
A Verif icat ion P r o c e d u r e via Invariant for
E x t e n d e d C o m m u n i c a t i n g F in i t e -S ta te

Machines

Masahiro Higuchi* Osamu Shirakawa* Hiroyuki Seki*

Mamoru Fujii** Tadao Kasami***

* Dept. of Information and Computer Sciences, Osaka University
Toyonaka, Osaka 560, Japan

** College of General Education, Osaka University
Toyonaka, Osaka 560, Japan

*** Advanced Institute of Science and Technology, Nara
Ikoma, Nara 630-01, Japan

e-mail: (higuchi, sirakawa, seki, fujii, kasami)@ics.osaka-u.ac.jp

A b s t r a c t . This paper presents a method for verifying safety property
of a communication protocol modeled as two extended communicating
finite-state machines with two unbounded FIFO channels connecting
them. In this method, four types of atomic formulae Specifying a condi-
tion on a machine and a condition on a sequence of messages in a channel
are introduced. A human verifier describes a logical formula which ex-
presses conditions expected to be satisfied by all reachable global states,
and a verification system proves that the formula is indeed satisfied by
such states (i.e. the formula is an invariant) by induction. If the invariant
is never satisfied in any unsafe state, it can be concluded that the proto-
col is safe. To show the effectiveness of this method, a sample protocol
extracted from the data transfer phase of the OSI session protocol was
verified by using the verification system.

1 Introduct ion

For implementing reliable communication software, it is important to verify the
communication protocol formally. Communicating finite-state machines (CF-
SMs) are used as a model for verifying communication protocols. If the bound-
edness of the communication channels is guaranteed, many important proper-
ties for CFSMs are decidable[l] in principle, and some decision procedures have
been proposed[2][3]. However, even though channel boundedness is guaranteed,
the decision procedures based on channel boundedness are not feasible for most
practical protocols because of state space explosion.

Furthermore, for practical protocols, protocol machines are usually defined
as extended communicating finite-state machine(ECFSM)s whose state is rep-

385

resented by a state of finite control and values of context variables. In fact, two
formal description techniques Estelle[4] and SDL[5] for communication protocols
are based on extended finite-state machine model. In this paper, a verification
method for a class of ECFSMs in which the channel boundedness is not guaran-
teed is proposed.

For such a class of protocols, the set of global states reachable from the initial
global state is potentially infinite and therefore traditional state exploration
techniques which enumerate reachable global states cannot be used. Instead, we
propose a method based on a verification via invariant using similar techniques
to those adopted by such systems as theorem provers[6].

The proposed method is summarized as the following (1) and (2):

(1) Find a logical formula on global states, say F, which is expected to satisfy
(a) RS C_ GS(F) and (b) GS(F) C_ SAFE, where RS is the set of reachable
global states, GS(F) is the set of those global states which satisfy F and
SAFE is the set of safe global states. Although only safety property is
considered in this paper, the proposed method can be extended to verify
liveness property. F is written as a propositional formula which consists of
the following atomic formulae,

(i) conditions on states of finite controls of ECFSM,
(ii) regular expressions which specify message type sequences in the channels,

(iii) conditions on sequences of integers (parameters of messages in the chan-
nel) such as 'monotonically increasing', and

(iv) linear inequalities on integers which specify the relations to hold for the
values of context variables of ECFSMs and parameters of messages in
the channels.

(2) Verify that the above (a) and (b) hold. Verification of (b) is easy. The above
(a) is verified by structural induction on event sequences. Verification in
the inductive step is reduced to the inclusion problem for given two regular
expressions (for (ii) above), the problem to find the normal form of a given
term in the term rewriting system which represents the definition of protocol
machines, inductive hypothesis and properties of sequences of integers (for
(iii)), and the problem to decide whether a given ordered pair of expressions
belongs to the transitive closure of given inequalities (for (iv)).

A verification system which implements the proposed procedure and a veri-
fication example of OSI session protocol are also described in this paper.

