
Using a T h e o r e m Prover for Reasoning about
Concurrent Algor i thms

Joakim von Wright and Thomas Ls

Department of Computer Science,/~bo Akademi University
Lemmink~.inengatan 14, SF-20520 Turku, Finland

Abstract. An attempt to mechanise reasoning about concurrent algo-
rithms is described. The HOL theorem prover is used to formalise the
semantics of the Temporal Logic of Actions (TLA). Using this formalisa-
tion, the proof rules of TLA are proved as theorems in the HOL system.
The use of HOL in reasoning about algorithms in TLA is illustrated by
two examples: a proof of a program property and an implementation
proof.

1 Introduction

The Temporal Logic of Actions (TLA) is a logic for reasoning about concurrent
algorithms, developed recently by Leslie Lamport [5, 6]. Algorithms are expressed
directly as formulas in TLA, rather than in terms of a separate programming
language. In this paper we describe an attempt to mechanise TLA reasoning
using the theorem prover HOL [4]. Since reasoning about algorithms using TLA
involves a lot of tedious proof details, much would be gained if the reasoning
could be verified and partly automated using a proof assistant.

The HOL system has mainly been used for hardware verification. However,
the higher order features of HOL also makes it useful for formalising logics and
programming semantics [1, 2]. The fact that TLA expresses algorithms directly
in the logic is an advantage, since this means that there is only one formalism
that has to be implemented.

The HOL system is an interactive proof assistant, based on higher order logic
(a polymorphic version of the simple theory of types [3]). Other logics can be
embedded in HOL, using the HOL logic as a meta-logic. In this paper, which
extends the previous work in [8], we formalise TLA in HOL by defining the
semantics of TLA in HOL. The proof rules of TLA are then proved as ttOL
theorems. After this, these rules can be used for reasoning about programs. This
means that we can show that a program has a certain property, or that one
program implements another one, by proving a corresponding HOL theorem.
We restrict ourselves to Simple TLA. This means that we do not consider hiding
of variables and refinement mappings.

We assume that the reader is familiar with the HOL system and its version
of higher order logic, as described in the documentation of the HOL system [4].
When referring to HOL-terms and interaction with the HOL system we use the
syntax of HOL. In particular, we note that the scope of binders and quantifiers

57

extends as far to the right as possible. To make formulas more readable, w e
often omit type information which can be inferred from the context. Also, we
use the ordinary logical symbols (the boolean t ruth values are denoted F and T).

2 Basic Concepts of TLA in HOL

In this section, we first give an overview of TLA and then describe how TLA is
semantically embedded in HOL.

2.1 T h e T e m p o r a l Logic o f A c t i o n s

One of the main ideas of TLA is that algorithms are expressed directly in the
logic, rather than in a separate programming notation. TLA is based on a simple
temporal logic, with [] ("always") as the only primitive temporal operator.

An action is a boolean expression that states how initial and final states are
related. As an example,

(x' = x -4- I) A (y' = y) (1)

is an action that increments z by 1 and leaves y unchanged (thus primed variables
always stand for final states).

Predicates can always be interpreted as actions (as actions, they put no
restrictions on the final states). Similarly, both predicates and actions can be
interpreted as temporal formulas. A predicate asserts something about the state
at t ime 0 while an action relates the states at time 0 and time 1.

If A is an action and f is a state function, then [Air is the action

def
[.4Is = .4 v (f = #)

where f~ is the same as f but with all occurrences of program variables primed.
As an example, if A is the action (x' = x + 1) A (y' = y) then the action

[A](z,y) permits arbitrary changes of all other variables than x and y. In this
way stuttering can be modelled.

Va r i ab l e s a n d T y p e s . TLA assumes that there is an infinite supply of pro-
gram variables, though a given algorithm always mentions only a finite number
of them. The values that variables can take are not organised in types. Instead,
TLA assumes that there exists only one single set of values, and a variable can
take any value from this set.

