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Motivation 

This paper deals with the problem of verifying the correctness of a finite-state parallel 
system presented in terms of a finite labeled transition system. More precisely, we consider 
logical as well as behavioural specifications and the associated correctness checking problems 
(model-checking and equivalence/preorder--checking). 

A number of theoretical techniques and tools have been developed. Here we mention 
the algorithms presented in [EL86, CSglb, PT87, PS90] and the tools [LMV88, RRSV87, 
EES86, CPS88]. However, traditionally the techniques applied are global, in the sense 
that they prerequire the generation (and storage) of the complete transition system be- 
fore verification. As the size of the the global transition systems may grow exponen- 
tially in the number of parallel components, the main limitations of these traditional 
tools has been a space problem. In the last few years there have been a growing inter- 
est in techniques that avoid this global preconstruction. Here we mention the work of 
[FMgl, CS91a, GW91b, GW91a, And92]. In particular the work in [CS91a] and land92] 
are closely related to ours. 

However, existing work in this direction has been developed mainly for specific cor- 
rectness problems. In this paper we provide an abstract and uniform description of an 
efficient and local technique, which we show applicable to a variety of model-checking and 
equivalence/preorder--checking problems. In fact, the abstract technique we present is the 
very heart of all tools of the TAV-system [JGZ89]. 

Our general technique is based on a notion of consistency of Boolean Equation Sys- 
tems (section 1), in terms of which a number of correctness problems may be represented 
(section 2). We show briefly how consistency may be checked using a well-known global 
technique (section 3). In the paper we provide two proof systems for determining con- 
sistency with respect to a Boolean Equation System. We provide suitable soundness and 
completeness theorems for the proof systems, and indicate how to extract local consistency 
checking algorithms. The first proof system (section 4) captures the essence of a number 
of recently developed (and implemented) model-checking techniques for the modal mu-  
calculus [Lar90, SW89, Cleg0, Win89]. However, these techniques yield exponential time 
worst case complexity. The second proof system (section 5) remedies this deficiency and 
yields a polynomial-time local consistency checking algorithm. In the conclusion we dis- 
cuss how the presented local technique - -  which is based on the behavioural semantics of 
processes - -  may be combined with algebraic properties of processes. 
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of ESPRIT Basic Research Action 7166, CONCUR2. Also the work has been supported in part 
by the Danish Natural Science Research Council through the DART project. 
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1 B o o l e a n  E q u a t i o n  S y s t e m s  

In this section we shall present the notion of Boolean Equation Systems. As we shall see in 
the next section, many correctness problems encountered in the area of parallel and reactive 
systems may by represented and solved through the use of Boolean Equation Systems. 

The basis of Boolean Equation Systems is that of a negation-free, propositional formula. 
Let V be a set of (propositional) variables. The set s  of negation-free, propositional 
formulae over V is given by the following abstract syntax: 

where x E V. We say that a formula ~b is simple if it is in one of the forms t t ,  f f ,  xl A x2 
or xl V x2, where xl and x2 are variables from V. 

Semantically, we interpret formulae with respect to an environment p : V ~ Bool 
mapping variables to booleans (Bool -= {0, 1}). More precisely, for p an environment and ~b 
a formula we define the boolean value [~b]p inductively on r as follows: 

[x]p = p(x) 

[ t q p  = 1 

[ f q p  = 0 

[r A ~b2]p = min {[~]p, [r 

[r v ~ ] p  = max {[r [r 

Syntactically the desired semantics of variables of V is specified recursively through 
the use of an equation system, E : V ~ s  over V. That  is, E is a function which for 
each variable x gives the (recursive) definition, E(x) E s  for x. We shall write x --E ~b to 
indicate that E(x) = r We are now able to give a succinct definition of a Boolean Equation 
System: 

D e f i n i t i o n l .  A Boolean Equation System is a pair 

= (V,E) 

where V is a finite set of variables and E is an equation system over V. The Boolean 
Equation System (V, E> is said to be simple in case E(x) is a simple formula for any 
variable x. 

