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Abstract. An attempt to mechanise reasoning about concurrent algo- 
rithms is described. The HOL theorem prover is used to formalise the 
semantics of the Temporal Logic of Actions (TLA). Using this formalisa- 
tion, the proof rules of TLA are proved as theorems in the HOL system. 
The use of HOL in reasoning about algorithms in TLA is illustrated by 
two examples: a proof of a program property and an implementation 
proof. 

1 Introduction 

The Temporal Logic of Actions (TLA) is a logic for reasoning about concurrent 
algorithms, developed recently by Leslie Lamport [5, 6]. Algorithms are expressed 
directly as formulas in TLA, rather than in terms of a separate programming 
language. In this paper we describe an attempt to mechanise TLA reasoning 
using the theorem prover HOL [4]. Since reasoning about algorithms using TLA 
involves a lot of tedious proof details, much would be gained if the reasoning 
could be verified and partly automated using a proof assistant. 

The HOL system has mainly been used for hardware verification. However, 
the higher order features of HOL also makes it useful for formalising logics and 
programming semantics [1, 2]. The fact that TLA expresses algorithms directly 
in the logic is an advantage, since this means that there is only one formalism 
that has to be implemented. 

The HOL system is an interactive proof assistant, based on higher order logic 
(a polymorphic version of the simple theory of types [3]). Other logics can be 
embedded in HOL, using the HOL logic as a meta-logic. In this paper, which 
extends the previous work in [8], we formalise TLA in HOL by defining the 
semantics of TLA in HOL. The proof rules of TLA are then proved as ttOL 
theorems. After this, these rules can be used for reasoning about programs. This 
means that we can show that a program has a certain property, or that one 
program implements another one, by proving a corresponding HOL theorem. 
We restrict ourselves to Simple TLA. This means that we do not consider hiding 
of variables and refinement mappings. 

We assume that the reader is familiar with the HOL system and its version 
of higher order logic, as described in the documentation of the HOL system [4]. 
When referring to HOL-terms and interaction with the HOL system we use the 
syntax of HOL. In particular, we note that the scope of binders and quantifiers 
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extends as far to the right as possible. To make formulas more readable, w e 
often omit type information which can be inferred from the context. Also, we 
use the ordinary logical symbols (the boolean t ruth values are denoted F and T). 

2 Basic Concepts of TLA in HOL 

In this section, we first give an overview of TLA and then describe how TLA is 
semantically embedded in HOL. 

2.1 T h e  T e m p o r a l  Logic  o f  A c t i o n s  

One of the main ideas of TLA is that algorithms are expressed directly in the 
logic, rather than in a separate programming notation. TLA is based on a simple 
temporal logic, with [] ("always") as the only primitive temporal operator.  

An action is a boolean expression that  states how initial and final states are 
related. As an example, 

(x' = x -4- I) A (y' = y) (1) 

is an action that  increments z by 1 and leaves y unchanged (thus primed variables 
always stand for final states). 

Predicates can always be interpreted as actions (as actions, they put no 
restrictions on the final states). Similarly, both predicates and actions can be 
interpreted as temporal formulas. A predicate asserts something about the state 
at t ime 0 while an action relates the states at time 0 and time 1. 

If A is an action and f is a state function, then [Air is the action 

def 
[.4Is = .4 v ( f  = # )  

where f~ is the same as f but with all occurrences of program variables primed. 
As an example, if A is the action (x' = x + 1) A (y'  = y) then the action 

[A](z,y) permits arbitrary changes of all other variables than x and y. In this 
way stuttering can be modelled. 

Va r i ab l e s  a n d  T y p e s .  TLA assumes that there is an infinite supply of pro- 
gram variables, though a given algorithm always mentions only a finite number 
of them. The values that  variables can take are not organised in types. Instead, 
TLA assumes that there exists only one single set of values, and a variable can 
take any value from this set. 

E x p r e s s i n g  A l g o r i t h m s  in T L A .  An algorithm is described by a formula 

n =  l . i t  ^ I ^ F (2) 

where Init is a predicate that characterises the permitted initial states, A5 is 
the disjunction of all the actions of the algorithm and F is a formula that  de- 
scribes a fairness condition (thus safety and liveness are treated within a single 
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framework). Note that the predicate Init is used as such in the TLA-formula 
(2). This shows how TLA permits predicates, actions and temporal formulas to 
be combined. 

