
Efficient Local Correctness Checking

Kim Guldstrand Larsen
Aalborg University, Denmark *

Motivation

This paper deals with the problem of verifying the correctness of a finite-state parallel
system presented in terms of a finite labeled transition system. More precisely, we consider
logical as well as behavioural specifications and the associated correctness checking problems
(model-checking and equivalence/preorder--checking).

A number of theoretical techniques and tools have been developed. Here we mention
the algorithms presented in [EL86, CSglb, PT87, PS90] and the tools [LMV88, RRSV87,
EES86, CPS88]. However, traditionally the techniques applied are global, in the sense
that they prerequire the generation (and storage) of the complete transition system be-
fore verification. As the size of the the global transition systems may grow exponen-
tially in the number of parallel components, the main limitations of these traditional
tools has been a space problem. In the last few years there have been a growing inter-
est in techniques that avoid this global preconstruction. Here we mention the work of
[FMgl, CS91a, GW91b, GW91a, And92]. In particular the work in [CS91a] and land92]
are closely related to ours.

However, existing work in this direction has been developed mainly for specific cor-
rectness problems. In this paper we provide an abstract and uniform description of an
efficient and local technique, which we show applicable to a variety of model-checking and
equivalence/preorder--checking problems. In fact, the abstract technique we present is the
very heart of all tools of the TAV-system [JGZ89].

Our general technique is based on a notion of consistency of Boolean Equation Sys-
tems (section 1), in terms of which a number of correctness problems may be represented
(section 2). We show briefly how consistency may be checked using a well-known global
technique (section 3). In the paper we provide two proof systems for determining con-
sistency with respect to a Boolean Equation System. We provide suitable soundness and
completeness theorems for the proof systems, and indicate how to extract local consistency
checking algorithms. The first proof system (section 4) captures the essence of a number
of recently developed (and implemented) model-checking techniques for the modal mu-
calculus [Lar90, SW89, Cleg0, Win89]. However, these techniques yield exponential time
worst case complexity. The second proof system (section 5) remedies this deficiency and
yields a polynomial-time local consistency checking algorithm. In the conclusion we dis-
cuss how the presented local technique - - which is based on the behavioural semantics of
processes - - may be combined with algebraic properties of processes.

* Address: Dep. of Math. and Comp. Sc., Aalborg University, Fredrik Bajersvej 7, 9220 Aalborg,
Denmark. Telephone: +45 98158522. Email: kgl~iesd.auc.dk. This work is done in the context
of ESPRIT Basic Research Action 7166, CONCUR2. Also the work has been supported in part
by the Danish Natural Science Research Council through the DART project.

31

1 B o o l e a n E q u a t i o n S y s t e m s

In this section we shall present the notion of Boolean Equation Systems. As we shall see in
the next section, many correctness problems encountered in the area of parallel and reactive
systems may by represented and solved through the use of Boolean Equation Systems.

The basis of Boolean Equation Systems is that of a negation-free, propositional formula.
Let V be a set of (propositional) variables. The set s of negation-free, propositional
formulae over V is given by the following abstract syntax:

where x E V. We say that a formula ~b is simple if it is in one of the forms t t , f f , xl A x2
or xl V x2, where xl and x2 are variables from V.

Semantically, we interpret formulae with respect to an environment p : V ~ Bool
mapping variables to booleans (Bool -= {0, 1}). More precisely, for p an environment and ~b
a formula we define the boolean value [~b]p inductively on r as follows:

[x]p = p(x)

[t q p = 1

[f q p = 0

[r A ~b2]p = min {[~]p, [r

[r v ~] p = max {[r [r

Syntactically the desired semantics of variables of V is specified recursively through
the use of an equation system, E : V ~ s over V. That is, E is a function which for
each variable x gives the (recursive) definition, E(x) E s for x. We shall write x --E ~b to
indicate that E(x) = r We are now able to give a succinct definition of a Boolean Equation
System:

D e f i n i t i o n l . A Boolean Equation System is a pair

= (V,E)

where V is a finite set of variables and E is an equation system over V. The Boolean
Equation System (V, E> is said to be simple in case E(x) is a simple formula for any
variable x.