An equation system E specifies a semantic requirement to an environment p. In partic- 
ular, for any variable x, [x]p must equal [E(x)]p. If p has this property, we call it a model 
with respect to E. We identify on this basis two sets of variables: 

D e f i n i t i o n 2 .  Let ~ = (V, E) be a Boolean Equation System. A variable x is said to be 
consistent with respect to s if  p(x) = I for some model p of ~. We denote by Cz the set of 
all consistent variables. I f  a variable z is not consistent we call it inconsistent. 
A variable x is said to be factual with respect to s ifp(x) = 1 whenever p is a model ofs  
We denote by Se the set of all factual variables. 
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Given a Boolean Equation System ~ = (V, E) we may define a functional .7" e : 2 V ~ 2 V 
by:  

7~(A)  = {x e V I [E(x)]pA = 1} 

where A C_ V, and pA is the characteristic function for A yielding 1 for any variable in A and 
0 for variables outside A. As we only allow the use of negation-free formulae in an equation 
system it may be shown that ~r~ is a monotonic function on the complete lattice of subsets 
of V ordered by set-inclusion. Using the standard fixed-point result due to Tarski [Tar55], 
this implies that Yc has a maximal fixedpoint, r y e ,  as well as a minimal fixedpoint, PYze. 
It is routine to show that vY~ coincides with the set of consistent variables Ce and that 
P~'e coincides with the set of factual variables Se. 

E x a m p l e  1. Let E = (V, E) be the Boolean Equation System, where V = {zl, z~, za, z4} 
and E is defined by the following four equations: 

Zl = g  Zl A Z2 Z3 = E f f  

:g2 -=E X3 V x4 ~4 - :E  t t  

It  should then be obvious that Ce = {xl, x2, x4} and Sz = {x2, z4}. I:] 

In logic a formula is called consistent provided one cannot infer contradictions from it. 
Our notion of consistency corresponds closely to this usage of the term: a variable x is 
consistent provided you cannot infer 0 = 1 from the assumption that z = 1. Similarly, our 
use of the term factuality corresponds to the standard notion of theoremhood in logic. In 
the following sections we shall concentrate on methods for checking consistency. Methods 
for factuality checking may be obtained by straightforward dualisation. 

In the analysis we shall state our complexity results in terms of the size of a Boolean 
Equation System r = (V, E) defined as [~r = ~ - ~ v  [E(x)[, where the size of a formula ~b 
is defined inductively as: [ t t  I = Ix~l = I~l = 1 and kbt A ~b~[ = [~bl V ~b2[ = [~bt[ + kb2]. Also, 
we shall make some general assmnptions about the representation of a Boolean Equation 
System. Firstly, we shall assume that variables are represented by natural numbers (which 
we in turn assmne to be representable in constant amount of memory). Secondly, functions 
from finite subsets of natural numbers (e.g. E of a Boolean Equation System ~ = (V, E)) will 
be represented with efficient access to the value of one particular element in the domain 
(constant time as for "array" in many programming languages). Finally, note that any 
Boolean Equation System ~ = (V, E) may be transformed into a Simple Boolean Equation 
System with only a linear blow-up: if z =E ~1 V ~b~ and ~bl and q~ are compound formulae 
themselves simply add two new variables z§ and z ~  and replace the above equation with 
the following three: z =E zr V x§ z§ =B ~l and z§ =E ~2. Repeating this procedure 
will eventually result in the desired Simple Boolean Equation System. 

2 R e p r e s e n t i n g  C o r r e c t n e s s  P r o b l e m s  

We adopt the reactive view of parallel processes advocated ill [Pnu85]; i.e. we model the 
behaviour of a process ill terms of a labelled transition system describing its potential 
interaction with the environment. Having adopted this view, the correctness of a process 
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may be formulated in a variety of ways: In the process algebraic framework [Mil80, Mi189, 
Hoa85, BK85, Bou85, BB87], a number of behavioural equivalences and preorders exists 
for comparing (concrete and abstract) processes. Alternatively, one may use formulae of 
Temporal and Modal Logic [BAPM83, Koz82] for specifying the desired behaviour of a 
process. 