As related works, a verification method is proposed for ECFSMs with queues
of length one[7]. For a protocol for which channel boundedness is not guaranteed,
Finkel[8] studies a class of protocols in which the set of message sequences in the
channels is exactly expressed by regular expressions, and gives decidable results
on some verification problems. However, protocol machines considered in [8] are
assumed to be finite. The protocol model discussed in this paper assumes neither
finiteness of protocol machines nor channel boundedness. Systematic verification
methods for such a class of protocols have been scarcely reported.

386

2 B a s i c D e f i n i t i o n s

2.1 P r o t o c o l M o d e l

Two-extended communicating finite-state maehines(2-ECFSMs) are a protocol
model which consists of two protocol machines modeled as extended commu-
nicating finite-state machines and two unbounded FIFO channels connecting
them. Formally, it is defined as below.

A p r o t o c o l m a c h i n e P M is a 4-tuple (S, ~, 6, si), where

(M 1) S = (SF, r) defines a set of s t a t e s , where SF is the state set of finite
control part of the machine and r is the number of registers(context vari-
ables) which store nonnegative integers. Let Af denote the set of nonnegative
integers. The state space of the protocol machine is SF • hf ~.

(M 2) Z = S _ U S + : a finite set of m e s s a g e t y p e s . ~ _ is a set of message types
which P M can send and Z+ is a set of message types which P M can receive.
Z_ and ~ + are supposed to be disjoint. For d E Z and n E A/', (d, n) is called
a m e s s a g e and n is called the parameter of the message. The number of
parameters of a message is assumed to be exactly one only for simplicity. In
the following, for a message sequence u, type(u) and parameter(u) denote
the message type sequence of u and the parameter sequence of u respectively.
The set of events E V of the protocol machine is defined in connection with
the set of messages sent or received by the machine, i.e. E V = {-(d,n)ld e
~ _ , n e A/} U {+(d,n)ld C Z + , n e iV'}. The former subset is the set of
s e n d i n g e v e n t s and the lat ter one is the set of r e c e i v i n g even t s .

(M 3) 6 : a partial s t a t e t r a n s i t i o n f u n c t i o n from SF • ~ • E V to SF xJY".
For s E SF •]q'~ and e E EV, if 6(s, e) is defined, then an event e is said to
be e x e c u t a b l e in the state s.

(M 4) si 6 SF • A :r : an in i t i a l s t a t e .

For PMA = ((SFA, rA), ZA, 6A, SiA) and P M s = ((SFs , r s) , Z s , 6s, sis), if
27B- = ~A+ (denoted Z:SA) and S A - = ZS+ (denoted ~AS), then / / =
(PMA, P M s) is called a p r o t o c o l . A 4-tuple (SA,Ss,chsA,ChAs) e (SFA x
Af "A, SFB • A f 'B, (ZSA,Af)*, (5:AS,Af)*) is called a g l o b a l s t a t e of protocol
II. SA and s s denote states of PMA and P M s respectively. ChBA and chAs
denote message sequences in the channel from P M s to PMA and tha t from
PMA to P M s respectively, gsi = (siA, sis, s, r (e is the empty sequence) is
called the in i t i a l g l o b a l s t a t e of 17.

A global s tate gs '= (s~4 , s~, Ch'BA , Ch~AB)is said to be t r a n s i t a b l e from
gs = (SA, sn, chsA, chAs)(denoted by gs --* gs') iff one of the following condi-
tions is satisfied for some d E ~BA U ~AB and n EAf:

(TA1) JA = 5A(SA,- (d ,n)) , s~ = sB, eh~A = chBA, eh'As = ChAB " (d,n);
(TA2) s~4 = ~A(SA,+(d,n)), 8'S = SB, (d ,n) -chbA = chBA, chUB = chAB;
(TA3) s[4 ---- SA, s'B = 6B(SB,- (d ,n)) , ch'BA = ChBA" (d,n), Ch'AB = ChAB;
(TA4) s~ = sA, sb = ~ s (s s , +(d ,n)) , chbA = chs~ , (a ,n) . ch~s = chgs .

387

If (TA1) holds, the relation is also denoted g s - (- (d , n}, A) ~ gs'. This extended
notation is also used for (TA2), (TA3) and (TA4). The transitive reflexive closure

* !

of the relation " ~ " is denoted by "-~". If g s ~ g s , then the global state gJ is
said to be r e a c h a b l e from gs.

