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Abst rac t .  We have proved a logic synthesis tool with the Nuprl proof 
development system. The logic synthesis tool, Pbs, implements the weak 
division algorithm, and is part of the Bedroc hardware synthesis sys- 
tem. Our goal was to develop a proven and usable implementation of a 
hardware synthesis tool. Pbs consists of approximately 1000 lines of code 
implemented in a functional subset of Standard ML. The program was 
verified by embedding this subset of SML in Nuprl and then verifying 
the correctness of the implementation of Pbs in Nuprl. In the process of 
doing the proof we learned many lessons which can be applied to efforts 
in verifying functional software. In particular, we were able to safely per- 
form several optimizations to the program. In addition, we have invested 
effort into verifying software which will be used many times, rather than 
verifying the output of that software each time the program is used. The 
work required to verify hardware design tools and other similar software 
is worthwhile because the results of the proofs will be used many times. 

1 I n t r o d u c t i o n  

This paper describes our experiences in using the Nuprl proof development sys- 
tem to verify the correctness of a logic synthesis tool. The lessons that  we have 
learned are applicable to researchers using theorem proving based methods to 
verify functional programs. 

We have implemented and proved Pbs: Proven Boolean Simplification. Pbs 
is based on Brayton and MeMullen's weak division algorithm for logic synthe- 
sis [BM82]. The implementation of Pbs required approximately 1000 lines of 
Standard ML code. The proof of Pbs consists of a formal description of the 
properties to be proved, a formal semantics for the implementation language 
(a functional subset of Standard ML), and a mechanized formal proof showing 
that  the implementation satisfies the properties claimed by the weak division 
algorithm. The proof was done in the Nuprl proof development system [C+86], 
and involved emulating a subset of SML in Nuprl, verifying the implementation 
of Pbs in Nuprl and showing that  the semantics for the subset of SML that  we 
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emulated in Nuprl are equivalent to those defined for SML. Although the devel- 
opment of the proof required a significant amount of time, the results are used 
over and over again. Thus, the expenditure was well worth the effort. 

The weak division algorithm was first described in a paper by Brayton and 
McMullen in 1982 [BM82]. It is currently used in several CAD tools, including 
Mis, which is part of the Berkeley Synthesis System [BR+87]. Our work is based 
upon the definitions, algorithms, and proof outlines presented in these articles. 
In some cases we have clarified previous definitions and algorithms, and in many 
instances we have developed formal proofs from the informal outlines presented 
earlier. The aim of this work is to prove an implementation of the weak division 
algorithm. Because of this, we reason about the algorithm at a much more specific 
and lower level than that of earlier efforts. 

Theorem proving based formal methods have used mathematics to model 
and reason about a wide variety of different subjects. Originally, most theorem 
proving based work in digital hardware was done by pro~;ing the correctness 
of an implementation after it was designed [CGM86, Hun86]. This methodol- 
ogy suffers from the fact that such a post hoc verification process is invariably 
time-consuming and labor intensive. Many researchers are proving hardware de- 
sign tools correct and investigating synthesis by proven transformations. For 
example, Martin [Mar90] uses proved correct transformations to synthesize de- 
lay insensitive circuits, Chin [Chi90] uses verified design procedures to synthesize 
array multipliers. More recently, McFarland [McF91] found several errors in the 
System Architect's Workbench [TDW+88] while proving their transformations 
correct. Pbs is the only work being done in applying formal methods to logic 
synthesis. 

Our implementation of Pbs is described in Sect. 2. We outline our proof 
techniques in Sect. 3. Sect. 4 analyzes the results of the verification of Pbs. More 
detailed descriptions of the algorithms used in Pbs can be found elsewhere [AL91, 
Aag92]. 

2 I m p l e m e n t a t i o n  o f  P B S  

Pbs implements the weak division algorithm, which is a global approach to 
Boolean simplification. This means that the algorithm works with an entire 
system of Boolean equations at once. In contrast, local optimization techniques 
examine and optimize individual or small sets of equations independently. 

The weak division algorithm seeks to decrease circuit area by removing redun- 
dant combinational logic. A sub-circuit contains redundant logic if it implements 
precisely the same function as another. Weak division removes redundant logic 
by finding common subexpressions among the divisors of different functions. The 
common subexpressions are replaced by new intermediate variables. This results 
in the duplicated logic being implemented only once, thereby reducing the area 
of the circuit. 