We claim that several of these notions of correctness may be represented as consistency 
(and factuality) problems of Boolean Equation Systems, thus allowing a single, uniform 
treatment. Due to lack of space we justify this claim by only a few illustrating examples. 
In particular, we show in this section how to represent bisimulation equivalence problems 
[Par81, Mi!83] and simulation problems [Mi183, Lar87] between (finite-state) procegses as 
Boolean Equation Systems. These two correctness problems are just a small sample of 
problems representable in terms of Boolean Equation Systems, and they have been selected 
because of their simplicity. Other problems which might have been presented include: ~- 
bisimulation [LS91] (or ready bisimulation [B1o88]), m-nested simulation, refinement be- 
tween modal transition systems [LT88], equation solving problems [Shi, Par89, LXg0] and 
other synthesis problems. Also, model-checking problems as well as satisfiability problems 
with respect to the modal nu-calculus are representable as Boolean Equation Systems. 

Definit ion3.  A labelled transition system is a structure P = (S,A,---+) where S is a set 
of states, A is a set of actions and ---~C_ S x A x S is the transition relation. A labeled 
transition system 7 ~ is said to be finite provided S and A (and hence ---+) are/~aite. 

The well-known notions of simulation and bisimulation [Par81, Mi183, Lar87] provide 
means of identifying processes based on their operational behaviour. Below we recall their 
formal definitions: 

Definit ion4. Let P = (S, A, ---r be a labelled transition system. Then a simulation R is 
a binary relation on S such that whenever (P, Q) E R and a E A then the following holds: 

- Whenever P --~ P', then Q _L~ Q, for some Q' witll (P' ,  Q') E R, 

Q is said to simulate P in case (P, Q) is contained in some simulation R. We write P ~_ Q in 
this case. A binary relation R on S is a bisimulation in case both R and R T are simulations 
2. p and Q are said to be bisimilar in case (P, Q) is contained in stone bisimulation R. We 
write P ,,, Q in this case. 

We now provide the representation of simulation and bisimulation as Boolean Equation 
Systems: 

D e f i n i t i o n 5 .  Let 7 ~ = (S, A, ---r be a finite labelled transition system. Then the Boolean 
Equation System C~ = (V, E) is denned as Xp, Q E V whenever P, Q E S, and 

P-Y-~ P' Q Q~ 

2 For R a binary relation the transposed relation R T is defined as R T ..~ {(Q, P)l(P, Q) E R}. 
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The Boolean Equation System ~ = (V, E) is defined as Yp, Q E V whenever P, Q E S, with 

. ~  
p..2.r p* Q Q* Q.-~ Q* p * 

The correctness Of the above representations are stated in the following theorem: 

T h e o r e m 6 .  Let P = (S,A,--+) be a finite labelled transition system. Then Xp, Q is 
consistent with respect to s if and only if Q simulates P. Also, Y~,,Q is consistent with 
respect to ~ if and only if P and Q are bisimilar. 

3 G l o b a l  C o r r e c t n e s s  C h e c k i n g  

For a Boolean Equation System g = (V, E) the set of consistent variables may be computed 
in a straightforward and well-known manner, which is applied in several existing tools (e.g. 
[LMV88, CPS88]): simply compute the following decreasing sequence of variable-sets: 

v ~ >~e(v) ~ y~(v) ~ . . . . . .  5~(v)  = .r;'e+~(v) (i) 

That is, starting with the set of all variables V, we simply apply the functional ~'e repeatedly 
until convergence is reached (in (1) this happens after n -F 1 iterations). As there are only 
finitely many variables, termination is guaranteed, and standard fixedpoint theory [Tar55] 
ensures that the set obtained at convergence is the maximal fixedpoint of .T'x, i.e. the set of 
consistent variables. 

As for complexity of this method, convergence is clearly obtained after at most IV I 
iterations. In each iteration we must compute the semantic value of E(z) for each variable 
z. Assuming that the access time for each variable is constant, this can he computed in time 
~]~ev [E(z)[ = [gl. Hence, the complete worst case time complexity is O(IVllEI), which for 
Simple Boolean Equation Systems is the same as O([VI2). 

4 L o c a l  C o r r e c t n e s s  C h e c k i n g  

Using the global approach to consistency (or dually, factuMity) checking, one is forced to 
consider all variables (in fact all variables are considered in each iteration). However, the 
initial problem might be concerned with the consistency (or factuality) of a particular vari- 
able, in which case the global technique seems to be an overkill. Instead we would want 
consistency of a given variable to be determined based on information of only a few (related) 
variables. For correctness problems in the world of parallel, reactive systems the global tech- 
nique prerequires a total state-space construction with the familiar state-space explosion 
as a likely consequence. In contrast, we would prefer to settle the correctness problem of a 
parallel system in a manner that would minimize the construction and examination of its 
state-space. 