An equation system E specifies a semantic requirement to an environment p. In partic-
ular, for any variable x, [x]p must equal [E(x)]p. If p has this property, we call it a model
with respect to E. We identify on this basis two sets of variables:

D e f i n i t i o n 2 . Let ~ = (V, E) be a Boolean Equation System. A variable x is said to be
consistent with respect to s if p(x) = I for some model p of ~. We denote by Cz the set of
all consistent variables. I f a variable z is not consistent we call it inconsistent.
A variable x is said to be factual with respect to s ifp(x) = 1 whenever p is a model ofs
We denote by Se the set of all factual variables.

32

Given a Boolean Equation System ~ = (V, E) we may define a functional .7" e : 2 V ~ 2 V
by:

7~(A) = {x e V I [E(x)]pA = 1}

where A C_ V, and pA is the characteristic function for A yielding 1 for any variable in A and
0 for variables outside A. As we only allow the use of negation-free formulae in an equation
system it may be shown that ~r~ is a monotonic function on the complete lattice of subsets
of V ordered by set-inclusion. Using the standard fixed-point result due to Tarski [Tar55],
this implies that Yc has a maximal fixedpoint, r y e , as well as a minimal fixedpoint, PYze.
It is routine to show that vY~ coincides with the set of consistent variables Ce and that
P~'e coincides with the set of factual variables Se.

E x a m p l e 1. Let E = (V, E) be the Boolean Equation System, where V = {zl, z~, za, z4}
and E is defined by the following four equations:

Zl = g Zl A Z2 Z3 = E f f

:g2 -=E X3 V x4 ~4 - :E t t

It should then be obvious that Ce = {xl, x2, x4} and Sz = {x2, z4}. I:]

In logic a formula is called consistent provided one cannot infer contradictions from it.
Our notion of consistency corresponds closely to this usage of the term: a variable x is
consistent provided you cannot infer 0 = 1 from the assumption that z = 1. Similarly, our
use of the term factuality corresponds to the standard notion of theoremhood in logic. In
the following sections we shall concentrate on methods for checking consistency. Methods
for factuality checking may be obtained by straightforward dualisation.

In the analysis we shall state our complexity results in terms of the size of a Boolean
Equation System r = (V, E) defined as [~r = ~ - ~ v [E(x)[, where the size of a formula ~b
is defined inductively as: [t t I = Ix~l = I~l = 1 and kbt A ~b~[= [~bl V ~b2[= [~bt[+ kb2]. Also,
we shall make some general assmnptions about the representation of a Boolean Equation
System. Firstly, we shall assume that variables are represented by natural numbers (which
we in turn assmne to be representable in constant amount of memory). Secondly, functions
from finite subsets of natural numbers (e.g. E of a Boolean Equation System ~ = (V, E)) will
be represented with efficient access to the value of one particular element in the domain
(constant time as for "array" in many programming languages). Finally, note that any
Boolean Equation System ~ = (V, E) may be transformed into a Simple Boolean Equation
System with only a linear blow-up: if z =E ~1 V ~b~ and ~bl and q~ are compound formulae
themselves simply add two new variables z§ and z ~ and replace the above equation with
the following three: z =E zr V x§ z§ =B ~l and z§ =E ~2. Repeating this procedure
will eventually result in the desired Simple Boolean Equation System.

2 R e p r e s e n t i n g C o r r e c t n e s s P r o b l e m s

We adopt the reactive view of parallel processes advocated ill [Pnu85]; i.e. we model the
behaviour of a process ill terms of a labelled transition system describing its potential
interaction with the environment. Having adopted this view, the correctness of a process

33

may be formulated in a variety of ways: In the process algebraic framework [Mil80, Mi189,
Hoa85, BK85, Bou85, BB87], a number of behavioural equivalences and preorders exists
for comparing (concrete and abstract) processes. Alternatively, one may use formulae of
Temporal and Modal Logic [BAPM83, Koz82] for specifying the desired behaviour of a
process.

We claim that several of these notions of correctness may be represented as consistency
(and factuality) problems of Boolean Equation Systems, thus allowing a single, uniform
treatment. Due to lack of space we justify this claim by only a few illustrating examples.
In particular, we show in this section how to represent bisimulation equivalence problems
[Par81, Mi!83] and simulation problems [Mi183, Lar87] between (finite-state) procegses as
Boolean Equation Systems. These two correctness problems are just a small sample of
problems representable in terms of Boolean Equation Systems, and they have been selected
because of their simplicity. Other problems which might have been presented include: ~-
bisimulation [LS91] (or ready bisimulation [B1o88]), m-nested simulation, refinement be-
tween modal transition systems [LT88], equation solving problems [Shi, Par89, LXg0] and
other synthesis problems. Also, model-checking problems as well as satisfiability problems
with respect to the modal nu-calculus are representable as Boolean Equation Systems.