For example, (1) contains two functions, one defining the variable p and one 
defining the variable q. 
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p--(aAbAc) V(aAbAd) V(aAbAe) 
q--(gAc) V (gAd) V h (1) 

There is one common subexpression, (c V d), among the divisors of p and q. 
We can substitute a new variable z into the equations in place of (c V d). Next, 
we can substitute a new variable (~) for the term (a A b), which appears twice 
in the expression for p. This results in the set of equations shown below. 

p = x A z  V x A e  
q = ( g A , )  v h 
z = c  V d 
z = a A b (2)  

These substitutions have reduced the size of the circuit from twelve two input 
gate equivalents to seven, because the factors (c V d) and (a A b) are now 
only implemented once. The substitutions increased the delay through the circuit 
from two gate delays to three, because the signals z and z added an additional 
layer of logic to the circuit. We have found that as the size of circuits increase 
the reduction in area increases significantly, but the additional delay converges 
rapidly: we are able to achieve reductions in area of 88% for circuits with more 
than three thousand gates, but yet add only nine additional layers of logic. 

Our goals were for Pbs to be a proven and usable implementation of the 
weak division algorithm. In order to meet these two goals, we decided to embed 
a functional subset of the Standard ML (SML) programming language in the 
Nuprl proof development system. This allows the code for Pbs to be reasoned 
about in Nuprl and compiled and run using an SML compiler. Thus there is 
a very high degree of confidence that the SML implementation has the same 
behavior as the Nuprl implementation. 

Standard ML is a very high level programming language and is based upon a 
formal definition which prescribes the precise semantics of the language [RM90]. 
SML is primarily a higher order functional language, but it does support some 
non-functional features, such as sequential operations, references, and exception 
handling. SML is strongly typed and polymorphic, thus it closely parallels much 
of the Nuprl type system. 

Nuprl [C+86] is a mechanical proof development system based upon Martin- 
L6f's constructive type theory. In Nuprl, the user begins by entering a theorem 
to be proved. The theorem represents the goal of a proof. The user applies lac*ics 
which manipulate the goal, usually by breaking it down into a set of subgoals. 
This process of using tactics to break goals down into subgoals creates a structure 
known as a proof tree. In order to successfully complete a proof, the subgoals 
should become increasingly simple. Eventually an individual sub-goal will be 
simple enough that it matches one of the primitive rules in the Nuprl logic. 
When all of the leaves of the proof tree have been shown to be true, the proof 
is completed and the original theorem is proved. 

Nuprl contains a set of primitive operations which are the basis for its com- 
putation system. Many SML instructions are very similar to these primitive op- 
erations. By limiting Pbs to use only these instructions, we were able to emulate 
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a subset of SML in Nuprl. The primitive operations upon which we based our 
subset include integer arithmetic, list recursion, integer equality, string equality, 
and pairing. The principal features which we did not include in our subset (be- 
cause of the difficulty of implementing them in terms of the Nuprl primitives) 
are: references, exceptions, sequentiality, explicit recursion, pattern matching, 
real numbers, modules, streams, and records. 

We now demonstrate this method by showing the definition of our primi- 
tive list recursion function in Nuprl and SML. Nuprl provides a primitive list 
recursion operation (list_ind), while SML does explicit recursion (the name of 
the function appears within the body of the function). Equation (3) shows the 
semantics for list_ind in Nuprl by describing its behavior on an empty list and 
on a non-empty list. 

list_ind(nit; nit_va# h,t, rest. f (h)(t)(rest))  = nil_vat 
tist_ind(hd::tl; nil_vat; h,t, rest. ](h)(t)(rest)) = 

f( hd)( tt)( list_ind( tt;nil_val; h,t, rest. f( h )( t )(rest ) ) (3) 

Following the approach outlined above, we wrote a function (recurse) in 
SML (Equation (4)) which has the same behavior as the list recursion primitive 
in Nuprl. 

fun recurse f niLval nil = niLval 
I recnrse f nil_val (hd::tl) = f (hd) (tl) (recurse f nil_vat tl) (4) 