In the following we shall present a locM technique for consistency (and factuality) check- 
ing in a manner that exploits the Boolean Equation System in a minimal fashion. 
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E x a m p l e  2. Consider the Simple Boolean Equation System given below: 

X 1 ---- X 1 ^Xl X 2 - ~  Z l  VX3 X3----:f:~ 

Clearly, Ce = {xl, x2}. However, as z l  is completely independent of z2 (and xa) it should 
be possible to infer consistency of xz without any information of z2 (and x3). H 

In Figure 1 we present the proof system ,4 for inferring (relative) consistency of variables 
of a simple Boolean Equation System s -- (V, E). The statements of the proof system are 
of the form 

where Xl,..., xn and x are variables of V. The statement in (2) may informally be inter- 
preted as: the variable x is consistent under the assumption of consistency of Xl,..., xn. 
Most of the rules are obvious. However, note in rule A3 that the consistency of a variable x 
may be inferred from the consistency of its definition, under an assumption-set augmented 
with the variable itself. As consistency is defined using a maxima/fixedpoint, this turns out 
to be a sound rule. 

Al ~ x E F  A2 F b - z t t  

Aa F, x t-e 4~ 
F~'ex  x = e 4 ~ , z ~ F  

F i - z x  F~-zy 
A4 

F i - z x A y  

F[-z x E~-z y 
As A6 - -  

F b z x V y  F t ' x x V y  

Fig. 1..4: Local Checking of Consistency 

Formally, we may show the following soundness theorem: 

T h e o r e m  7. Let C -- (V, E) be a Simple Boolean Equation System. Then 

c\r c_ ~e(c) ̂  } 
Fl-ex => 3C. x E C  

P r o o f  By induction on the inference structure. Here we only consider the case when F }-e x 
has been established using rule A3. That is, F, z I-e ~b where x =z ~b. As s is simple, ~ will 
be either a disjunction or a conjunction of variables. Assuming the latter - -  i.e. ~b = xl A x2 
- -  then F, x I-e ~ must have been inferred using A4 and thus/1, x ~-e xl and F, x [-z x2. 
Appealing now to the Induction Hypothesis, we may conclude that Ci \ (F  O {x}) C_ Jre(Ci) 
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and z i  E Ci for some Ci (i -- 1,2). Now let C = C1 (J C2 U {z}, then clearly x E C. Also 
C \ F  C_ ~ e i  C) due to monotonicity and definition of ~'e. [] 

As an easy corollary we may infer that the inference system is sound with respect to 
consistency: 

Coro l l a ry  8.  Let ~ = iV, E) be a Simple  Boolean Equation Sys tem.  Whenever  0 I-c x then 

x E C c .  

E x a m p l e  3. Reconsider the Simple Boolean Equation System from Example 2. Using the 
proof system .4, consistency of xl may be inferred as follows: 

Al A I  

A4 {xl} ~-t xl ̂ xl 
As 

0t-~ zl 

Note, that the consistency of zl  has been inferred in a local fashion without information 
about x2 m~d xs. [] 

The following theorem claims that Figure 1 constitutes a complete inference system for 
consistency. 

T h e o r e m 9 .  Let  C = iV, E) be a S imple  Boolean Equation System. Whenever  x E Ce 
then ~ [-z x. 

P r o o f  Now let F -~ 1"2 whenever f2 C F.  Given that g only contains finitely many variables 
-g will be a well-founded ordering. Now, using well-founded induction on F we may show 
that F I-r x whenever x is contained in some postfixed point relative to F.  [] 

Using the inference rules of .4 in a goal-directed and backwards manner with possible 
backtracking (due to the choice between the or-rules A5 and As) we clearly obtain a decision 
procedure for consistency checking (easily implemented in PKOLOG). However, as we shall 
see the induced decision procedure has exponential worst-case time complexity and is thus 
- -  though clearly a local checking technique - -  inferior to the classical global technique of 
the previous section. We shall see in tile next section how to remedy this deficiency. 