The safety part of (2) is D[Af]I which states that every step of the program 
must be permitted by Af or it must leave f unchanged. Typically, f is a tuple 
containing all variables that the algorithm works on. Then D[A/~f states that 
every step is an Af-step or a stuttering step. 

The liveness part F is typically a conjunction of fairness conditions on actions 
of the algorithm. Fairness requirements are easily expressed in TLA. Weak and 
strong fairness with respect to an action .,4 is expressed as 

WF:(,4) (El{)(,4):) V (DO-Enabled(,4):) 
doj V 

where ('4)f = -~[','4]f and Enabled(,4) is true of those states in which it is 
possible to perform .4. 

As a proof system, TLA has only a small set of basic proof rules. In addition 
to this, simple temporal reasoning is used, as well as ordinary mathematical 
reasoning about actions. In TLA, proving that program / /  has property DO 
means proving that the TLA formula 

H ~  DO 

is valid. Similarly, proving that 11 is implemented by another program H I means 
proving that the formula 11' =:~ 11 is valid. 

An  Example  Algor i thm.  As an example we consider a simple algorithm, 
which increments variables x and y indefinitely. The initial state is characterised 
by the predicate 

Ini*1%f ( x = 0 )  A ( y = 0 )  

The incrementation is defined by the following two actions: 

M 1 % f  X I = X - t - I A y I = Y  

J~2 %f Y~=Y+ 1 A x ~ = x  

The fairness requirement is weak fairness with respect to both actions, so the 
algorithm is described by the following formula: 

111 = Initl A O[.M1 V A42](~,y) A WF(~,y)(A41) A WF(~,y)(A42) (3) 
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2.2 S t a t e s ,  P r e d i c a t e s  a n d  A c t i o n s  in H O L  

In our formalisation, we assume that every variable has a well-defined type. 
Much can be said about advantages and disadvantages of typing. Our choice is 
dictated by the typing rules of HOL, and in Sect. 4.2 we will se how the typing 
supports implementation proofs. 

We formalise states as tuples where every component corresponds to one 
variable of the state (the type of the component indicates what type its values 
must have). The state is made potentially infinite by adding a final component 
with polymorphic type. This final component ("the rest of the universe") can be 
instantiated to any tuple. 

As an example, we consider the state space containing the variables z and y 
which range over natural numbers. The corresponding state space in HOL has 
type :nura#num#* (type variables have names beginning with an asterisk). 

Predicates and actions are formalised as boolean expressions with lambda- 
bound program variables. For example, in the  above mentioned state space, the 
action (1) is formalised as 

A ( x , y , z ) ( x ' , y ' , z ' ) .  (x~=x+l) h (y~=y) 

and the state predicate x > 0 is formalised as 

A(x ,y , z ) .  x>O 

With this way of treating predicates and actions, substitutions can be for- 
malised neatly as a combination of an application and an abstraction. For ex- 
ample, the predicate z + y > 0, with y substituted for x, is formalised as 

A(x ,y ,z ) .  (A(x ,y ,z ) .  x-by>O) (y ,y ,z)  

which beta-reduces to 

A(x,y,z)  .y§ 

as it should. Note that the variables are anonymous, in the sense that  the action 
(1) is equivalently expressed by 

~ ( a , z , x ) ( c , t ' , z ' ) .  ( c=a+ l )  A (t'----z) 

However, we avoid confusion if we use the TLA rules for priming as a convention 
when writing actions in HOL. In passing, we note that  the variables of ordinary 
programs are also anonymous, in the sense that  we can usually change the name 
of a variable throughout the program without changing the effect of executing 
the program. 