Equation (5) shows the definition of recurse in Nuprl. All other recursive 
functions in Pbs are written in terms of recurse. By using this methodology we 
have isolated the functions that are dependent upon primitives in Nuprl down 
to a very small number of low level functions. 

recurse f niLval a_list = 
list_ind( a_list; niLvai; h,t, rest. f( h )( t )(rest ) ) (5) 

To complete the process, we proved Thins 1 and 2, which show that the 
Nuprl definition of recurse has the same behavior as the SML function. Using 
this methodology we defined and verified each of the constructs in the subset 
of SML that we emulated. Having defined the function recurse, we can now 
use it in our implementation of other functions and can use Thins 1 and 2 to 
prove theorems describing the behavior of functions built upon recurse. Using 
this methodology, the SML code for a function is identical to the Nuprl object 
representing the function. 

The only informal link in the connection between Nuprl and SML arises 
because Nuprl uses lazy evaluation and SML uses eager evaluation. In reality, 
this does not pose a problem for us, because the subset of SML that we are 
using is purely functional and all of the functions are guaranteed to terminate. 
(We are able to prove termination because the only recursion done in Pbs is 
list recursion using Nuprl's list induction primitive, which always terminates.) 
Purely functional programs with guaranteed termination will exhibit identical 



73 

T h m  1 Recurse - base case 

f-V f, nil_val. 
recurse f niLval  nil = niLval  

Thin  2 Recurse - inductive case 

f-V f, hd, tl, niLval. 
recurse f niLval  (hd::tl) = j~ hd)( t l ) (reeurse f niLval tl) 

behavior in eager and lazy evaluation environments. Thus, for the subset that 
we are using, programs will have identical behavior in Nuprl and in an SML 
compiler. Ongoing research at Cornell includes work aimed at creating a type 
theoretic semantics for SML within Nuprl. Once this has been done, programs 
will be able to be verified without relying on informal arguments to show the 
correspondence between the Nuprl and SML semantics. 

3 V e r i f i c a t i o n  o f  P B S  

The proof  of  Pbs shows two things. First, the output circuits generated by Pbs are 
functionally equivalent to the input circuits. Second, all output circuits satisfy 
the minimality property claimed by the weak division algorithm. Informally, 
a circuit with this property is completely irredundant - that is, there is no 
duplicated logic in the circuit. Others have shown that circuits which satisfy this 
minimality property are completely single stuck-at fault testable [HJKM89]. 

In doing the proof of Pbs we began with a specification of the overall al- 
gorithm and our implementation in Standard ML, which we had tested on a 
number of sample circuits. Our approach was to write several theorems describ- 
ing the behavior of each function in Pbs and then to prove that the code used to 
implement the function satisfied the theorems that we had written. In general 
we worked in a bottom up fashion. We began with very simple functions, such 
as adding an element to a list, and testing if an element is a member of a list. 
After proving that these function had their intended behavior, we were able to 
move up a level in the hierarchy, and prove theorems describing the behaviors 
of more complicated functions. 

There are two basic categories of theorems in the proof of Pbs. The first 
is theorems which describe abstract properties of functions. The second, and 
more common, category is theorems which describe the behavior of functions at 
a level which is very close to the actual implementation. The first category of 
theorems includes the theorem that the output of Pbs satisfies the correctness 
criteria for the weak division algorithm. Theorems in the second category usually 
describe how a function behaves for certain inputs. For example, the function 
for dividing Boolean expressions is partially characterized by a theorem which 
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states that dividing an empty expression by any expression produces an empty 
expression. 

For the first category of theorems, we did not find any specific methodology 
which was applicable to all proofs. For the second category of theorems, we 
found a technique which was used for these theorems throughout the proof of 
Pbs. This technique consists of four steps: list induction, unfolding definitions, 
rewriting and application of previously proven lemmas. As an example of these 
techniques, we describe the proof of a theorem describing membership in a list 
(Theorem 3). This is a trivial example; it is included here because it illustrates 
the techniques which we used throughout the verification of Pbs. 