Definit ion3. A labelled transition system is a structure P = (S,A,---+) where S is a set
of states, A is a set of actions and ---~C_ S x A x S is the transition relation. A labeled
transition system 7 ~ is said to be finite provided S and A (and hence ---+) are/~aite.

The well-known notions of simulation and bisimulation [Par81, Mi183, Lar87] provide
means of identifying processes based on their operational behaviour. Below we recall their
formal definitions:

Definit ion4. Let P = (S, A, ---r be a labelled transition system. Then a simulation R is
a binary relation on S such that whenever (P, Q) E R and a E A then the following holds:

- Whenever P --~ P', then Q _L~ Q, for some Q' witll (P' , Q') E R,

Q is said to simulate P in case (P, Q) is contained in some simulation R. We write P ~_ Q in
this case. A binary relation R on S is a bisimulation in case both R and R T are simulations
2. p and Q are said to be bisimilar in case (P, Q) is contained in stone bisimulation R. We
write P ,,, Q in this case.

We now provide the representation of simulation and bisimulation as Boolean Equation
Systems:

D e f i n i t i o n 5 . Let 7 ~ = (S, A, ---r be a finite labelled transition system. Then the Boolean
Equation System C~ = (V, E) is denned as Xp, Q E V whenever P, Q E S, and

P-Y-~ P' Q Q~

2 For R a binary relation the transposed relation R T is defined as R T ..~ {(Q, P)l(P, Q) E R}.

34

The Boolean Equation System ~ = (V, E) is defined as Yp, Q E V whenever P, Q E S, with

. ~
p..2.r p* Q Q* Q.-~ Q* p *

The correctness Of the above representations are stated in the following theorem:

T h e o r e m 6 . Let P = (S,A,--+) be a finite labelled transition system. Then Xp, Q is
consistent with respect to s if and only if Q simulates P. Also, Y~,,Q is consistent with
respect to ~ if and only if P and Q are bisimilar.

3 G l o b a l C o r r e c t n e s s C h e c k i n g

For a Boolean Equation System g = (V, E) the set of consistent variables may be computed
in a straightforward and well-known manner, which is applied in several existing tools (e.g.
[LMV88, CPS88]): simply compute the following decreasing sequence of variable-sets:

v ~ >~e(v) ~ y~(v) ~ 5~(v) = .r;'e+~(v) (i)

That is, starting with the set of all variables V, we simply apply the functional ~'e repeatedly
until convergence is reached (in (1) this happens after n -F 1 iterations). As there are only
finitely many variables, termination is guaranteed, and standard fixedpoint theory [Tar55]
ensures that the set obtained at convergence is the maximal fixedpoint of .T'x, i.e. the set of
consistent variables.

As for complexity of this method, convergence is clearly obtained after at most IV I
iterations. In each iteration we must compute the semantic value of E(z) for each variable
z. Assuming that the access time for each variable is constant, this can he computed in time
~]~ev [E(z)[= [gl. Hence, the complete worst case time complexity is O(IVllEI), which for
Simple Boolean Equation Systems is the same as O([VI2).

4 L o c a l C o r r e c t n e s s C h e c k i n g

Using the global approach to consistency (or dually, factuMity) checking, one is forced to
consider all variables (in fact all variables are considered in each iteration). However, the
initial problem might be concerned with the consistency (or factuality) of a particular vari-
able, in which case the global technique seems to be an overkill. Instead we would want
consistency of a given variable to be determined based on information of only a few (related)
variables. For correctness problems in the world of parallel, reactive systems the global tech-
nique prerequires a total state-space construction with the familiar state-space explosion
as a likely consequence. In contrast, we would prefer to settle the correctness problem of a
parallel system in a manner that would minimize the construction and examination of its
state-space.

In the following we shall present a locM technique for consistency (and factuality) check-
ing in a manner that exploits the Boolean Equation System in a minimal fashion.