Constants (called rigid variables in TLA) are formalised as variables that  are 
not bound by A-abstraction. 
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C o n n e c t i v e s  f o r  P r e d i c a t e s  a n d  Ac t ions .  The boolean connectives are lifted 
to predicates and actions in a straightforward way. The connectives for predi- 
cates are called pnot ,  pand, por,  pimp etc. Similarly, the connectives for actions 
are called a_not, aand, etc. As examples, we show the theorems that  define the 
lifted conjunctions: 

Vale f p pand q = As.  p s A q s 

f-de/ a aand b = As s'. a s s' A b s s I 

where s and s' are states. 
We also define functions that  represent validity: 

~-def p v a l i d  p = Vs .  p s 

I-dej: a v a l i d  a = Vs s ' .  a s s '  

2.3 T e m p o r a l  Logic  in  H O L  

We have formalised the TLA logic by semantically embedding in HOL in a 
straighforward way. Time is represented by natural numbers and behaviors have 
type :num---*state where : s t a t e  is the type of the state (in the generic case, 
: s t a t e  is just a polymorphic type). Temporal formulas are represented as ~em- 
poral properties, i.e., as boolean functions on behaviors. The following theorem 
defines the O-operator: 

F'de f box  f t ---- V i .  f ( A n .  t ( i + n ) )  

for temporal formula f and behavior t .  
We also lift the boolean connectives to temporal formulas, giving them the 

names t n o t ,  rand,  etc. For example, the following theorems define lifted con- 
junction and lifted validity: 

}-de $ f t a n d  g : A t .  f t A g t 

~-def tvalid f = Vt. f t 

where t is a behavior. 

2.4 T L A  F o r m u l a s  in H O L  

We have formalised TLA in H 0 L  by directly defining the semantics of TLA. 
The HOL system also permits another approach, where one defines a new type 
corresponding to TLA formulas and then define the semantics separately. How- 
ever, the syntax of TLA is such that  it would be quite involved to define TLA 
formulas as a new type. 

One consequence of our approach is that  TLA formulas are a subset of the of 
type : (num---.state)---*bool which represents temporal properties. Thus we do 
not formalise the notion of "well-formed TLA formula" at all. This is justified by 
a pragmatic viewpoint: our aim is to mechanise TLA-reasoning about algorithms, 
not to reason about the properties of the TLA logic itself. 



61 

T L A  F o r m u l a s  as T e m p o r a l  P r o p e r t i e s .  In TLA, every predicate can also 
be interpreted as an action or as a temporal formula. I n our formalisation this 
is not true. Instead, predicates, actions and temporal formulas have distinct 
types. We define functions that  do the "lifting" from predicates to the action 
and temporal levels (see Fig. 1). 

It tnot, tand, . . .  

e m p o r a l  l e v e l )  

l i f t a t ~  

J 
anot, aand, . . .~  liStpt 
action level J 

liftpa, 

redicate level) 

Fig. 1. Levels of the TLA logic 

The functions liftpa and liftpa' that  lift predicates to actions are defined 
as follows: 

I-def l i f t p a  p = As s ' .  p s 

~'def liftpa' p ---- As s'. p s' 

Similarly, the functions l i f t p t  and l i f t a t  that  lift predicates and actions 
to the temporal level are defined as follows: 

t-de S l i f t p t  p t = p (t  0) 
bde l l i f t p a  a t = a ( t  0) ( t  1) 

The square function [,41I and the Enabled predicate are formalised by the 
following defining theorem: 

[-def s q u a r e  a f = a a o r  (As s ' .  f s = f s ' )  

~def enabled a ---- As. 3s'. a s s' 
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where f is a function from states to an arbitrary type. 
FinMly, we consider how an algorithm is represented. We assume that  we are 

given a predicate (the initialisation in•  an action ( a c t i o n )  and a temporal 
formula (the liveness part l i v e ) .  The algorithm is then described by the formula 

(liftpt init) tand (box (liftat (square action w))) rand live 

where w represents the function A(zl, ..., xn, z).(zl, ..., xn) which takes the global 
state as argument and returns the part of the state that  the algorithm works on 
(i.e., the state with the last component removed). 