Thin  3 Membership in a non-empty list 

[-VA, eq_fn, tl, hd, a. 
mere eq_fn a (hd::tl) r 
(eq_fn a hd) V (mem eq_fn a l l )  

As an alternative to the approach taken here, we could have defined the 
membership function in such a way that Nuprl could have completed the proof 
of this function automatically. This approach would have been similar to that 
of proof systems which are capable of automatically verifying many inductively 
defined functions IBM88]. We could have done this by writing the function di- 
rectly in terms of Nuprl's primitive list induction operator, which was described 
in Sect. 2. In Nuprl, there are several disadvantages to choosing this alternative. 
Most importantly, it would prevent our implementation of Pbs in Nuprl from 
being the same as our implementation in SML. Secondly, verifying more com- 
plicated functions in this alternative style would be more difficult than in the 
style which we used. By using the function recurse as the only primitive function 
for recursion, we were able to hide the implementation details of recursion and 
thereby prevent our proofs from becoming cluttered with low level details. 

The complete proof of the theorem describing the membership function is 
shown in Figure 1 and is discussed in the following paragraphs. In the proof, 
only the conclusion and the rule for each step are shown. The hypotheses contain 
variable declarations and are not modified in the proof. The rules, which appear 
after "BY", are the only text other than the initial goal that the user types in. 

Because lists are so pervasive in Pbs, most of the functions in Pbs are defined 
in terms of list recursion. This also means that most proofs rely on list induction. 
Thm 3 shows the inductive case for membership in a list, which says that an 
element is a member of a list if and only if it is equal to the head of the list 
or it is a member of the tail of the list. Another theorem (which is not shown), 
describes the base case for this function. The theorem for the base case says that 
an empty list does not have any members. 

One of the first steps of each proof is to unfold the definition of the function 
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(mem eq_fn a (hd::tl)) 
r162 

(eq_fn a hd) V (mem eq_fn all) 
BY (Rewriteeoncl (NthC 1 ( UnfoIdC 'mem'))...) 

BY 

F 

BY 

BY 

(reduce (fn hd = >  fn result = >  
(eq_f. a hd) orelse result) false (hd::tl)) 

(eq_fn a hd) V (mem eq_fn atl) 
( RewriteConcl reduce_ht_convn... ) 

( eq_fu a hd) orelse 
reduce (fn hd = >  fn result = >  

(eq_fn(a))(hd) orelse result) false tl) 

(eq_fn a hal) v (mere eq_fn a a) 
( RewrileConcl mem_fold_convn...) 

(eq_fn a hd) orelse (mere eq_fn all) 

(eq_fn a hd) V (mem eq_fn all) 
( Rewrite Concl orelse_,z_x_con vn. .. ) 

Fig. 1. Proof of Theorem 3 

being described. In Nuprl "unfolding" means to replace an instantiation of a 
function with the code used to implement the function. It is analogous to the 
compiler optimization of in-line expansion. The purpose of unfolding definitions 
is to reveal the implementation of functions. When this has been done, rewrite 
rules or lemmas describing lower level functions can be used in the proof. In the 
first step of the proof the definition of the function mere is unfolded to reveal 
that it is implemented in terms of reduce. The function reduce (Equation (6)) 
is a higher order recursive function which is defined using the function recurse 
(Equation (4)). 

fun reduce f niLval a_list -- 
let 

fun f2 hd tl result = f hd result 
in 

recurse f2 niLval a_list 
end (6) 

As illustrated here, unfolding is really just one type of rewriting that can be 
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performed. Nuprl has a very powerful rewriting package, which is used to replace 
one term with another term, where the two terms are related by some property. 
This property does not have to be equality, it may be any relation which the 
user has proved to be reflexive and transitive. The rewrite package supports 
rewriting terms in hypotheses as well as in the conclusion. Rewrite rules may be 
constructed from previously proven lemmas, hypotheses in the current proof, or 
direct computation. Lemmas may be used to construct conditional rewrite rules, 
that is, a rule which only holds under certain conditions. We made extensive use 
of these features throughout the proof of Pbs. 

In the proof of Thm 3, four different rewrite rules are used. In the first and 
third steps, direct computation rules are used to fold and unfold the instantiation 
of mem. The rewrite rules used in steps two and four are derived from lemmas 
that were proved about the functions reduce and orelse. 