E x p r e s s i n g A l g o r i t h m s in T L A . An algorithm is described by a formula

n = l . i t ^ I ^ F (2)

where Init is a predicate that characterises the permitted initial states, A5 is
the disjunction of all the actions of the algorithm and F is a formula that de-
scribes a fairness condition (thus safety and liveness are treated within a single

58

framework). Note that the predicate Init is used as such in the TLA-formula
(2). This shows how TLA permits predicates, actions and temporal formulas to
be combined.

The safety part of (2) is D[Af]I which states that every step of the program
must be permitted by Af or it must leave f unchanged. Typically, f is a tuple
containing all variables that the algorithm works on. Then D[A/~f states that
every step is an Af-step or a stuttering step.

The liveness part F is typically a conjunction of fairness conditions on actions
of the algorithm. Fairness requirements are easily expressed in TLA. Weak and
strong fairness with respect to an action .,4 is expressed as

WF:(,4) (El{)(,4):) V (DO-Enabled(,4):)
doj V

where ('4)f = -~[','4]f and Enabled(,4) is true of those states in which it is
possible to perform .4.

As a proof system, TLA has only a small set of basic proof rules. In addition
to this, simple temporal reasoning is used, as well as ordinary mathematical
reasoning about actions. In TLA, proving that program / / has property DO
means proving that the TLA formula

H ~ DO

is valid. Similarly, proving that 11 is implemented by another program H I means
proving that the formula 11' =:~ 11 is valid.

An Example Algor i thm. As an example we consider a simple algorithm,
which increments variables x and y indefinitely. The initial state is characterised
by the predicate

Ini*1%f (x = 0) A (y = 0)

The incrementation is defined by the following two actions:

M 1 % f X I = X - t - I A y I = Y

J~2 %f Y~=Y+ 1 A x ~ = x

The fairness requirement is weak fairness with respect to both actions, so the
algorithm is described by the following formula:

111 = Initl A O[.M1 V A42](~,y) A WF(~,y)(A41) A WF(~,y)(A42) (3)

59

2.2 S t a t e s , P r e d i c a t e s a n d A c t i o n s in H O L

In our formalisation, we assume that every variable has a well-defined type.
Much can be said about advantages and disadvantages of typing. Our choice is
dictated by the typing rules of HOL, and in Sect. 4.2 we will se how the typing
supports implementation proofs.

We formalise states as tuples where every component corresponds to one
variable of the state (the type of the component indicates what type its values
must have). The state is made potentially infinite by adding a final component
with polymorphic type. This final component ("the rest of the universe") can be
instantiated to any tuple.

As an example, we consider the state space containing the variables z and y
which range over natural numbers. The corresponding state space in HOL has
type :nura#num#* (type variables have names beginning with an asterisk).

Predicates and actions are formalised as boolean expressions with lambda-
bound program variables. For example, in the above mentioned state space, the
action (1) is formalised as

A (x , y , z) (x ' , y ' , z ') . (x~=x+l) h (y~=y)

and the state predicate x > 0 is formalised as

A(x ,y , z) . x>O

With this way of treating predicates and actions, substitutions can be for-
malised neatly as a combination of an application and an abstraction. For ex-
ample, the predicate z + y > 0, with y substituted for x, is formalised as

A(x ,y ,z) . (A(x ,y ,z) . x-by>O) (y ,y ,z)

which beta-reduces to

A(x,y,z) .y§

as it should. Note that the variables are anonymous, in the sense that the action
(1) is equivalently expressed by

~ (a , z , x) (c , t ' , z ') . (c=a+ l) A (t'----z)

However, we avoid confusion if we use the TLA rules for priming as a convention
when writing actions in HOL. In passing, we note that the variables of ordinary
programs are also anonymous, in the sense that we can usually change the name
of a variable throughout the program without changing the effect of executing
the program.

Constants (called rigid variables in TLA) are formalised as variables that are
not bound by A-abstraction.