A n  E x a m p l e  A l g o r i t h m .  As an example we consider the algorithm described 
in (3). The following defining theorems show how this algorithm is formalised: 

}-de] I n i t l  = A(x ,y ,z ) .  (x=O) A (y=O) 
[-de] M1 = A ( x , y , z ) ( x ' , y ' , z ' ) .  (x '=x+l )  A (y '=y) 

}-def M2 = A ( x , y , z ) ( x ' , y ' , z ' ) .  ( y '=y+ l )  A (x'=x) 
[-de.[ W : A ( X , y , Z ) .  ( X , y )  

}-def F = (WF M1 w) tand (WF M2 w) 
}-dey Progl = ( l i f t p t  I n i t l )  tand 

(box ( l i f t a t  (square (M1 aor M2) w))) rand F 

3 The TLA Logic in HOL 

We will not state all the proof rules of Simple TLA. Instead, we consider two 
typical rules in some detail. The first rule is called INV1 and is used to prove 
invariance properties: 

I A [,Y~I =~ I I 
I A O[A~I ~ [31 

This rule expresses the fact that if all program actions preserve I ,  then t:]I holds 
provided I holds initially. 

In HOL, the rule INV1 becomes 

}- avalid (((liftpa I) aand (square N f)) aimp (liftpa' I)) 

tvalid (((liftpt I) rand (box (square N f))) timp (box (liftpt I))) 

Note how the HOL implication corresponds to the meta-implication in the rule. 
The TLA rules that  are used for reasoning about liveness are generally more 

complicated than the above rule. An example is the rule SF1 which permits the 
deduction of liveness properties from strong fairness assumptions: 
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P A [Af]l ~ ( P ' V  Q') 
P A (.h/')f ::~ Q' 

QP A D[N]f A [3F =~ <~Enabled(A)/ 

D[X'] 1 A S F / ( A )  A DF ~ (P  .,.+ q )  

The formalisation of this rule in HOL is quite a big expression. W hen the rule 
is applied, however, one never has to work with the rule as a whole. Instead, the 
present goal is matched against the conclusion of the rule, and three subgoals 
are produced, one for each assumption of the rule. 

Rules of TLA, such as the above two, are represented as theorems in HOL 
which are proved using the definition of the semantics. At first sight the rules 
in HOL may look ugly, since we cannot mix predicates, actions and temporal  
formulas as neatly as TLA does; we have to use the lifting functions. However, 
this is sometimes an advantage, since we avoid the confusion which can arise 
when the same term is sometimes a predicate and sometimes a temporal formula. 
The proofs (in HOL) of the above rules are quite straighforward, using rewriting 
and (in the case of the liveness rules) induction. 

From the basic proof rules, further rules can easily be derived. The proofs of 
such rules in HOL mirror the paper-and-pen proofs almost exactly. 

U se  o f  W e l l - f o u n d e d  Sets .  An important  rule in liveness proofs is the Lattice 
rule, which encodes the principle of well-founded ranking. This rule presupposes 
the existence of a well-founded order on some set involved in the reasoning. To 
support the use of this rule in HOL reasoning, we have created a separate theory 
of well-founded sets where the notion of well-foundedness is defined and basic 
properties of well-founded sets are proved. 

4 Reasoning about Algorithms 

Once we have proved the proof rules of Simple TLA, we can use them to reason 
about algorithms in HOL. We shall now give examples of two kinds of reasoning: 
proving that  a program has a certain property and proving that  one program 
implements another one. Formally, these amount to the same thing in TLA, 
since programs are formulas in the logic. 

4.1 V e r i f y i n g  P r o p e r t i e s  o f  P r o g r a m s  

As an example, we shall show how mutual exclusion is proved for a simple algo- 
rithm. The example is taken from [6]. It is a refinement of the simple example 
considered earlier which incremented variables x and y indefinitely. This algo- 
rithms works on the variables x, y ,pc l ,pc2  and sem. The variables pc1 and pc2 

are program counters, taking values "A", "B" and "G", and sem is a semaphore. 
The initial state is characterised by the predicate 

clef I IA I ! I IA  I ! 
Inil2 : pc1 : A pc2 : A x : O A y : O A sem : 1 
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There are six actions; two for the actual incrementing of z and y and four 
for handling the semaphore: 

def 
Ol I : pc 1 : 

def 
OL2 = pc2 = 

def 
,81 = pc1 = 

def 
~2 = /~c2 = 

def 71 : pCl  = 

def 
71 ---- pc2 = 

'~A" A sem > 0 A pc~ = '~B" A sem ' = s e m -  1 A Unch( x , y, pc2) 