Although not a proof technique, Autotactic is a very important tactic which 
was used throughout the proof of Pbs. Autotactic is comprised of a collection of 
tactics which can be used to handle many of the minor details involved in using 
mechanical proof systems. These proof systems offer a high degree of confidence 
in the correctness of the theorems proved with their use, but the tradeoff is that 
the user is exposed to a great many details that are usually ignored in paper 
proofs. Common uses of Autotactic include automatically introducing universally 
quantified variables that appear in conclusions and proving type checking goals. 
In each step of the proof, Autotactic was used after applying the rewrite rule. 
Using Nnprl's display forms, Autotactic is represented by the (...) in the proof 
steps. 

By adopting the proof style described here, we are able to write concise 
theorems describing complex functions. An example of this appears in Thm 4, 
which describes the behavior of the quotient function for dividing an expression 
by a cube (2). Theorem 4 says that a cube (co) is a member of the quotient of 
an expression (ell) and another cube (ci2) if and only if there is a cube (cil) in 
ell such that ci2 is a subset of cil and co is equal to ci2 deleted from cil. This 
theorem was proved in a total of fourteen steps, which included seven rewrites 
and three lemma applications (Lemma application is one of the four primary 
techniques used throughout Pbs, but was not demonstrated in the proof of the 
membership function). 

4 D i s c u s s i o n  

This section describes reasons for verifying software, lessons that we learned 
about theorem proving techniques for software verification, an analysis of the 
amount of time required to verify Pbs with Nuprl, and some directions for future 

research. 
The verification of Pbs was valuable because we found several errors while 

formalizing the proof, we were able to safely perform several optimizations to 
the code, and we gained a much deeper understanding of the algorithm. In 
the process of verifying Pbs, several obscure errors in the implementation and 
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Th in  4 Membership in a quotient 

FVei 1 :Expr_t. 
Vci2, co:Cube_t. 

is_valid_expr el 
tr( M EM_ce( co) ( Q U O T_ec( ei l )( ci 2 ) ) ) 
3 cil:Cube_t. 

tr(MEM_ce(cil)(eil)) & 
tr(IN_cc ci2 cil) 
tr(EQc co (DEL_cc(cil)(ci2))) 

fun QUOT_ec ell ci2 = 
let 

fun f c_hd result = 
if IN_cc ci2 c_hd 
then (DEL_cc c_hd ci2)::result 
else result 

in 
Cs2E(reduce y ~tL_e (E2 Cs ei 1)) 

end 

Fig. 2. Function for quotient Of an expression and a cube 

formal description of Pbs were found. The nature of the errors was such that they 
would most likely manifest themselves only in rare occurrences in large systems 
of equations, exactly the times when they would be least likely to be detected. 
These errors are described elsewhere [Aag92]. 

If a program or optimization is not completely understood, performing the 
optimization on the code may introduce bugs into the program. For most of 
the operations in the weak division algorithm there is both a Boolean and an 
algebraic function which may be used. The algebraic functions are much faster, 
but return the correct result only under certain conditions. In the original imple- 
mentation of Pbs, only Boolean operations were used. This sacrificed speed for 
increased assurance that the code was correct. In doing the proof in Nuprl, sev- 
eral instances were discovered where the correctness conditions for the algebraic 
operations could be guaranteed. When these occurrences were found, Boolean 
operations were replaced by algebraic operations. This increased the speed of the 
code and also simplified the proof, because the lemmas describing the algebraic 
operations were simpler than those describing the Boolean ones. 

In the process of verifying Pbs, we discovered several guidelines which are 
useful when writing code which will be verified or when reasoning about a pro- 
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gram. Beginning with a mathematically defined, very high level language greatly 
eases the process of proving a program. In addition there are certain program- 
ming techniques and styles which can significantly increase the ability to reason 
about a program. 

- All functions should be very short 
- Code should be written in an extremely modular style 
- Higher order functions should be used wherever possible 

These guidelines may seem to be very obvious, but their importance can not 
be over emphasized. Ideally, each function performs only a single operation and 
the behavior can be summarized in one or two lemmas. By writing code in a very 
modular style, a single function and its corresponding lemmas may be used many 
times. When just writing code, it may seem easier to simply duplicate a piece 
of code if it is extremely short and is only used a few times. But, when proving 
code correct, not only must the code be duplicated, but the proofs describing 
the code must also be duplicated. Along these same lines, the use of higher order 
functions to handle such tasks as recursion is a much better  approach than to 
try to do explicit recursion. 