5 Efficient Local Correctness Checking 

The local checking technique of the previous section describes the essence of a number of 
recent techniques for modelchecking in the modal mu-calculus [Koz82], including the proof- 
system of [Larg0], the tableau system of [SW89, Cleg0] (which has been incorporated into 
the Concurrency Workbench [CPS88]) and the rewrite system in [Win89]. However, in all 
cases the techniques have an exponential worst case time complexity as illustrated by the 
following Simple Booleau Equation System: 

xo = x l  V z l ,  x l  = x~ V x2, . . . . . .  z . _ t  = z,~ V z . ,  xn = f f  (3) 
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Trying (and obviously failing) to demonstrate consistency of z0 using the inference rules 
of figure 1 in a goal-directed manner with possible backtracking will lead to a computation 
with 2 n+l - 1 recursive invocations as illustrated in figure 2 for the case n = 2. Here the 
superscripts indicate the order in which the invocations fails. The subscripts describe a 
sequence of rules that when applied to a node will yield the parent node. 

f a i l  

f a i l  

f a i l  

f a i l  I 

(=o} ~'~ =,k,.A. (=o})-~ ='~,,,A. 

r be xi 7 

Fig. 2. Exponential Time Computation in .4. 

Clearly, the source of the inemciency is caused by the fact that fa//ing attempts of 
establishing (relative) consistency are not remembered, and hence must necessarily result 
in recomputations when reencountered. 

In figure 3 we present a proof system B for consistency checking in a manner which 
remembers and recalls previously discovered inconsistency results. Given a Simple Boolean 
Equation System ~? = (V, E) the proof system B permits the inference of statements of the 
form: 

(x, B, N) --.e (b, C, M) (4) 

where x is a variable of V; B, N, C and M are subsets of V, and b is a boolean value. 
In (4), (x,B,N) should be thought of as the problem given: is z consistent under the 
assumption that the variables in B are consistent and knowing that the variables in N are 
inconsistent? (b, C, M) then describes the answer to this question: the boolean b directly 
indicates the consistency of z with respect to B and N, whereas C and M are extensions 
of B and N containing results of consistency gathered during the process of answering the 
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question (x, B, N) a. In particular, these extensions will be useful in "pruning" subsequent 
computations. 

Btix, B,N)...*eil, BO{x} ,N ) w h e n x E B o r x = e t t  

B2 ( x, B, N) ~ e  i 0, B, N O {x}) when x E N or x =e f f  

n~ i~, B u ix}, N) --~ (t, C, M) 
i x, B, N) --~, i 1 , C, M) when x tZ' B O N and x =e q~ 

ir B O {x}, N) "*e i 0, C, M) when x r B O N and x =e r 
B4 (x, B, N) ~*~ i 0, B, M O {x}) 

ixt, B, N) "*e i 0, C, M) 
ns ix, ^ ~2, B, N) --e (0, C, M) 

Bo(x, ,B,N) ~e  (1,C,M) ix~,C,M) "*e (b,D,R) 
i x, Ax2, B,N) " e  ib, O,R) 

i~,,B,N) ...~ (1,C,M) 
Bvix, Vx2, B,N) "*e i l ,6 ' ,M)  

B ix,,B,N) . ~  (O,C,M) (x2,C,M) "~e ib, D,R) 
ix, V x2, B, N) " e  i b, D, R) 

Fig. 3. B: Efficient Local Checking of Consistency 

For a given problem (x, B, N), the proof system B is using the set B as an assumption 
set similar to the use of assumptions in the previous proof system ,4. In fact, the following 
formal relationship between the two proof systems may be shown: 

Whenever (z ,B ,N~ "'e (1,C,M) in B then B be x in .A. 

We first give an informal description of the rules of B: 

B h  B2: Axioms for inferring immediate (relative) consistency/inconsistency of a variable 
z. The rule B1 corresponds closely to the rule A1 of.A. 