2.2 Safety Property

For a protocol H = (PMA, PMB), the set of reachable global states from the
initial global state is called the r e a c h a b i l i t y set o f /7 . If the reachability set of
H does not contain following unsafe states, H is said to be safe.
D e a d l o c k s ta te : A global state gs = (SA, 8B, ChBA , ChAB) is said to be a dead-
lock state if ChBA = ChAB = r and any sending event is not executable in SA
and SB respectively.
U n s p e c i f i e d reception state: A global state gs = (SA, sB, ChBA, ChAB) is said
to be an unspecified reception state if either chBA # r and ~A(SA, +head(chBA))
is not defined or chAB # e and ~B(sB,+head(ChAB))is not defined, where
head(a) denotes the first element of a nonempty sequence a.

3 V e r i f i c a t i o n M e t h o d

If a logical formula F on global state o n / / i s satisfied by all global states in the
teachability set of a p r o t o c o l / / , F is called an i n v a r i a n t in H. If an invariant
F in H is not satisfied by any deadlock state or unspecified reception state, then
H is safe. We present a method for verifying a given formula in a disjunctive
normal form F = P1 V P2 V . . . V Pn to be an invariant i n / / . In the following,
for a formula F, GS(F) denotes the set of global states which satisfy F.

3.1 D e s c r i p t i o n o f a Logical Formula

Every disjunct Pi of formula F is a conjunction of a t o m i c f o r m u l a e (or simply
a t o m s) of the following four types. Figure 1-A (a) shows an example of Pi.

(A F 1) A formula <SSFA, SSFB), where SSFA C SFA and SSFB C_ SFB, is an
atom which holds for a global stat e (SA, SB, ChBA, ChAB) iff the finite control
part of SA and SB belong to SSFA and SSFB respectively.

(A F 2) A class of regular expression to express an infinite set of message type
sequences in a communication channel is introduced as below. The regular
expression is restricted to be c (the empty sequence) or a concatenation of
subexpressions of the following types:
R I " A choice o f~BA (or GAB), i.e. m 1 +m~ + . . . + m ~ for ,~k(1 < k < n)

in 2BA (or GAB);
R2: Positive closure t + of a choice t of ~BA o r LAB.

For two restricted regular expressions rBA and tAB , a formula @BA, tAB) is
an atom which holds for a global state (SA, SB, ChBA, ChAB) iff type(ChBA) E
L(rBA) and type(chAB) e L(rAB), where L (r) i s the set of sequences denoted

388

by the regular expression r. We assume that exactly one AF2 type atom
appears in every Pi. In the following, if a global state (SA, SB,ChBA, ChAB)

�9 v \" BA[k](1 < k <n) satisfies an AF2 type atom "(ul.u2"....un, Vl.V2.... ,~1 ,
denotes a message sequence such that BAI l] . B A [2] BA[n] = e h B A

and type(Bg[j]) e L(uj)(1 _< j <_ n) and, AB[k](1 <_ k < m) denotes
the message sequence such that AB[1]. AB[2] AS[m] = ChAB and
type(AB[j]) e L(vj)(1 < j < m).

(A F 3) A predicate on a message sequence on a communication channel is also
an atom. For instance, "stepl(AB[1])" (in Figure 1-A (a)) states that the pa-
rameter sequence parameter(AB[1]) satisfies the predicate "stepl". "stepl"
means that the parameter sequence is an increasing sequence such that the
difference of every adjacent elements is one. Predicates which appear in an
AF3 type atom are defined in terms of rewrite rules and inequalities. For ex-
ample, a conditional rewrite rule in Figure 1-A (b) "lseql > 1, stepl(seq), t =
last(seq) + l : step l (seq. (type, t)) ~ true" asserts that if a message sequence
sea of length 1 or more satisfies the predicate stepl and t is equal to the
parameter of the last message of sea plus 1, then the parameter sequence
parameter(sea), t of the message sequence sea. (type,t) also satisfies the
predicate stepl. The conditions of conditional rewrite rules and inequalities
are also assumed to be written in the form of an AF3 or AF4 type atom.

