tl)

behavior in eager and lazy evaluation environments. Thus, for the subset that
we are using, programs will have identical behavior in Nuprl and in an SML
compiler. Ongoing research at Cornell includes work aimed at creating a type
theoretic semantics for SML within Nuprl. Once this has been done, programs
will be able to be verified without relying on informal arguments to show the
correspondence between the Nuprl and SML semantics.

3 V e r i f i c a t i o n o f P B S

The proof of Pbs shows two things. First, the output circuits generated by Pbs are
functionally equivalent to the input circuits. Second, all output circuits satisfy
the minimality property claimed by the weak division algorithm. Informally,
a circuit with this property is completely irredundant - that is, there is no
duplicated logic in the circuit. Others have shown that circuits which satisfy this
minimality property are completely single stuck-at fault testable [HJKM89].

In doing the proof of Pbs we began with a specification of the overall al-
gorithm and our implementation in Standard ML, which we had tested on a
number of sample circuits. Our approach was to write several theorems describ-
ing the behavior of each function in Pbs and then to prove that the code used to
implement the function satisfied the theorems that we had written. In general
we worked in a bottom up fashion. We began with very simple functions, such
as adding an element to a list, and testing if an element is a member of a list.
After proving that these function had their intended behavior, we were able to
move up a level in the hierarchy, and prove theorems describing the behaviors
of more complicated functions.

There are two basic categories of theorems in the proof of Pbs. The first
is theorems which describe abstract properties of functions. The second, and
more common, category is theorems which describe the behavior of functions at
a level which is very close to the actual implementation. The first category of
theorems includes the theorem that the output of Pbs satisfies the correctness
criteria for the weak division algorithm. Theorems in the second category usually
describe how a function behaves for certain inputs. For example, the function
for dividing Boolean expressions is partially characterized by a theorem which

74

states that dividing an empty expression by any expression produces an empty
expression.

For the first category of theorems, we did not find any specific methodology
which was applicable to all proofs. For the second category of theorems, we
found a technique which was used for these theorems throughout the proof of
Pbs. This technique consists of four steps: list induction, unfolding definitions,
rewriting and application of previously proven lemmas. As an example of these
techniques, we describe the proof of a theorem describing membership in a list
(Theorem 3). This is a trivial example; it is included here because it illustrates
the techniques which we used throughout the verification of Pbs.

Thin 3 Membership in a non-empty list

[-VA, eq_fn, tl, hd, a.
mere eq_fn a (hd::tl) r
(eq_fn a hd) V (mem eq_fn a l l)

As an alternative to the approach taken here, we could have defined the
membership function in such a way that Nuprl could have completed the proof
of this function automatically. This approach would have been similar to that
of proof systems which are capable of automatically verifying many inductively
defined functions IBM88]. We could have done this by writing the function di-
rectly in terms of Nuprl's primitive list induction operator, which was described
in Sect. 2. In Nuprl, there are several disadvantages to choosing this alternative.
Most importantly, it would prevent our implementation of Pbs in Nuprl from
being the same as our implementation in SML. Secondly, verifying more com-
plicated functions in this alternative style would be more difficult than in the
style which we used. By using the function recurse as the only primitive function
for recursion, we were able to hide the implementation details of recursion and
thereby prevent our proofs from becoming cluttered with low level details.

The complete proof of the theorem describing the membership function is
shown in Figure 1 and is discussed in the following paragraphs. In the proof,
only the conclusion and the rule for each step are shown. The hypotheses contain
variable declarations and are not modified in the proof. The rules, which appear
after "BY", are the only text other than the initial goal that the user types in.

Because lists are so pervasive in Pbs, most of the functions in Pbs are defined
in terms of list recursion. This also means that most proofs rely on list induction.
Thm 3 shows the inductive case for membership in a list, which says that an
element is a member of a list if and only if it is equal to the head of the list
or it is a member of the tail of the list. Another theorem (which is not shown),
describes the base case for this function. The theorem for the base case says that
an empty list does not have any members.

One of the first steps of each proof is to unfold the definition of the function

75

(mem eq_fn a (hd::tl))
r162

(eq_fn a hd) V (mem eq_fn all)
BY (Rewriteeoncl (NthC 1 (UnfoIdC 'mem'))...)

BY

F

BY

BY

(reduce (fn hd = > fn result = >
(eq_f. a hd) orelse result) false (hd::tl))

(eq_fn a hd) V (mem eq_fn atl)
(RewriteConcl reduce_ht_convn...)