35

E x a m p l e 2. Consider the Simple Boolean Equation System given below:

X 1 ---- X 1 ^Xl X 2 - ~ Z l VX3 X3----:f:~

Clearly, Ce = {xl, x2}. However, as z l is completely independent of z2 (and xa) it should
be possible to infer consistency of xz without any information of z2 (and x3). H

In Figure 1 we present the proof system ,4 for inferring (relative) consistency of variables
of a simple Boolean Equation System s -- (V, E). The statements of the proof system are
of the form

where Xl,..., xn and x are variables of V. The statement in (2) may informally be inter-
preted as: the variable x is consistent under the assumption of consistency of Xl,..., xn.
Most of the rules are obvious. However, note in rule A3 that the consistency of a variable x
may be inferred from the consistency of its definition, under an assumption-set augmented
with the variable itself. As consistency is defined using a maxima/fixedpoint, this turns out
to be a sound rule.

Al ~ x E F A2 F b - z t t

Aa F, x t-e 4~
F~'ex x = e 4 ~ , z ~ F

F i - z x F~-zy
A4

F i - z x A y

F[-z x E~-z y
As A6 - -

F b z x V y F t ' x x V y

Fig. 1..4: Local Checking of Consistency

Formally, we may show the following soundness theorem:

T h e o r e m 7. Let C -- (V, E) be a Simple Boolean Equation System. Then

c\r c_ ~e(c) ̂ }
Fl-ex => 3C. x E C

P r o o f By induction on the inference structure. Here we only consider the case when F }-e x
has been established using rule A3. That is, F, z I-e ~b where x =z ~b. As s is simple, ~ will
be either a disjunction or a conjunction of variables. Assuming the latter - - i.e. ~b = xl A x2
- - then F, x I-e ~ must have been inferred using A4 and thus/1, x ~-e xl and F, x [-z x2.
Appealing now to the Induction Hypothesis, we may conclude that Ci \ (F O {x}) C_ Jre(Ci)

36

and z i E Ci for some Ci (i -- 1,2). Now let C = C1 (J C2 U {z}, then clearly x E C. Also
C \ F C_ ~ e i C) due to monotonicity and definition of ~'e. []

As an easy corollary we may infer that the inference system is sound with respect to
consistency:

Coro l l a ry 8. Let ~ = iV, E) be a Simple Boolean Equation Sys tem. Whenever 0 I-c x then

x E C c .

E x a m p l e 3. Reconsider the Simple Boolean Equation System from Example 2. Using the
proof system .4, consistency of xl may be inferred as follows:

Al A I

A4 {xl} ~-t xl ̂ xl
As

0t-~ zl

Note, that the consistency of zl has been inferred in a local fashion without information
about x2 m~d xs. []

The following theorem claims that Figure 1 constitutes a complete inference system for
consistency.

T h e o r e m 9 . Let C = iV, E) be a S imple Boolean Equation System. Whenever x E Ce
then ~ [-z x.

P r o o f Now let F -~ 1"2 whenever f2 C F. Given that g only contains finitely many variables
-g will be a well-founded ordering. Now, using well-founded induction on F we may show
that F I-r x whenever x is contained in some postfixed point relative to F. []

Using the inference rules of .4 in a goal-directed and backwards manner with possible
backtracking (due to the choice between the or-rules A5 and As) we clearly obtain a decision
procedure for consistency checking (easily implemented in PKOLOG). However, as we shall
see the induced decision procedure has exponential worst-case time complexity and is thus
- - though clearly a local checking technique - - inferior to the classical global technique of
the previous section. We shall see in tile next section how to remedy this deficiency.

5 Efficient Local Correctness Checking

The local checking technique of the previous section describes the essence of a number of
recent techniques for modelchecking in the modal mu-calculus [Koz82], including the proof-
system of [Larg0], the tableau system of [SW89, Cleg0] (which has been incorporated into
the Concurrency Workbench [CPS88]) and the rewrite system in [Win89]. However, in all
cases the techniques have an exponential worst case time complexity as illustrated by the
following Simple Booleau Equation System:

xo = x l V z l , x l = x~ V x2, z . _ t = z,~ V z . , xn = f f (3)

37

Trying (and obviously failing) to demonstrate consistency of z0 using the inference rules
of figure 1 in a goal-directed manner with possible backtracking will lead to a computation
with 2 n+l - 1 recursive invocations as illustrated in figure 2 for the case n = 2. Here the
superscripts indicate the order in which the invocations fails. The subscripts describe a
sequence of rules that when applied to a node will yield the parent node.

f a i l

f a i l

f a i l

f a i l I

(=o} ~'~ =,k,.A. (=o})-~ ='~,,,A.

r be xi 7

Fig. 2. Exponential Time Computation in .4.