(A F 4) A linear inequality which represents the relation on the values of registers
of protocol machines and the parameter values of messages in a channel. The
expressions appearing on the both sides of inequalities are restricted to the
form of "v § C" where v is a term which denotes either the value of a register
of a protocol machine or a parameter value of a message in a channel and
C is a constant value of integer. For instance, "Vm(A) = last(AB[1]) q- 1"
in Figure 1-A (a) is an AF4 type atom which states that the value of the
register Vm of PMA is equal to the parameter of the last message in the
channel from PMA to PM~ plus 1 at the global state under consideration.

3.2 Verification Procedure

A given logical formula F = P1 V P2 V . . . V Pn is shown to be an invariant in H
by structural induction on event sequences of H as follows.
Inductive basis: Prove that the initial global state o f / / s a t i s f i e s F.
Inductive s tep: Prove that

VgseGS(F)Vgs-~gs,{gs' e GS(F)}. (* 1)

Observe that GS(F) = GS(P1) U GS(P2) U .. . U GS(P,~). Therefore, (* 1) is
equivalent to

Vi(l~i~n)VgsEGS(p,)Vgs_~gs,3j(l~j~_n){gs' e GS(Pi) }. (* 2)

Thus (* 1) is proved by executing the following IS1 and IS2 for each Pi(1 < i <
n).

389

IS1 Identify all events(pairs of a local event (:i:(d, n)) and a machine) executable
in global states in GS(Pi).

IS2 For every executable event (:]:(d, n), X) obtained by IS1, show

e cs(Pj)}. (* 3)

The inductive basis and IS1 are easily examined from the form of each Pi.
To explain the procedure for examining IS2, we consider the following example
EX1.

E X I : . Let Pi in (*3) be shown in Figure 1-A (a).
* Let (+(d, n), X) i n (*3) be (- (MIP , Vm(A)), A). []

The definition of state transition on the event is shown in Figure 1-A (b). In
the following and in Figures 1-A and l-B, all terms with primes denote the values
of the corresponding terms without primes after the transition. The definition
of the state transition tells the followings:

(1) If the state of finite control of the machine is STA713, the machine can send
MIP with parameter value equal to the value of register Vm;

(2) The finite control still stays at STA713 after sending (MIP, Vm(A));
(3) The value of register V m is incremented by one;
(4) The value of register Va is not changed.

Let Pj = PFj A PIj(1 <_ j <_ n), where PFj is the conjunction of AF1 and
AF2 type atoms and PIj is the conjunction of AF3 and AF4 type atoms. Since
GS(Pj) = GS(PF~) n GS(P / j) , IS2 is refined as the following (I) and (II) for
each i.

(I) Identify all PFj such that

k/gseGS(PF,),gs--(:l:(d,n),X)---.gs,{gs' E GS(PFj) }. (* 4)

In general, it can be checked for gs' to satisfy an AF1 type atom from the
definition of 6 directly, and to satisfy an AF2 type atom by reducing the satis-
faction problem to the inclusion problem for two regular sets. The restrictions
R1 and R2 simplify the decision procedure for this inclusion problem. Con-
sider the case Pj -- P~ in EX1. As the message type sequence in the channel
from PMB to PMA and that from PMA to PMB at gs ~ are required to be
in L(e) and L(MIP + �9 MIP) respectively, the problem to decide whether every
gs' satisfies (GMIP +) is reduced to the inclusion problems L(r C_ L(e) and
L(MIP + . MIP)C_ L(MIP+).

Then the next step is as follows:

(II) Show that gs' e GS(PIj) for some j which satisfies (*4).

To show (II),at first, the rewrite rules to express the message sequences in gs ~
in terms of the message sequences in gs and the message sent by executing the
event axe generated.