"A" A sere > 0 A pc~ = "B"  /X sem '  = s e m -  1 A Unch(z ,  y, pc1) 

" B "  A pc~ = "G"  A z '  = z + 1 A Unch(y,  pc2, sem)  

" B "  A pc~ = " a "  A y' = y + 1 A Unch(x,  pc1, sem)  

"G H A pc~ = HA" A sem '  = sem + 1 A Unch(x,  y, pc2) 

" G "  A pd  2 = "A" A sem I sem + 1 A Unch(x,  y ,  p c 1 )  

where Unch f is defined to mean f '  = f .  An intuitive picture of this algorithm 
is given in Fig. 2). 

s e r e  ~ = sern  W l 

~ _  sem > O ~'~ 

pc1 = "A" J 

sem t ~ 8era 1 

] x e = x + l  

( p c l  = " G " )  

sere 1 ~ 8 e m - 1 1  ~ .  ] 

pc2 = I IBII~ ]SC~Ill 

y' = y+  lJ 

= s e m + l  

Fig. 2. Intuitive description of the algorithm//2 

The algorithm is described formally by the formula 

//2 I,,il2 ^ D[.,% ^ ^ aFro(N2) 

where N1 = O~IV ~1 V~/1 and N2 = a2Vfl2  V7~ and w = ( z , y ,  pcl ,pc2, sem) .  
In the fairness condition strong fairness is used in order to guarantee that  the 
refined program implements the p rogram/ /1  (cf. Sect. 4.2). 

We are interested in the mutual  exclusion property of this algorithm, i.e., the 
property that  the algorithm never reaches a situation where pcl = pc2 = "  B ~1 
holds. This is shown by proving the formula: 

/I2 =~ t3(pcl = 'W'V pc2 = '91") 
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The translation of this algorithm into our HOL-formalisation is straightfor- 
ward. The state is represented by the tuple ( x , y , p c l , p c 2 , s e m )  which has the 
type :num#num#tri#tri#num#**. Here : t r i  is a flat type with the three ele- 
ments A, B and G, defined by the means of the built-in type definition package of 
the HOL system. The possibility to define types in this way turns out to be very 
handy in program verification. If the program counters were defined to be, e.g., 
of the type :num, we would have needed additional arithmetic reasoning, which 
is tedious in HOL. 

The initialisation is defined by the defining theorem 

bd4 Init2 = 

A(x,y,pcl,pc2,sem,z). 

(pcl=A) A (pc2=A) ^ (x=0) A (y=0) A (sem=l) 

As an example of the actions, we show the theorem which defines the action ~1 : 

["def Betal = 

A (x,y,pcl ,pc2, sere,z) (x', y' ,pc l',pc2', sem',z'). 

(pcl=B) A (pcl'=G) A (x'=x+l) A (y'=y) A (sere'----sere) A (pc2'=pc2) 

The other five actions are defined accordingly. We also define 

bd~ N1 = Alphal aor Betal aor Gammal 

~d~ N2 = Alpha2 aor Beta2 aor Gamma2 

~d~ W = A(x,y,pcl,pc2,sem,z).(x,y,pcl,pc2,sem) 

~d~ F2 = (SF N1 w) rand (SF N2 w) 

bd4 Prog2 = (liftpt Init2) tand 

(box (liftat (square (NI aor N2) w))) rand F2 

Now the mutual exclusion property of this algorithm can be proved in the the- 
orem 

tvalid 

(Prog2 timp (box ( l i f tp t (A(x,y ,pcl ,pc2,sem,z) . (pcl=l)  V (pc2=A))) 

This theorem is proved by means of a rule for proving invariance properties using 
invariants. The invariant is in this case the following: 

sere + (pCl = '~1" ~ Oil ) + (pc2 = '~4" ~ 011) = 1 

where we use the notation b ~ e l f  for conditional expressions. 
Using this invariant, the proof of the mutual  exclusion property is quite 

straighforward. However, it involves some arithmetic which means that  it is not 
trivial in HOL. 
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4.2 P r o v i n g  C o r r e c t n e s s  o f  I m p l e m e n t a t i o n s  