Clearly, the source of the inemciency is caused by the fact that fa//ing attempts of
establishing (relative) consistency are not remembered, and hence must necessarily result
in recomputations when reencountered.

In figure 3 we present a proof system B for consistency checking in a manner which
remembers and recalls previously discovered inconsistency results. Given a Simple Boolean
Equation System ~? = (V, E) the proof system B permits the inference of statements of the
form:

(x, B, N) --.e (b, C, M) (4)

where x is a variable of V; B, N, C and M are subsets of V, and b is a boolean value.
In (4), (x,B,N) should be thought of as the problem given: is z consistent under the
assumption that the variables in B are consistent and knowing that the variables in N are
inconsistent? (b, C, M) then describes the answer to this question: the boolean b directly
indicates the consistency of z with respect to B and N, whereas C and M are extensions
of B and N containing results of consistency gathered during the process of answering the

38

question (x, B, N) a. In particular, these extensions will be useful in "pruning" subsequent
computations.

Btix, B,N)...*eil, BO{x} ,N) w h e n x E B o r x = e t t

B2 (x, B, N) ~ e i 0, B, N O {x}) when x E N or x =e f f

n~ i~, B u ix}, N) --~ (t, C, M)
i x, B, N) --~, i 1 , C, M) when x tZ' B O N and x =e q~

ir B O {x}, N) "*e i 0, C, M) when x r B O N and x =e r
B4 (x, B, N) ~*~ i 0, B, M O {x})

ixt, B, N) "*e i 0, C, M)
ns ix, ^ ~2, B, N) --e (0, C, M)

Bo(x, ,B,N) ~e (1,C,M) ix~,C,M) "*e (b,D,R)
i x, Ax2, B,N) " e ib, O,R)

i~,,B,N) ...~ (1,C,M)
Bvix, Vx2, B,N) "*e i l ,6 ' ,M)

B ix,,B,N) . ~ (O,C,M) (x2,C,M) "~e ib, D,R)
ix, V x2, B, N) " e i b, D, R)

Fig. 3. B: Efficient Local Checking of Consistency

For a given problem (x, B, N), the proof system B is using the set B as an assumption
set similar to the use of assumptions in the previous proof system ,4. In fact, the following
formal relationship between the two proof systems may be shown:

Whenever (z ,B ,N~ "'e (1,C,M) in B then B be x in .A.

We first give an informal description of the rules of B:

B h B2: Axioms for inferring immediate (relative) consistency/inconsistency of a variable
z. The rule B1 corresponds closely to the rule A1 of.A.

Ba, B4: In case the variable z i sno t included in any of the sets B and N the consistency of
z is reduced to the consistency of its definition (~). However, similar to the rule Aa of
.A, we are allowed to use x itself as an assumption, during the consistency checking of
~. In case ff turns out consistent under the extended assumption set, we simply inherit

a Those familiar with the terminology of Structured Operational Semantics [Plo81] may view the
inference system B as a natural semoaitics in the sense that it models fuji computatiolm.

39

the complete result obtained from # as the result of z. Otherwise - - i.e. if 4, is found
inconsistent - - also z is inconsistent, reflected in the augmentation of the result set M.
In this case, we are not able to use any information gathered in the set C as it may be
based on the (erroneous) assumption of z being consistent.

Bs, Be, By, Bs: The obvious rules for (simple) conjunctive and disjunctive formulae with
information gathered being passed from the first conjunct (disjunct) to the subsequent
processing of the second conjunct (disjunct).

Now reconsider the Simple Boolean Equation System of (3) again for n = 2. In figure
4 we use the new proof system B to infer the inconsistency of zo. Here Fi = {z0 zi}
and $2i = {zl,...,x2} for i = 0,1,2. In contrast to a goal-directed use of the previous
proof system ,4, we note that recomputation is totally avoided. In particular, we note
that inconsistency of x, is only computed once; the second time z, is encountered (,)
the assumption-sets prevents a recomputation. As a consequence, as we shall state more
precisely shortly, we avoid the exponential time complexity.