390

For example, suppose that the event is -((d,p},A). The rewrite rules are
generated as follows. Let {rBAj, rAB#) and (rBA,j, tAB,j} be AF2 type atoms in
Pi and Pj respectively. Let tAB# = Ul �9 u2 �9 ." Un and rAB,j = u~ �9 u~ �9 . . . �9 Urn,
where uk and u I are choices of GAB or positive closures of choices of GAS, for
1 < k < n and 1 < l < m. Since the a tom (rBA,j,rAB,j) holds for every gs'
by (I), i.e. n(rAB,i" d) C_ n(rnB, j) , it follows from the restrictions R1 and R2
that there exists a mapping 9 such that L (u l u~(o) C_ L (u ~ u~) and
~ (l - 1) < ~(l) for every 1 < l < m - 1, and ~(0) = 0. Then the rewrite rule
"AB[I]' ::~ AB[~(I - 1) + 1] AB[T(1)]" is generated for 1 < l < m - 1 and
the rewrite rule "AB[m]' :~ AB[~(m - 1) + 1] AB[n]. (d,p)" is generated.
In our example, "AB[1]' ~ AB[1]. (MIP, Ym(A))" is generated. If the mapping

is not uniquely determined, then for every possible ~, the rewrite rules for
are generated and the procedure to check (II) is executed. If (II) holds for some
~, it can be concluded that IS2 for given (- (d , n), A) holds.

To check (II), the condition parts of all conditional rewrite rules and con-
ditional inequalities are evaluated with assigning the values in gs to the free
variables in the condition. If the condition of a conditional rewrite rule (or
inequality) is shown to be true for the assignment, then the rewrite rule (or
inequality) instantiated by the assignment is added to the assumption. In our
example, lAB[lit > 1, stepl(AB[1]), and Vm(A) = last(AB[t]) + 1 are shown
to be true, and the rewrite rule
"stepl(AB[1]. (MIP, Vm(A))) ~ true" are added as (5'). The procedures for
evaluating AF3 and AF4 type atoms (and the conditions of conditional rewrite
rules and conditional inequalities) are described below.

- (AF3) Show that the atom can be rewritten as constant term "true" under
the term rewriting system[9] consisting of assumed relations. Figure 1-A (b)
shows the example. Figure 1-B (d) shows a process in which "stepl(AB[1]')"
is rewritten to "true".

- (AF4) For an atom "a tel b" (tel E {=,_>}), find the normal forms of a
and b under the rewriting system described above, i.e. rewrite a and b to
norm(a) and norm(b) respectively until norm(a) and norm(b) can not be
rewritten to any terms. In Figure 1-B (e), "Vm'(A) >_ Va'(A)" is rewritten to
"Vm(A)+ I > Va(A)". And decide whether norm(a) rel norm(b) belongs to
the transitive closure (over the set of expressions of the form "v + C") of the
assumed inequalities (Figure 1-B (c)). In our example, let GE = {(a, b) I a >
b is an assumed inequality}, then (Vm(A)§ Vm(A)) and (Vm(A), Va(A))
belong to GE. The transitive closure of GE contains (Ym(A) + 1, Va(A)).
We can conclude that "Vm(A) + 1 > Va(A)"(Figure 1-B (f)).

4 A Verification Sys tem

We implemented a verification system based on the verification method described
in Section 3. The verification system provides the procedures for executing a state
transition, deciding the inclusion problem on given two regular sets, rewriting a
term under the given term rewriting system, and deciding whether a given pair

391

of expressions belong to the transitive closure of given relations. The system
executes the inductive step of the proposed verification method by conducting
the above procedures.

An input to the verification system consists of the definition of protocol ma-
chines, properties of predicates on sequences of integers such as stepl explained
in the example in Section 3, and a logical formula F to be shown an invariant.
The system constructs a state transition table, unfolds an input formula to ob-
tain a disjunctive normal form, and executes the verification procedure described
in Section 3. If there exists a pair of global states gs and g# such that gs ~ g#,
gs E GS(F) and gs' ~ GS(F), then the system always detects the fact and re-
ports relevant information on such global states and a transition. If there exists
a deadlock or unspecified reception state which satisfies F, then the system also
detects that and reports it.

The verification system was implemented by using C, lax, and yacc on the
UNIX environment. The size of the source code of the system is about 10,000
lines.

5 A n E x p e r i m e n t a l R e s u l t

To show the usefulness of the proposed verification method, we performed an
experiment on a part of OSI session protocol[10].