60

C o n n e c t i v e s f o r P r e d i c a t e s a n d Ac t ions . The boolean connectives are lifted
to predicates and actions in a straightforward way. The connectives for predi-
cates are called pnot , pand, por, pimp etc. Similarly, the connectives for actions
are called a_not, aand, etc. As examples, we show the theorems that define the
lifted conjunctions:

Vale f p pand q = As. p s A q s

f-de/ a aand b = As s'. a s s' A b s s I

where s and s' are states.
We also define functions that represent validity:

~-def p v a l i d p = Vs . p s

I-dej: a v a l i d a = Vs s ' . a s s '

2.3 T e m p o r a l Logic in H O L

We have formalised the TLA logic by semantically embedding in HOL in a
straighforward way. Time is represented by natural numbers and behaviors have
type :num---*state where : s t a t e is the type of the state (in the generic case,
: s t a t e is just a polymorphic type). Temporal formulas are represented as ~em-
poral properties, i.e., as boolean functions on behaviors. The following theorem
defines the O-operator:

F'de f box f t ---- V i . f (A n . t (i + n))

for temporal formula f and behavior t .
We also lift the boolean connectives to temporal formulas, giving them the

names t n o t , rand, etc. For example, the following theorems define lifted con-
junction and lifted validity:

}-de $ f t a n d g : A t . f t A g t

~-def tvalid f = Vt. f t

where t is a behavior.

2.4 T L A F o r m u l a s in H O L

We have formalised TLA in H 0 L by directly defining the semantics of TLA.
The HOL system also permits another approach, where one defines a new type
corresponding to TLA formulas and then define the semantics separately. How-
ever, the syntax of TLA is such that it would be quite involved to define TLA
formulas as a new type.

One consequence of our approach is that TLA formulas are a subset of the of
type : (num---.state)---*bool which represents temporal properties. Thus we do
not formalise the notion of "well-formed TLA formula" at all. This is justified by
a pragmatic viewpoint: our aim is to mechanise TLA-reasoning about algorithms,
not to reason about the properties of the TLA logic itself.

61

T L A F o r m u l a s as T e m p o r a l P r o p e r t i e s . In TLA, every predicate can also
be interpreted as an action or as a temporal formula. I n our formalisation this
is not true. Instead, predicates, actions and temporal formulas have distinct
types. We define functions that do the "lifting" from predicates to the action
and temporal levels (see Fig. 1).

It tnot, tand, . . .

e m p o r a l l e v e l)

l i f t a t ~

J
anot, aand, . . .~ liStpt
action level J

liftpa,

redicate level)

Fig. 1. Levels of the TLA logic

The functions liftpa and liftpa' that lift predicates to actions are defined
as follows:

I-def l i f t p a p = As s ' . p s

~'def liftpa' p ---- As s'. p s'

Similarly, the functions l i f t p t and l i f t a t that lift predicates and actions
to the temporal level are defined as follows:

t-de S l i f t p t p t = p (t 0)
bde l l i f t p a a t = a (t 0) (t 1)

The square function [,41I and the Enabled predicate are formalised by the
following defining theorem:

[-def s q u a r e a f = a a o r (As s ' . f s = f s ')

~def enabled a ---- As. 3s'. a s s'

62

where f is a function from states to an arbitrary type.
FinMly, we consider how an algorithm is represented. We assume that we are

given a predicate (the initialisation in• an action (a c t i o n) and a temporal
formula (the liveness part l i v e) . The algorithm is then described by the formula

(liftpt init) tand (box (liftat (square action w))) rand live

where w represents the function A(zl, ..., xn, z).(zl, ..., xn) which takes the global
state as argument and returns the part of the state that the algorithm works on
(i.e., the state with the last component removed).

A n E x a m p l e A l g o r i t h m . As an example we consider the algorithm described
in (3). The following defining theorems show how this algorithm is formalised:

}-de] I n i t l = A(x ,y ,z) . (x=O) A (y=O)
[-de] M1 = A (x , y , z) (x ' , y ' , z ') . (x '=x+l) A (y '=y)

}-def M2 = A (x , y , z) (x ' , y ' , z ') . (y '=y+ l) A (x'=x)
[-de.[W : A (X , y , Z) . (X , y)

}-def F = (WF M1 w) tand (WF M2 w)
}-dey Progl = (l i f t p t I n i t l) tand

(box (l i f t a t (square (M1 aor M2) w))) rand F

3 The TLA Logic in HOL

We will not state all the proof rules of Simple TLA. Instead, we consider two
typical rules in some detail. The first rule is called INV1 and is used to prove
invariance properties:

I A [,Y~I =~ I I
I A O[A~I ~ [31

This rule expresses the fact that if all program actions preserve I , then t:]I holds
provided I holds initially.