B8
(~ v=~,r~,O) -~E (o,/~,, n~)

B4
(~,,/'0,0) -~e (0, r0, n,)

Ba

B4

(x,, to, n,) -~e (o, to, n,)

(x, v x,,ro,O) ~.z (o,/%, t/,)

(zo, 0, e) -~t (o, ~, no)

B2"

Fig. 4. Inconsistency in 8.

Formally, we have shown the following soundness result for B:

T h e o r e m 10. Let s = (V, E) be a Simple Boolean Equation System. Then, whenever
(z, B, N) ~"r (b, C, M) the following holds:

ii) N n u t e = ~ ~ M n u T e = O v) b= 1 ~ z6C

iii) B C C vi) b=O ~ x E M

As an easy corollary we may infer that B is sound with respect to consistency.

Coro l l a ry 11. Let g = (V, E) be a Simple Boolean Equation System.

1. Whenever (z, 0, 0) w e (1, C, M) then x is consistent, i.e. z 6 Cr

2. Whenever (z, 0, 0) "~t (0, C, M) then x is inconsistent, i.e. z r Cz.

In contrast to the proof system ,4, where a statement may be inferred in a number of ways
due to the open choice between A5 and As of.A, the imposed left-to--right sequentiality in
B makes proofs of statements unique. Formally, we have the following:

40

T h e o r e m 12. Let s = (V, E) be a Simple Boolean Equation System. Then the following
holds:

V(z, B, N)::t!(b, C, M). (z, B, N) ""e (b, C, M)

where q[indicates unique existence.

P r o o f Now let (B, N) -g (B', N') if either B D B' and N = N ' or N D N ' (i.e. -.< is a
lexicographical ordering on pairs with the first component being minor). As V is finite, -4
will be a well-founded ordering. Now, the above theorem may be proved using well-founded
induction on (B, N) and appealing to Theorem 10. [3

In fact, not only does B provide a unique answer (b, C, M) for any given problem
(z, B, N), the proof that /3 provides may also be shown to be unique.

From Theorem 10 and Theorem 12 it is clear that B is complete with respect to consis-
tency in the following sense:

Coro l l a ry13 . Let s = (V, E) be a Simple Boolean Equation System.

1. Whenever z is consistent, i.e. x 6 Co, then (z, ~, O) w e (t , C, M) for some se~s C and M,

2. Whenever x is inconsistent, i.e. x ~. C~, then (z, O, O) " 'c (0, C, M) for some sets C and
M.

For results of complexity, we need a minimum amount of terminology concerning proof
trees. A proof tree T of/J contains statements of/3 as nodes and is either an instance of
one of the axioms B1 and B2 or is of the form:

T = T, T. (5)

where s is a statement of/3, and Tl . . . Tn are themselves proof trees, s is the conclusion of
T and should be obtainable from the conclusions of T I . . . T, using one of the rules of/3.
We now introduce a total ordering << between the nodes of a proof tree (5) inductively as
follows: s is the smallest node with respect to <<; all nodes of ~ are smaller than the nodes
of 7) whenever i < j . For the ordering among nodes of any 7~ we appeal to tile inductive
construction. Clearly, << is a total ordering with statements increasing in an 'up-or-r ight '
direction.

The following lemma states the relation between -g and <<:

L e m m a 14. Let T be a proof tree 0/'/3 and let sl = ((zi, Bi, Ni) "~z (bl, Ci, Mi)) for i = 1, 2
be nodes in T. Then (B2, N~) -~ (B1, Nl) whenever s, << s2.

As << is total ordering among the nodes of a proof tree T, it follows that there can be
no more nodes in T than the length of the longest decreasing -~-sequence. Thus, for a given
Simple Boolean Equation System s = (g, E), any B proof tree will have no more than]VI 2
nodes. Under the assumption of constant access time for each variable of V, checking the
side--condition of any of the rules of B may be done in constant time. Hence, using the rules
in a goal-directed manner will yield an algorithm with O(IVI 2) worst case running time.