5.1 Extracting a Sample Protocol

We extract the protocol for data transfer phase of kernel, duplex, minor syn-
chronize and major synchronize functional units from OSI session protocol. For
simplification, we omit some PDU(message)s which have no effect on any reg-
isters and we assume that the rights to send MIP(MINOR SYNC POINT)
and MAP(MAJOR SYNC POINT) are transferred simultaneously from a pro-
tocol machine to the other machine by sending a token named ma-mi token
instead of using two tokens ma and mi. For the extracted protocol //,~s =
(PMse~A,PMse~), PMses~ and PMs~ss are the same protocol machines ex-
cept their initial states, i.e. PMs~ A owns ma-mi token while PMse~s does not
at the initial states. The size of the states of finite control and the number of
registers of the protocol machine are 10 and 2 respectively. And the number of
message types used in the protocol is 10.

5.2 V e r i f i c a t i o n R e s u l t

For the protocol / /~ ,s , the set of global states expected to be reachable has been
divided into 60 subsets by considering the possible combinations of the states
of finite control parts of two protocol machines. We have described a logical
formula based on these subsets of global states. The numbers of AF1 through
AF4 type atoms in the described formula are 180, 60 46, and 297 respectively.

392

The properties on sequences of integers used for verification were provided in
terms of 10 conditional rewrite rules and 7 conditional inequalities.

In the process of describing a formula, a human verifier often misses some
reachable global state and describes an incorrect formula, i.e. a described formula
is not an invariant in IIs~s. In such a case, the verification system detects a
global state which does not satisfy the described formula and reports relevant
information about the global state. A human verifier revised the formula using
the information reported by the verification system.

The described formula was verified to be an invariant and the protocol was
verified to be safe by the verification system on a UNIX workstation (Solbourne
Series 5/600, 2CPU 48MB). The CPU time and memory storage used in the
execution are 12.0 seconds and 816 KBytes respectively. The input formula was
expanded to a disjunctive normal form consisting of 170 conjunctive terms. The
number of considered state transitions was 428, and the number of AF3 and AF4
type atoms checked to hold in some global states were 222 and 1600 respectively.

6 D i s c u s s i o n

It seems that in a verification procedure via invariant for extended communi-
cating finite-state machines, how to cope with integral registers dominates its
verification power and efficiency. In this paper, by restricting the expressions
appearing on both sides of inequalities to the form of "v + C", the problem
whether a given inequality is implied by a given set of inequalities can be de-
cided by an efficient procedure. In most of practical protocols, the operations
on integral registers in the definition of a state transition function of a protocol
machine are limited to simple types, e.g. "store some value", "add a constant
number to the current value", or "clear to 0", and the restriction on the form
of inequalities does not affect the verification power on such protocols. If more
general operations on integral registers e.g. "summation of register values" are
used in a protocol, then a more general procedure, e.g. the decision procedure for
Presburger formula which is known to be intractable in general, may be required
to deal with such a protocol.

In this paper, we put a restriction on regular expression. This greatly sim-
plifies the procedure for deciding whether a given regular set includes another
regular set. We are extending the verification system to allow the following in-
terleaving operator " [[" on regular expressions without loss of simplicity. For
regular expressions r~ and r2,
L(r l II = { w x x l ~ . . . w k x ~ I w ~ . . . w k e L(r l) and xlx2. . .xk �9 L(r2)}.

As a practical protocol such as OSI session protocol provides many kinds of
services, the definitions of protocols tend to be enormous and any verification
method suffers from state space explosion. To facilitate the design and analy-
sis of such a protocol, the authors have proposed a method for composing a
safe protocol from a safe protocol defining a priority service and that defining
an ordinary service[11]. Furthermore, several composition techniques have been
proposed within the framework of CFSM[12]-[14]. It is desirable to fit these

393

techniques to the protocol model discussed in this paper. Currently, we are con-
ducting an experiment to show the safety property of OSI session protocol using
these techniques.

R e f e r e n c e s

1. Brand D., and Zafiropulo P.: "On Communicating Finite-State Machines", Journal
of ACM, vol.30, pp.323-342, 1983-04.

2. Kakuda Y., Wakahara Y., and Norigoe M.: "A New Algorithm for Fast Protocol
Validation", Proc. of Compsac-86, pp.228-236, 1986.

3. Yuang M.C., and Kershebanm A.: "Parallel Protocol Verification: The Two-Phase
Algorithm", Proc. 9th Intern. Symp. on PSTV, pp.339-353, 1989.