(eq_fu a hd) orelse
reduce (fn hd = > fn result = >

(eq_fn(a))(hd) orelse result) false tl)

(eq_fn a hal) v (mere eq_fn a a)
(RewrileConcl mem_fold_convn...)

(eq_fn a hd) orelse (mere eq_fn all)

(eq_fn a hd) V (mem eq_fn all)
(Rewrite Concl orelse_,z_x_con vn. ..)

Fig. 1. Proof of Theorem 3

being described. In Nuprl "unfolding" means to replace an instantiation of a
function with the code used to implement the function. It is analogous to the
compiler optimization of in-line expansion. The purpose of unfolding definitions
is to reveal the implementation of functions. When this has been done, rewrite
rules or lemmas describing lower level functions can be used in the proof. In the
first step of the proof the definition of the function mere is unfolded to reveal
that it is implemented in terms of reduce. The function reduce (Equation (6))
is a higher order recursive function which is defined using the function recurse
(Equation (4)).

fun reduce f niLval a_list --
let

fun f2 hd tl result = f hd result
in

recurse f2 niLval a_list
end (6)

As illustrated here, unfolding is really just one type of rewriting that can be

76

performed. Nuprl has a very powerful rewriting package, which is used to replace
one term with another term, where the two terms are related by some property.
This property does not have to be equality, it may be any relation which the
user has proved to be reflexive and transitive. The rewrite package supports
rewriting terms in hypotheses as well as in the conclusion. Rewrite rules may be
constructed from previously proven lemmas, hypotheses in the current proof, or
direct computation. Lemmas may be used to construct conditional rewrite rules,
that is, a rule which only holds under certain conditions. We made extensive use
of these features throughout the proof of Pbs.

In the proof of Thm 3, four different rewrite rules are used. In the first and
third steps, direct computation rules are used to fold and unfold the instantiation
of mem. The rewrite rules used in steps two and four are derived from lemmas
that were proved about the functions reduce and orelse.

Although not a proof technique, Autotactic is a very important tactic which
was used throughout the proof of Pbs. Autotactic is comprised of a collection of
tactics which can be used to handle many of the minor details involved in using
mechanical proof systems. These proof systems offer a high degree of confidence
in the correctness of the theorems proved with their use, but the tradeoff is that
the user is exposed to a great many details that are usually ignored in paper
proofs. Common uses of Autotactic include automatically introducing universally
quantified variables that appear in conclusions and proving type checking goals.
In each step of the proof, Autotactic was used after applying the rewrite rule.
Using Nnprl's display forms, Autotactic is represented by the (...) in the proof
steps.

By adopting the proof style described here, we are able to write concise
theorems describing complex functions. An example of this appears in Thm 4,
which describes the behavior of the quotient function for dividing an expression
by a cube (2). Theorem 4 says that a cube (co) is a member of the quotient of
an expression (ell) and another cube (ci2) if and only if there is a cube (cil) in
ell such that ci2 is a subset of cil and co is equal to ci2 deleted from cil. This
theorem was proved in a total of fourteen steps, which included seven rewrites
and three lemma applications (Lemma application is one of the four primary
techniques used throughout Pbs, but was not demonstrated in the proof of the
membership function).

4 D i s c u s s i o n

This section describes reasons for verifying software, lessons that we learned
about theorem proving techniques for software verification, an analysis of the
amount of time required to verify Pbs with Nuprl, and some directions for future

research.
The verification of Pbs was valuable because we found several errors while

formalizing the proof, we were able to safely perform several optimizations to
the code, and we gained a much deeper understanding of the algorithm. In
the process of verifying Pbs, several obscure errors in the implementation and

77

Th in 4 Membership in a quotient

FVei 1 :Expr_t.
Vci2, co:Cube_t.

is_valid_expr el
tr(M EM_ce(co) (Q U O T_ec(ei l)(ci 2)))
3 cil:Cube_t.

tr(MEM_ce(cil)(eil)) &
tr(IN_cc ci2 cil)
tr(EQc co (DEL_cc(cil)(ci2)))

fun QUOT_ec ell ci2 =
let

fun f c_hd result =
if IN_cc ci2 c_hd
then (DEL_cc c_hd ci2)::result
else result

in
Cs2E(reduce y ~tL_e (E2 Cs ei 1))

end

Fig. 2. Function for quotient Of an expression and a cube

formal description of Pbs were found. The nature of the errors was such that they
would most likely manifest themselves only in rare occurrences in large systems
of equations, exactly the times when they would be least likely to be detected.
These errors are described elsewhere [Aag92].