41

Concluding Remarks

In this paper we have presented a proof system for efficient consistency--checking of vari-
ables of a (Simple) Boolean Equation System. We claim that several model-checking and
equation/preorder-checking problems may be dealt with using the developed techniques.
However, the techniques of this paper only leads to a model-checking method for pure
saftety properties. Properties which can be expressed in the modal mu-calculus using only
minimal fixedpoints may be dealt with by a simple dualization of the proof system 8. For
properties requiring the used of both minimal and maximal fixedpoints our techniques may
be extended to the modal mu-calculus of alternation depth one (i.e. any recursive subfor-
mula with alternating fixedpoint must be closed). To deal with mixed fixedpoints in this
restricted sense, we simply consider lists of Boolean Equation Systems tel, . . . ,~:n], where
we alternate between consistency and factuality of variables and with variables of s only
depending on variables of s , s Local model-checking for the fu l l modal mu-calculus

IXin921, where an O (m • • algorithm is presented Here m is
%

is contained in

the size of the process P, n is the size of the formula F , and k is the alternation depth of
F.

Applying the proof system B to s and ~:~ we obtain local techniques for checking bisim-
ulation equivalence and simulation preorder. The techniques will clearly be based entirely
on the behavioural semanties of processes, and will in no way take account of their possible
syntactic structure. However, it is possible to extend B so that certain algebraic properties
of processes may be utilized. More precisely, for any consistency-preserving relation _= 4 we
may change the rule Bt as follows:

B ~ (x , B , N) ~ z (1 , B t d { x } , N) w h e n 3 y e B . x = y , o r z = z t t

while maintaining a sound proof system with respect to consistency. Thus, it is sufficient
that x is =-related to some member of B in order to invoke the axiom (and hence avoid
further computation). Now, we may represent various algebraic laws between processes as
a relation = between variables of s and ,~,. The fact that the parallel operator of CCS
[Mil80, Mi189] is commutative and has ni l as unit with respect to bisimulation may be
represented as:

YPlo ,a - Yole , a

r p l . . , a - rp , a

Taking in this way account of commutativity (and similarly associativity) of the parallel
operator will clearly yield a nmch improved algorithm in verification of systems with many
identical components, as we may identify system states with the same number of components
in any particular state. Also, the fact that ni l is the smallest process with respect to -~ may
be reflected a s Xni I ,p -~ gg thus avoiding computation completely. However, checking the
side-condition of B~ may no longer necessarily be done in constant time, and it will depend
highly on the combination of the particular example and the choice of - as to whether B~
yields an improvement.

4 = is consistency-preserving if y 6 Ur and x -- y implies x 6 Ue.

42

Finally, it is clear that the global technique (with the required state-space precomputa-
tion) cannot be used for processes with infinite state space. We are currently investigating
the relationship between our proof system B and the tableau-technique of [HS91] for con-
textfree processes.

Acknowledgement

The author would like to thank Liu Xinxin for many inspiring discussions on the subject
of local correctness checking. Also, we would like to thank Hans Hiittel for reading and
commenting on drafts of this paper.

References

land92]

[BAPM83]

[BBsH

[m<85]

[Blo88]

[Sou85]
[Ole9O]

[CPS88]

[cs91a]

[CS91b]

[EES~]

[EL~]

[FM91]

[GW91a]

[GW91b]

[Hoa85]
[HS91]

H.R. Andersen. Model checking and boolean graphs. Lecture Notes In Computer Sci-
ence, Springer Verlag, 1992. In Proceedings of CAAP'92.
M. Ben-Ari, A. Pnueli, and g. Manna. The temporal logic of branching time. Acta
lnformatica, 20, 1983.
T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS.
Computer Networks and ISDN Systems, 14, 1987.
J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37:77-121, 1985.
Meyer Bloom, lstrail, blsimulation can't be traced. Proceedings of Principles of Pro-
gramming Languages, 1988.
G. Boudol. Calcui de processns et verification. Technical Report 424, INRIA, 1985.
R. Cleaveland. Tableau-based model checkin in the propositional mu-calculus. Acta
lnformatiea, 1990.
R. Cieaveland, J. Parrow, and B. Steffen. The concurrency workbench. University of
Edinburgh, Scotland, 1988.
R. Cleaveland and B. Steffen. Computing behavioural relations, logically. Lecture Notes
In Computer Science, Springer Verlag, 510, 1991.
R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for ethe
alternation-free modal mu-calcuins. Lecture Notes In Computer Science, Springer Vet-
lag, 1991. To appear in Proceedings of Third Workshop on Computer Aided Verification.
E.M.Ciarkr E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. TOPLAS, 8(2), 1986.
E.A. Emerson and C.L Lei. Efficient model checking in fragments of the propositional
mu-calculns. Proceedings of Logic in Computer Science, 1986.
J.C. Fernandez and L. Mounier. A tool set for deciding beharloural equivalence. Lecture
Notes In Computer Science, Springer Verlag, 527, 1991.
P. Godefroid and P. Wolper. A partial approach to model-checking. In Proceedings of
Logic in Computer Science, 1991.
P. Godefroid and P. Wolper. Using partial orders for the efficient verification of deadlock
freedom and safety properties. Lecture Notes In Computer Science, Springer Verlag,
1991. To appear in Proceedings of Third workshop on Computer Aided Verification.
C.A.R. Hoare. Communicating Sequential Proceases. Prentice-Hall, 1985.
H. Hiittel and C. Stifling. Actions speak louder than words: proving bisimilarity for
context-free processes. Proceedings of Logic in Computer Science, 1991.