4. ISO: "Information Processing Systems-Open Systems Interconnection-Estelle: A
Formal Description Technique Based on an Extended State Transition Model",
ISO/DIS 9074, 1987.

5. CCITT: "Specification and Description Language(SDL)", Recommendation Z100,
1989.

6. Gordon M.J.C.: "A Proof Generating System for Higher-Order Logic" in "VLSI
Specification, Verification and Synthesis", Kluwer Academic Publishers, pp.73-128,
1987-01.

7. Sarikaya B., Bochmann G.V., and Koukoulidis V.: "Method of Analysing Ex-
tended Finite-State Machine Specifications", Computer Communications, vol.13,
no.2, pp.83-92, 1990-03.

8. Finkel A.: "A New Class of Analyzable CFSMs with Unbounded FIFO Channels",
Proc. 8th Intern. Symp. on PSTV, pp.283-294, 1988.

9. Huet G., and Oppen D.:"Equations and Rewrite Rules A Survey" in "Formal Lan-
guage: Perspectives and Open Problems", R. Book eds., Academic Press, pp.349-
405, 1980.
ISO: "Basic Connection Oriented Session Protocol Specification", ISO 8327.
Higuchi M., Seki H., and Kasami T.: "A Method of Composing Communication
Protocols with Priority Service", to appear in IEICE Trans. Commun., 1992-10.
Choi T.Y., and Miller R.E.: "A Decomposition Method for the Analysis and Design
of Finite State Protocols", Proc. of 8th ACM/IEEE Data Comm. Syrup., pp.167-
176, 1983.
Lin H.: "Constructing Protocols with Alternative Functions", IEEE Trans. Com-
put., vol.40, pp.376-386, 1991-04.
Chow C., Gouda M.G., and Lam S.S.: "A Discipline for Constructing Multiphase
Communication Protocols", ACM Trans. on Computer Systems, vol.3, pp.315-343,
1985-11.

10.
11.

12.

13.

14.

394

(a) a conjunctive formula

P~ = ({STAT13}, {STA713} > (AF1)
A (~, MIP +) (AF2)
A stepl(AB[1]) (AF3)
A Y m (A) = last(AS[l]) + 1 (AFt,)
A V m (B) = head(AS[l])
A Va(A) -=- V a (S)
A Y m (A) ~ Ya(A)
^ ym(s) >_ V~(B)

(b) term rewriting system

definition of 6A:
event: - (MIP , Vm(A))

(STA713 ~ STA713 I
V m ' (A) ~ V m (A) + 1 (1)
Va'(A) ~ Va(A) . (2)

properties of defined predicates:
last(seq . (type, n)) ~ n (3)

Iseq] >_ 1 :
head(seq. (type, n)) ::~ head(seq) (4)

Iseql > 1, stepl(seq), t = last(seq) + 1:
s tepl(seq. (type, t)) ~ true (5)

added rules by evaluating
the conditions of conditional rewrite rules:

s tep l (AB[l] . (type, Vm(A))) ~ true (5')

inductive hypotheses:
stepl(AS[1]) ~ true (6)

relation between message sequences:
AB[1]' =~ AB[1]- (MIP, Vm(A) I (7)

Figure 1 -A. A f o r m u l a a nd a process o f ver i f i ca t ion o f E X 1
(All terms with primes denote the values after transition.)

395

(c) assumed inequalities

inductive hypothesis
Vm(A) = last(AB[1]) + 1
Vm(B) = head(nB[1])
Va(A) = Va(B)
Vm(A) > Va(A)
Vm(B) > Va(B)

properties of defined functions

(d) a process of rewriting a predicate

~tepl(ABN')
stepl(AS[1]. (MIP, Ym(A))) by (7)
true by (5')

(e) a process of rewriting an inequality

Vm'(A) > Va'(A)
2* Vm(A) + 1 > Va(A) by (1),(2)

(f) the transitive closure

V.~(A)+I > Vm(A) > Va(A)

Figu re 1-B. A f o r m u l a and a p roce s s of ve r i f i ca t ion o f EX1
(All terms with primes denote the values after transition.)