In HOL, the rule INV1 becomes

}- avalid (((liftpa I) aand (square N f)) aimp (liftpa' I))

tvalid (((liftpt I) rand (box (square N f))) timp (box (liftpt I)))

Note how the HOL implication corresponds to the meta-implication in the rule.
The TLA rules that are used for reasoning about liveness are generally more

complicated than the above rule. An example is the rule SF1 which permits the
deduction of liveness properties from strong fairness assumptions:

63

P A [Af]l ~ (P ' V Q')
P A (.h/')f ::~ Q'

QP A D[N]f A [3F =~ <~Enabled(A)/

D[X'] 1 A S F / (A) A DF ~ (P .,.+ q)

The formalisation of this rule in HOL is quite a big expression. W hen the rule
is applied, however, one never has to work with the rule as a whole. Instead, the
present goal is matched against the conclusion of the rule, and three subgoals
are produced, one for each assumption of the rule.

Rules of TLA, such as the above two, are represented as theorems in HOL
which are proved using the definition of the semantics. At first sight the rules
in HOL may look ugly, since we cannot mix predicates, actions and temporal
formulas as neatly as TLA does; we have to use the lifting functions. However,
this is sometimes an advantage, since we avoid the confusion which can arise
when the same term is sometimes a predicate and sometimes a temporal formula.
The proofs (in HOL) of the above rules are quite straighforward, using rewriting
and (in the case of the liveness rules) induction.

From the basic proof rules, further rules can easily be derived. The proofs of
such rules in HOL mirror the paper-and-pen proofs almost exactly.

U se o f W e l l - f o u n d e d Sets . An important rule in liveness proofs is the Lattice
rule, which encodes the principle of well-founded ranking. This rule presupposes
the existence of a well-founded order on some set involved in the reasoning. To
support the use of this rule in HOL reasoning, we have created a separate theory
of well-founded sets where the notion of well-foundedness is defined and basic
properties of well-founded sets are proved.

4 Reasoning about Algorithms

Once we have proved the proof rules of Simple TLA, we can use them to reason
about algorithms in HOL. We shall now give examples of two kinds of reasoning:
proving that a program has a certain property and proving that one program
implements another one. Formally, these amount to the same thing in TLA,
since programs are formulas in the logic.

4.1 V e r i f y i n g P r o p e r t i e s o f P r o g r a m s

As an example, we shall show how mutual exclusion is proved for a simple algo-
rithm. The example is taken from [6]. It is a refinement of the simple example
considered earlier which incremented variables x and y indefinitely. This algo-
rithms works on the variables x, y ,pc l ,pc2 and sem. The variables pc1 and pc2

are program counters, taking values "A", "B" and "G", and sem is a semaphore.
The initial state is characterised by the predicate

clef I IA I ! I IA I !
Inil2 : pc1 : A pc2 : A x : O A y : O A sem : 1

64

There are six actions; two for the actual incrementing of z and y and four
for handling the semaphore:

def
Ol I : pc 1 :

def
OL2 = pc2 =

def
,81 = pc1 =

def
~2 = /~c2 =

def 71 : pCl =

def
71 ---- pc2 =

'~A" A sem > 0 A pc~ = '~B" A sem ' = s e m - 1 A Unch(x , y, pc2)

"A" A sere > 0 A pc~ = "B" /X sem ' = s e m - 1 A Unch(z , y, pc1)

" B " A pc~ = "G" A z ' = z + 1 A Unch(y, pc2, sem)

" B " A pc~ = " a " A y' = y + 1 A Unch(x, pc1, sem)

"G H A pc~ = HA" A sem ' = sem + 1 A Unch(x, y, pc2)

" G " A pd 2 = "A" A sem I sem + 1 A Unch(x, y , p c 1)

where Unch f is defined to mean f ' = f . An intuitive picture of this algorithm
is given in Fig. 2).