43

[JGZ89].

[Lar87]

[L~90]

[LMV88]

[LS91]

[LT88]

[Lxg0]

[Mil8O]

[Mim]

[MilS9]
[Par81]

[Par89]

[PloSl]

[Pnu85]

[PSgO]

[PT87]

[RRSV87]

[Sl~]

[sw89]

[Tar55]

[Win89]

[Xin92]

K.G. Larsen J.C. Godskesen and M. geeberg. Tar - - tools for automatic verification - -
users manual. Technical Report R 89-19, Department of Mathematics and Computer
Science, Aalborg University, 1989. Presented at workshop on Automatic Methods for
Finite State Systems, Grenoble, France, Juni 1989.
D. Kozen. Results on the propositional mu-calculus. Lecture Notes In Computer Sci-
ence, Springer gerlag, 140, 1982. in Proc. of International Colloquium oil Algorithms,
Languages and Programming 1982.
K.G. Larsen. A context dependent bisimulation between processes. Theoretical Com-
puter Science, 49, 1987.
K.G. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science, 72, 1990.
V. Lecompte, E. Madelaine, and D. Vergamini. Auto: A verfication system for parallel
and communicating processes. INRIA, Sophla-Antipolis, 1988.
K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1), 1991.
Kim G. Larsen and Bent Thomsen. A modal process logic. In Proceeding on Logic in
Computer Science, 1988.
K.G. Larseu and L. Xinxin. Equation solving using modal transition systems. In Pro-
ceeding8 on Logic in Computer Science, 1990.
R. Milner. Calculus of Communicating System6, volume 92 of Lecture NoteJ In Com-
puter Science, Springer Verlag. Springer Verlag, 1980.
R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267-310, 1983.
R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
D. Park. Concurrency and automata on infinite sequences. Lecture Notes In Computer
Science, Springer Verlag, 104, 1981. Proceedings of 5th GI Conference.
J. Parrow. Submodule construction as equation solving in CCS. Theoretical Computer
Science, 68, 1989.
G. Plotkin. A structural approach to operational semantics. FN 19, DAIMI, Aarhus
University, Denmark, 1981.
A. Pnueli. Linear and branching structures in the semantics and logics of reactive
systems. Lecture Notes In Computer Science, Springer Verlag, 194, 1985. Proceedings
of 12th International Colloquium on Automata, Languages and Programming.
P.C.Kanellakis and S.A.Smolka. Ccs expressions, finite state processes, and three prob-
lems of equivalence. Information and Control, 86, 1990.
Paige and Tarjan. Three partition refinement algorithms. SIAM Journal o/Computing,
16(6), 1987.
J.L. Rixchier, C. Rodriguez, J. Sifakis, and J. Voiron. Xesar: a tool for protocol valida-
tion. users' guide. Technical report, LGI-IMAG, 1987.
M.W. Shields. A note on the simple interface equation. Technical report, University of
Kent at Canterbury.
C. Stifling mid D. Walker. Local model checking in the modal mu-calculus. Lecture
Notes In Computer Science, Springer Verlag, 352, 1989. In Proc. of Tapsoft'89.
A. Tarski. A lattice--theoretical fixpoint theorem and its applications. Pacific Journal
of Math., 5, 1955.
G. Winskel. Model checking the modal nu--calculns. Lecture Notes In Computer Sci-
ence, Springer Verlag, 372, 1989. In Proceedings of International Colloquium on Algo-
rithms, Languages and Programming 19'89.
Liu Xinxin. Specification and Decomposition in Concurrency. PhD thesis, Aalborg
University, 1992. R 92-2005.