If a program or optimization is not completely understood, performing the
optimization on the code may introduce bugs into the program. For most of
the operations in the weak division algorithm there is both a Boolean and an
algebraic function which may be used. The algebraic functions are much faster,
but return the correct result only under certain conditions. In the original imple-
mentation of Pbs, only Boolean operations were used. This sacrificed speed for
increased assurance that the code was correct. In doing the proof in Nuprl, sev-
eral instances were discovered where the correctness conditions for the algebraic
operations could be guaranteed. When these occurrences were found, Boolean
operations were replaced by algebraic operations. This increased the speed of the
code and also simplified the proof, because the lemmas describing the algebraic
operations were simpler than those describing the Boolean ones.

In the process of verifying Pbs, we discovered several guidelines which are
useful when writing code which will be verified or when reasoning about a pro-

78

gram. Beginning with a mathematically defined, very high level language greatly
eases the process of proving a program. In addition there are certain program-
ming techniques and styles which can significantly increase the ability to reason
about a program.

- All functions should be very short
- Code should be written in an extremely modular style
- Higher order functions should be used wherever possible

These guidelines may seem to be very obvious, but their importance can not
be over emphasized. Ideally, each function performs only a single operation and
the behavior can be summarized in one or two lemmas. By writing code in a very
modular style, a single function and its corresponding lemmas may be used many
times. When just writing code, it may seem easier to simply duplicate a piece
of code if it is extremely short and is only used a few times. But, when proving
code correct, not only must the code be duplicated, but the proofs describing
the code must also be duplicated. Along these same lines, the use of higher order
functions to handle such tasks as recursion is a much better approach than to
try to do explicit recursion.

When we began the verification effort, we quickly learned that each lemma
should only bridge two adjacent Ievels of abstraction. Tha t is, only one function
should be unfolded in each proof. This means that each proof is only dependent
upon the implementation of a single function. Following this guideline helps
ensure that lemmas are as general as possible, which makes them more useful,
and requires that fewer total lemmas be written.

Although we learned most of these guidelines while in the process of working
on the proof of Pbs, a few were not recognized until we had completed the proof
and were able to analyze our work as a whole. A technique which did not occur
to us was to try to generalize the reasoning to general mathematical principles.
The operations in Pbs can be described as an algebra. There is a large body
of existing knowledge about algebras, which we could have used. Instead, we
proved special theorems for each function. Had we shown that the operators in
Pbs were an algebra, we could have used general theorems about algebras to do
the more complicated and abstract reasoning in Pbs.

An important tool which we could have made use of, but did not, was the
ability to execute our code as we were verifying it. When we developed Pbs
we did substantial amounts of debugging using informal techniques before be-
ginning to formally verify the code. But we made a number of changes to the
implementation as we developed the proof (some were minor bug fixes, others
were done to make the proof easier or optimize the code). We did not try running
the code with any of these modifications, instead we relied solely upon our proof
for debugging these changes.

Looking back on this decision, it is now apparent that it would have been
more efficient to do some informal debugging of the modified code, before we
spent the time to do the formal verification. The primary reason for this is that
testing code on a few test cases can be an extremely fast method to gain some

79

measure of confidence that the code behaves as desired. Also, with complicated
specifications, there may be some doubt as to whether the specification actu-
ally describes the intended behavior of the program. For these reasons, such
techniques as executable specifications can be very useful.

The implementation of weak-division consists of approximately one thousand
lines of code. In the process of implementing Pbs and doing the proof in Nuprl "
there was a large learning curve and several new tools were written to make
the proof easier. We estimate that if we were to do it over again, it would take
approximately one month to implement the code and an additional two months
to complete a formal proof on paper. We believe that using the knowledge gained
and tools written, it would take a total of four months to do the proof in Nuprl
all over again. Thus, doing the proof in Nuprl would take approximately twice
as long as doing the proof on paper.

One of the lessons learned in the process of doing the proof is that there
is a potential for automating several aspects of the proof process for software
verification. This area has not yet been fully explored, so it is difficult to say
exactly how much of the proof could be automated, but we estimate that it is
feasible to reduce the time to do the proof in Nuprl from four months to three
months. (Compared with two months for doing the formal proof on paper.) We
are currently investigating some of these ideas. Ideally, doing the proof in a
mechanical theorem prover would not take any longer than doing the formal
proof on paper, but that time has not yet arrived.