The two algorithms we have considered were chosen so that  II2 is an imple- 
mentation o f / / 1 .  To prove this, we have to prove the validity of the formula 
//2 =:~ Ha. This can be reduced to proving the following: 

Init2 ~ Init~ (4) 

D[X1 v X~]~ ~ D[~,tl v M2](~,~) (5) 
H2 ::~ WF(x,u)(A.4,) A WF(=,y)(.~42 ) (6) 

where w is the state tuple o f / /~ .  
Note that  the types of the state spaces of the two programs are as follows: 

P rog l  : num~num~* 
Prog2 : num~num~tri~tri~num~ * * 

These types match, since the type variable :* ("the rest of the world" for P rog l )  
can be instantiated to : t r i # t r i # m m # * * .  In fact, this instantiation is done au- 
tomatically by the HOL system. 

Formulas (4-6) can be translated directly into HOL goals. The proofs of (4) 
and (5) are straightforward, though time-consuming, as HOL is quite slow in 
working with tuples. 

The proof of (6) is more complicated and rather lengthy. The complication 
arises partly from the use of TLA's Lattice-rule. Informally this kind of proof 
is easy to handle, as one can refer to pictures when reasoning about simple 
well-founded sets, but in HOL it quickly becomes complicated. Furthermore, 
the formulas used for proving liveness properties are the most complex ones in 
the TLA proof system. 

A general source of complication is the fact that  the goals often must be 
transformed before they can be matched to the proof rules of the TLA logic. 
These transformations can generally be justified by appealing to some simple 
tautology. This means that  a lot of effort goes into proving tautologies on both 
the predicate, action and temporal levels, and into doing transformations on the 
goals. 

5 C o n c l u s i o n  

Our work shows that  T L A  can be represented in HOL in such a way that  rea- 
soning about algorithms can be mechanically checked. We have defined the se- 
mantics of the basic concepts of TLA and proved part of the basic proof rules of 
TLA as HOL theorems. Once this was done, reasoning about algorithms could 
be done in HOL in a way which corresponds closely to the way reasoning is 
carried out on paper. Thus HOL works as a proof checker for TLA reasoning. 

Since we embed TLA semantically in HOL, our formalisation does not permit  
meta-level reasoning about the TLA logic. It is possible to formalise TLA in HOL 
in a way which would permit such reasoning, but such a formalisation would be 
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much more difficult to use in practice. Melham discusses this problem in his 
formalisation of the pi-calculus in HOL [7]. 

TLA reasoning involves proofs on two levels: the temporal level and the level 
of actions. Proofs on the temporal level involve using the proof rules of TLA 
and simple temporal reasoning. Proofs on the action level involve reasoning over 
the datatypes that the program handles (integers, lists, etc.). We have built a 
theory for the first kind of reasoning; action reasoning in HOL is supported by 
the numerous libraries that are part of the HOL system. 

Reasoning using HOL can be slow and tedious, for many reasons. A lot 
of effort goes into the transformation of goals into a form which matches the 
conclusion of some proof rule of TLA. Reasoning using well-founded sets involves 
a lot of straighforward but tedious proof details. Furthermore, reasoning on the 
action level is often arithmetic reasoning, at which HOL is notoriously inefficient. 
Many of these problems could be avoided if HOL could be made to support 
automatic proofs. In particular, we think that much of TLA reasoning could be 
automated if the user could supply the system with hints (e.g., invariants and 
definitions of well-founded orders) and if good libraries (e.g., for semi-automatic 
arithmetic) were added to the HOL system, for use in action level proof. 

In the near future we will investigate to what extent the proofs reported in 
this paper can be re-used in other similar examples. This will give an indication of 
the degree of automation that is possible. Certainly such automation will require 
a substantial amount of programming in ML, the meta-language of HOL. 

The definition of algorithms in HOL notation is unnecessarily difficult. This 
problem could be solved by designing some kind of interface which allows the user 
to describe algorithms in a TLA-like notation which would then be automatically 
translated into HOL. Such interfaces are not supported by the HOL system at 
present. 

One important aspect of TLA is the treatment of simulation relations be- 
tween programs. Simulation is proved using refinement mappings. In TLA this is 
based on existential quantification of program variables. Expressing this in HOL 
is left for future work. 
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