s e r e ~ = sern W l

~ _ sem > O ~'~

pc1 = "A" J

sem t ~ 8era 1

] x e = x + l

(p c l = " G ")

sere 1 ~ 8 e m - 1 1 ~ .]

pc2 = I IBII~]SC~Ill

y' = y+ lJ

= s e m + l

Fig. 2. Intuitive description of the algorithm//2

The algorithm is described formally by the formula

//2 I,,il2 ^ D[.,% ^ ^ aFro(N2)

where N1 = O~IV ~1 V~/1 and N2 = a2Vfl2 V7~ and w = (z , y , pcl ,pc2, sem) .
In the fairness condition strong fairness is used in order to guarantee that the
refined program implements the p rogram/ /1 (cf. Sect. 4.2).

We are interested in the mutual exclusion property of this algorithm, i.e., the
property that the algorithm never reaches a situation where pcl = pc2 = " B ~1
holds. This is shown by proving the formula:

/I2 =~ t3(pcl = 'W'V pc2 = '91")

65

The translation of this algorithm into our HOL-formalisation is straightfor-
ward. The state is represented by the tuple (x , y , p c l , p c 2 , s e m) which has the
type :num#num#tri#tri#num#**. Here : t r i is a flat type with the three ele-
ments A, B and G, defined by the means of the built-in type definition package of
the HOL system. The possibility to define types in this way turns out to be very
handy in program verification. If the program counters were defined to be, e.g.,
of the type :num, we would have needed additional arithmetic reasoning, which
is tedious in HOL.

The initialisation is defined by the defining theorem

bd4 Init2 =

A(x,y,pcl,pc2,sem,z).

(pcl=A) A (pc2=A) ^ (x=0) A (y=0) A (sem=l)

As an example of the actions, we show the theorem which defines the action ~1 :

["def Betal =

A (x,y,pcl ,pc2, sere,z) (x', y' ,pc l',pc2', sem',z').

(pcl=B) A (pcl'=G) A (x'=x+l) A (y'=y) A (sere'----sere) A (pc2'=pc2)

The other five actions are defined accordingly. We also define

bd~ N1 = Alphal aor Betal aor Gammal

~d~ N2 = Alpha2 aor Beta2 aor Gamma2

~d~ W = A(x,y,pcl,pc2,sem,z).(x,y,pcl,pc2,sem)

~d~ F2 = (SF N1 w) rand (SF N2 w)

bd4 Prog2 = (liftpt Init2) tand

(box (liftat (square (NI aor N2) w))) rand F2

Now the mutual exclusion property of this algorithm can be proved in the the-
orem

tvalid

(Prog2 timp (box (l i f tp t (A(x,y ,pcl ,pc2,sem,z) . (pcl=l) V (pc2=A)))

This theorem is proved by means of a rule for proving invariance properties using
invariants. The invariant is in this case the following:

sere + (pCl = '~1" ~ Oil) + (pc2 = '~4" ~ 011) = 1

where we use the notation b ~ e l f for conditional expressions.
Using this invariant, the proof of the mutual exclusion property is quite

straighforward. However, it involves some arithmetic which means that it is not
trivial in HOL.

66

4.2 P r o v i n g C o r r e c t n e s s o f I m p l e m e n t a t i o n s

The two algorithms we have considered were chosen so that II2 is an imple-
mentation o f / / 1 . To prove this, we have to prove the validity of the formula
//2 =:~ Ha. This can be reduced to proving the following:

Init2 ~ Init~ (4)

D[X1 v X~]~ ~ D[~,tl v M2](~,~) (5)
H2 ::~ WF(x,u)(A.4,) A WF(=,y)(.~42) (6)

where w is the state tuple o f / /~ .
Note that the types of the state spaces of the two programs are as follows:

P rog l : num~num~*
Prog2 : num~num~tri~tri~num~ * *

These types match, since the type variable :* ("the rest of the world" for P rog l)
can be instantiated to : t r i # t r i # m m # * * . In fact, this instantiation is done au-
tomatically by the HOL system.

Formulas (4-6) can be translated directly into HOL goals. The proofs of (4)
and (5) are straightforward, though time-consuming, as HOL is quite slow in
working with tuples.