Ba, B4: In case the variable z i sno t  included in any of the sets B and N the consistency of 
z is reduced to the consistency of its definition (~). However, similar to the rule Aa of 
.A, we are allowed to use x itself as an assumption, during the consistency checking of 
~. In case ff turns out consistent under the extended assumption set, we simply inherit 

a Those familiar with the terminology of Structured Operational Semantics [Plo81] may view the 
inference system B as a natural semoaitics in the sense that it models fuji computatiolm. 
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the complete result obtained from # as the result of z. Otherwise - -  i.e. if 4, is found 
inconsistent - -  also z is inconsistent, reflected in the augmentation of the result set M. 
In this case, we are not able to use any information gathered in the set C as it may be 
based on the (erroneous) assumption of z being consistent. 

Bs, Be, By, Bs: The obvious rules for (simple) conjunctive and disjunctive formulae with 
information gathered being passed from the first conjunct (disjunct) to the subsequent 
processing of the second conjunct (disjunct). 

Now reconsider the Simple Boolean Equation System of (3) again for n = 2. In figure 
4 we use the new proof system B to infer the inconsistency of zo. Here Fi = {z0 .... zi} 
and $2i = {zl,...,x2} for i = 0,1,2. In contrast to a goal-directed use of the previous 
proof system ,4, we note that recomputation is totally avoided. In particular, we note 
that inconsistency of x, is only computed once; the second time z, is encountered (,) 
the assumption-sets prevents a recomputation. As a consequence, as we shall state more 
precisely shortly, we avoid the exponential time complexity. 

B8 
( ~  v=~,r~,O) -~E (o,/~,, n~) 

B4 
(~,,/'0,0) -~e (0, r0, n,)  

Ba 

B4 

(x,, to, n,) -~e (o, to, n,) 

(x, v x,,ro,O) ~.z (o,/%, t/,) 

(zo, 0, e) -~t (o, ~, no) 

B2" 

Fig. 4. Inconsistency in 8. 

Formally, we have shown the following soundness result for B: 

T h e o r e m  10. Let s = (V, E) be a Simple Boolean Equation System. Then, whenever 
(z, B, N) ~"r (b, C, M) the following holds: 

ii) N n u t e = ~  ~ M n u T e = O  v) b= 1 ~ z6C 

iii) B C C  vi) b=O ~ x E  M 

As an easy corollary we may infer that B is sound with respect to consistency. 

Coro l l a ry  11. Let g = (V, E) be a Simple Boolean Equation System. 

1. Whenever (z, 0, 0) w e  (1, C, M) then x is consistent, i.e. z 6 Cr 

2. Whenever (z, 0, 0) "~t (0, C, M) then x is inconsistent, i.e. z r Cz. 

In contrast to the proof system ,4, where a statement may be inferred in a number of ways 
due to the open choice between A5 and As of.A, the imposed left-to--right sequentiality in 
B makes proofs of statements unique. Formally, we have the following: 
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T h e o r e m  12. Let s = (V, E) be a Simple Boolean Equation System. Then the following 
holds: 

V(z, B, N)::t!(b, C, M). (z, B, N) ""e (b, C, M) 

where q[ indicates unique existence. 

P r o o f  Now let (B, N) -g (B', N') if either B D B'  and N = N '  or N D N '  (i.e. -.< is a 
lexicographical ordering on pairs with the first component being minor). As V is finite, -4 
will be a well-founded ordering. Now, the above theorem may be proved using well-founded 
induction on (B, N) and appealing to Theorem 10. [3 

In fact, not only does B provide a unique answer (b, C, M) for any given problem 
(z, B, N), the proof that /3 provides may also be shown to be unique. 

From Theorem 10 and Theorem 12 it is clear that B is complete with respect to consis- 
tency in the following sense: 

Coro l l a ry13 .  Let s = (V, E) be a Simple Boolean Equation System. 

1. Whenever z is consistent, i.e. x 6 Co, then (z, ~, O) w e  (t ,  C, M) for some se~s C and M,  

2. Whenever x is inconsistent, i.e. x ~. C~, then (z, O, O) " 'c  (0, C, M) for some sets C and 
M. 

For results of complexity, we need a minimum amount of terminology concerning proof 
trees. A proof tree T of/J  contains statements of/3 as nodes and is either an instance of 
one of the axioms B1 and B2 or is of the form: 

T = T, ...... T. (5) 

where s is a statement of/3, and Tl . . .  Tn are themselves proof trees, s is the conclusion of 
T and should be obtainable from the conclusions of T I . . .  T,  using one of the rules of/3. 
We now introduce a total ordering << between the nodes of a proof tree (5) inductively as 
follows: s is the smallest node with respect to <<; all nodes of ~ are smaller than the nodes 
of 7) whenever i < j .  For the ordering among nodes of any 7~ we appeal to tile inductive 
construction. Clearly, << is a total ordering with statements increasing in an 'up-or-r ight '  
direction. 