When we began the verification effort, we quickly learned that  each lemma 
should only bridge two adjacent Ievels of abstraction. Tha t  is, only one function 
should be unfolded in each proof. This means that  each proof is only dependent 
upon the implementation of a single function. Following this guideline helps 
ensure that lemmas are as general as possible, which makes them more useful, 
and requires that  fewer total lemmas be written. 

Although we learned most of these guidelines while in the process of working 
on the proof of Pbs, a few were not recognized until we had completed the proof 
and were able to analyze our work as a whole. A technique which did not occur 
to us was to try to generalize the reasoning to general mathematical  principles. 
The operations in Pbs can be described as an algebra. There is a large body 
of existing knowledge about algebras, which we could have used. Instead, we 
proved special theorems for each function. Had we shown that  the operators in 
Pbs were an algebra, we could have used general theorems about algebras to do 
the more complicated and abstract reasoning in Pbs. 

An important  tool which we could have made use of, but did not, was the 
ability to execute our code as we were verifying it. When we developed Pbs 
we did substantial amounts of debugging using informal techniques before be- 
ginning to formally verify the code. But we made a number of changes to the 
implementation as we developed the proof (some were minor bug fixes, others 
were done to make the proof easier or optimize the code). We did not try running 
the code with any of these modifications, instead we relied solely upon our proof 
for debugging these changes. 

Looking back on this decision, it is now apparent that  it would have been 
more efficient to do some informal debugging of the modified code, before we 
spent the time to do the formal verification. The primary reason for this is that  
testing code on a few test cases can be an extremely fast method to gain some 
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measure of confidence that the code behaves as desired. Also, with complicated 
specifications, there may be some doubt as to whether the specification actu- 
ally describes the intended behavior of the program. For these reasons, such 
techniques as executable specifications can be very useful. 

The implementation of weak-division consists of approximately one thousand 
lines of code. In the process of implementing Pbs and doing the proof in Nuprl " 
there was a large learning curve and several new tools were written to make 
the proof easier. We estimate that if we were to do it over again, it would take 
approximately one month to implement the code and an additional two months 
to complete a formal proof on paper. We believe that using the knowledge gained 
and tools written, it would take a total of four months to do the proof in Nuprl 
all over again. Thus, doing the proof in Nuprl would take approximately twice 
as long as doing the proof on paper. 

One of the lessons learned in the process of doing the proof is that there 
is a potential for automating several aspects of the proof process for software 
verification. This area has not yet been fully explored, so it is difficult to say 
exactly how much of the proof could be automated, but we estimate that  it is 
feasible to reduce the time to do the proof in Nuprl from four months to three 
months. (Compared with two months for doing the formal proof on paper.) We 
are currently investigating some of these ideas. Ideally, doing the proof in a 
mechanical theorem prover would not take any longer than doing the formal 
proof on paper, but that  time has not yet arrived. 

5 C o n c l u s i o n  

A piece of software is verified in order to have higher confidence that  it does what 
it is meant to do. It is very unlikely that the day will come when all software is 
formally verified, so it is important  to decide how much verification should be 
done for a given piece of software. Often, there are informal proofs that describe 
an algorithm at an abstract level, but there may be a great disparity between the 
level of detail of the proof and the implementation. It is in this process of going 
from an abstract description of an algorithm to the concrete implementation that  
many errors are introduced. An informal proof that  the algorithm is correct is a 
good first step toward a correct. implementation, but unless formal verification 
is done at the level of implementation, there can not be a high level of assurance 
that the final implementation is correct. The tradeoff for this increased assurance 
is that  there are a great many details that  the proof must take into account. One 
of the most important  advantages of mechanical proof systems is their ability 
to manage proof efforts and potentially automate a significant portion of this 
process. 

Such was the case with Pbs. Brayton and McMullen had provided informal 
arguments that the weak division algorithm was correct, but by using Nuprl we 
were able to formally prove Pbs at the implementation level. The extra effort 
of performing a formal proof definitely was worthwhile. The proof provided us 
with greater understanding of the algorithm and allowed us to take advantage 
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of optimizations to the program. The code will be used many, many times, thus 
amortizing the initial work. Finally, people without any knowledge of formal 
methods can easily use Pbs and there is no need for post hoc verification of the 
circuits generated by Pbs. 
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