The proof of (6) is more complicated and rather lengthy. The complication
arises partly from the use of TLA's Lattice-rule. Informally this kind of proof
is easy to handle, as one can refer to pictures when reasoning about simple
well-founded sets, but in HOL it quickly becomes complicated. Furthermore,
the formulas used for proving liveness properties are the most complex ones in
the TLA proof system.

A general source of complication is the fact that the goals often must be
transformed before they can be matched to the proof rules of the TLA logic.
These transformations can generally be justified by appealing to some simple
tautology. This means that a lot of effort goes into proving tautologies on both
the predicate, action and temporal levels, and into doing transformations on the
goals.

5 C o n c l u s i o n

Our work shows that T L A can be represented in HOL in such a way that rea-
soning about algorithms can be mechanically checked. We have defined the se-
mantics of the basic concepts of TLA and proved part of the basic proof rules of
TLA as HOL theorems. Once this was done, reasoning about algorithms could
be done in HOL in a way which corresponds closely to the way reasoning is
carried out on paper. Thus HOL works as a proof checker for TLA reasoning.

Since we embed TLA semantically in HOL, our formalisation does not permit
meta-level reasoning about the TLA logic. It is possible to formalise TLA in HOL
in a way which would permit such reasoning, but such a formalisation would be

67

much more difficult to use in practice. Melham discusses this problem in his
formalisation of the pi-calculus in HOL [7].

TLA reasoning involves proofs on two levels: the temporal level and the level
of actions. Proofs on the temporal level involve using the proof rules of TLA
and simple temporal reasoning. Proofs on the action level involve reasoning over
the datatypes that the program handles (integers, lists, etc.). We have built a
theory for the first kind of reasoning; action reasoning in HOL is supported by
the numerous libraries that are part of the HOL system.

Reasoning using HOL can be slow and tedious, for many reasons. A lot
of effort goes into the transformation of goals into a form which matches the
conclusion of some proof rule of TLA. Reasoning using well-founded sets involves
a lot of straighforward but tedious proof details. Furthermore, reasoning on the
action level is often arithmetic reasoning, at which HOL is notoriously inefficient.
Many of these problems could be avoided if HOL could be made to support
automatic proofs. In particular, we think that much of TLA reasoning could be
automated if the user could supply the system with hints (e.g., invariants and
definitions of well-founded orders) and if good libraries (e.g., for semi-automatic
arithmetic) were added to the HOL system, for use in action level proof.

In the near future we will investigate to what extent the proofs reported in
this paper can be re-used in other similar examples. This will give an indication of
the degree of automation that is possible. Certainly such automation will require
a substantial amount of programming in ML, the meta-language of HOL.

The definition of algorithms in HOL notation is unnecessarily difficult. This
problem could be solved by designing some kind of interface which allows the user
to describe algorithms in a TLA-like notation which would then be automatically
translated into HOL. Such interfaces are not supported by the HOL system at
present.

One important aspect of TLA is the treatment of simulation relations be-
tween programs. Simulation is proved using refinement mappings. In TLA this is
based on existential quantification of program variables. Expressing this in HOL
is left for future work.

A c k n o w l e d g e m e n t s

We wish to thank the anonymous referees for their comments and helpful sug-
gestions.

R e f e r e n c e s

1. R.J.R. Back and J. yon Wright. Refinement concepts formalised in higher-order
logic. Formal Aspects of Computing, 2:247-272, 1990.

2. A.J. Camilleri. Mechanizing CSP trace theory in higher order logic. IEEE Trans-
actions of Software Engineering, 16(9):993-1004, 1990.

3. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

68

4. The HOL System Documentation. Cambridge, 1989.
5. L. Lamport. A temporal logic of actions. Techn. Rep. 57, DEC Systems Research

Center, April 1990.
6. L. Lamport. The temporal logic of actions. Manuscript, January 1991.
7. T.F. Melham. A mechanized theory of the r-calculus in HOL. Techn. Rep. 244,

University of Cambridge Computer Laboratory, January 1992.
8. J. yon Wright. Mechanising the temporal logic of actions in HOL. In Proceedings

o] the 1991 HOL Tutorial and Workshop. ACM, August 1991.