The following lemma states the relation between -g and <<: 

L e m m a  14. Let T be a proof tree 0/'/3 and let sl = ((zi, Bi, Ni) "~z (bl, Ci, Mi)) for i = 1, 2 
be nodes in T. Then (B2, N~) -~ (B1, Nl) whenever s, << s2. 

As << is total ordering among the nodes of a proof tree T, it follows that there can be 
no more nodes in T than the length of the longest decreasing -~-sequence. Thus, for a given 
Simple Boolean Equation System s = (g, E), any B proof tree will have no more than ]VI 2 
nodes. Under the assumption of constant access time for each variable of V, checking the 
side--condition of any of the rules of B may be done in constant time. Hence, using the rules 
in a goal-directed manner will yield an algorithm with O(IVI 2) worst case running time. 
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Concluding Remarks 

In this paper we have presented a proof system for efficient consistency--checking of vari- 
ables of a (Simple) Boolean Equation System. We claim that several model-checking and 
equation/preorder-checking problems may be dealt with using the developed techniques. 
However, the techniques of this paper only leads to a model-checking method for pure 
saftety properties. Properties which can be expressed in the modal mu-calculus using only 
minimal fixedpoints may be dealt with by a simple dualization of the proof system 8. For 
properties requiring the used of both minimal and maximal fixedpoints our techniques may 
be extended to the modal mu-calculus of alternation depth one (i.e. any recursive subfor- 
mula with alternating fixedpoint must be closed). To deal with mixed fixedpoints in this 
restricted sense, we simply consider lists of Boolean Equation Systems tel, . . . ,~:n],  where 
we alternate between consistency and factuality of variables and with variables of s only 
depending on variables of s . . . .  , s  Local model-checking for the fu l l  modal mu-calculus 

IXin921, where an O (m • • algorithm is presented Here m is 
% 

is contained in 

the size of the process P,  n is the size of the formula F ,  and k is the alternation depth of 
F.  

Applying the proof system B to s and ~:~ we obtain local techniques for checking bisim- 
ulation equivalence and simulation preorder. The techniques will clearly be based entirely 
on the behavioural semanties of processes, and will in no way take account of their possible 
syntactic structure. However, it is possible to extend B so that certain algebraic properties 
of processes may be utilized. More precisely, for any consistency-preserving relation _= 4 we 
may change the rule Bt as follows: 

B ~ ( x , B , N ) ~ z ( 1 ,  B t d { x } , N )  w h e n 3 y e B . x = y ,  o r z = z t t  

while maintaining a sound proof system with respect to consistency. Thus, it is sufficient 
that x is =-related to some member of B in order to invoke the axiom (and hence avoid 
further computation). Now, we may represent various algebraic laws between processes as 
a relation = between variables of s and ,~,. The fact that the parallel operator of CCS 
[Mil80, Mi189] is commutative and has ni l  as unit with respect to bisimulation may be 
represented as: 

YPlo ,a  - Yole ,  a 

r p l . . , a  - rp ,  a 

Taking in this way account of commutativity (and similarly associativity) of the parallel 
operator will clearly yield a nmch improved algorithm in verification of systems with many 
identical components, as we may identify system states with the same number of components 
in any particular state. Also, the fact that ni l  is the smallest process with respect to -~ may 
be reflected a s  Xni I ,p  -~ gg thus avoiding computation completely. However, checking the 
side-condition of B~ may no longer necessarily be done in constant time, and it will depend 
highly on the combination of the particular example and the choice of - as to whether B~ 
yields an improvement. 

4 = is consistency-preserving if y 6 Ur and x -- y implies x 6 Ue. 



42 

Finally, it is clear that the global technique (with the required state-space precomputa- 
tion) cannot be used for processes with infinite state space. We are currently investigating 
the relationship between our proof system B and the tableau-technique of [HS91] for con- 
textfree processes. 
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