5 C o n c l u s i o n

A piece of software is verified in order to have higher confidence that it does what
it is meant to do. It is very unlikely that the day will come when all software is
formally verified, so it is important to decide how much verification should be
done for a given piece of software. Often, there are informal proofs that describe
an algorithm at an abstract level, but there may be a great disparity between the
level of detail of the proof and the implementation. It is in this process of going
from an abstract description of an algorithm to the concrete implementation that
many errors are introduced. An informal proof that the algorithm is correct is a
good first step toward a correct. implementation, but unless formal verification
is done at the level of implementation, there can not be a high level of assurance
that the final implementation is correct. The tradeoff for this increased assurance
is that there are a great many details that the proof must take into account. One
of the most important advantages of mechanical proof systems is their ability
to manage proof efforts and potentially automate a significant portion of this
process.

Such was the case with Pbs. Brayton and McMullen had provided informal
arguments that the weak division algorithm was correct, but by using Nuprl we
were able to formally prove Pbs at the implementation level. The extra effort
of performing a formal proof definitely was worthwhile. The proof provided us
with greater understanding of the algorithm and allowed us to take advantage

80

of optimizations to the program. The code will be used many, many times, thus
amortizing the initial work. Finally, people without any knowledge of formal
methods can easily use Pbs and there is no need for post hoc verification of the
circuits generated by Pbs.

6 Acknowledgements

We would like to thank Robert Constable and Jim Caldwell for reading an earlier
draft of this paper and Paul Jackson, who implemented the rewrite package, for
his advice and assistance in using Nuprl. In addition we would like to thank
Chet Murthy and Doug Howe, who were always willing to help and gave us a
number of useful suggestions.

References

[Aag92]

[AL91]

[BM82]

IBM88]

[BR+87]

[C+86]

[CGM86]

[Chi90]

[HJ~CM89]

[Hun86]

[Mar90]

Mark Aagaard. A verified system for logic synthesis. Master's thesis, De-
partment of Electrical Engineering, Cornell University, January 1992.
Mark Aagaard and Miriam Leeser. The implementation and proof of a
boolean simplification system. In Geraint Jones and Mary Sheeran, editors,
Designing Correct Circuits, Oxford 1990. Springer-Verlag, 1991.
R.K. Brayton and C. McMullen. Decomposition and factorization of
boolean expressions. In International Symposium on Circuits and Systems,
1982.
R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic
Press, 1988. Volume 23 of Perspectives in Computing.
R. K. Brayton, R. Rudell, et al. MIS: A multiple-level logic optimization
system. IEEE Transactions on Computer-Aided Design, CAD-6(6), 1987.
R. L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, 1986.
A. J. Camillieri, M. J. C. Gordon, and T. F. Melham. Hardware verifica-
tion using higher-order logic. In D. Borrione, editor, From HDL Descrip-
tions to Guaranteed Correct Circuit Designs. North Holland, September
1986.
Shiu-Kai Chin. Combining engineering vigor with mathematical rigor. In
Proceedings of the MSI Workshop on Hardware Specification, Verification,
and Synthesis: Mathematical Aspects. Springer Verlag, 1990. LNCS 408.
G. Hachtel, R.. Jacoby, K. Keutzer, and C. Morrison. On the relationship
between area optimization and multifault testability of multilevel logic.
In International Conference on Computer Aided Design, pages 316-319.
ACM/IEEE, 1989.
W. A. Hunt, Jr. FM8501: A Verified Microprocessor. PhD thesis, Institute
for Computing Science, The University of Texas at Austin, 1986.
A. J. Martin. The design of a delay-insensitive microprocessor: An example
of circuit synthesis by program transformation. In Proceedings of the MS1
Workshop on Hardware Specification, Verification, and Synthesis: Mathe-
matical Aspects. Springer Verlag, 1990. LNCS 408.

81

[McF91] Michael C. McFarland. A practical application of verification to high-level
synthesis. In International Workshop on Formal Methods in VLSI Design.
ACM, 1991.

[RM90] R. Harper R. Milner, M. Tofte. The Definition of Standard ML. The MIT
Press, 1990.

[TDW+88] D. E. Thomas, E. M. Dirkes, R. A. Walker, J. V. Rajah, J. A. Nestor, and
R. L. Blackburn. The system architect's workbench. In 25 th Design Au-
tomation Gonference, pages 337-343. ACM/IEEE, 1988.

This article was processed using the I~TEX macro package with LLNCS style

