
Compiler Implementation of ADTs Using Profile
Data

A. Dain Samples*

Department of Electrical and Computer Engineering, University of Cincinnati,
Cincinnati, OH 45221-0030 USA, Dain.Samples@uc.edu

Abs t rac t . There are many possible implementations of some very useful
programming abstractions (sets, lists, and maps, to name a few), and select-
ing from among them is currently one of the early tasks in the design of a
software system. While programming discipline and/or language features may
allow the user to change implementations of an abstraction relatively easily,
there remains the inherent problem of selecting a consistent and efficient
set of implementations for a particular program. A small set of extensions
to existing languages allows the specification of the necessary profile data
within that of the implementation of the abstraction. The TYPESETTER sys-
tem selects a consistent and efficient set of implementations for a program's
abstractions based on the collected profile data.

1 I n t r o d u c t i o n

The 'ideal system of the future' will keep profiles associated with source
programs, using the frequency counts in virtually all phases of a program's
life An optimizing compiler can also make very effective use of the profile,
since it often suffices to do time-consuming optimization on only one-tenth
or one-twentieth of a program. (Knuth 1971)

Software construction systems of the future (including compilers) will be col-
lecting and using much more information about software than just the source code;
profile data will certainly be one such source of information. TYPESETTER was de-
veloped to explore how compilers and language systems might use profile data in
the construction of software systems.

We describe how compilers can use profile data to select appropriate implemen-
tations for a program. Our approach extends an existing language (C++) to allow
the specification of programming abstractions, their implementations, and relevant
profile data. An earlier paper gave the broad outlines of the goals of this research
(Samples and Itilfinger 1990). As in that paper, we distinguish between two dif-
ferent programmers that would use TYPESETTER: the User is writing application
programs with TYPESETTER; the Implementor adds functionality to TYPESETTER.

* Supported in part by an AT&T Bell Laboratories Scholarship, and by Defense Advanced
Research Projects Agency (DoD), monitored by Space and Naval Warfare Systems Com-
mand under Contract N00039-88-C-0292 at University of California, Berkeley.

74

2 TypeSetter: The System

The term 'software crisis' has been around for a long time, and yet programming
environments still require programmers to be responsible for far too much of the
implementation of a software system. While research on, say, compiler optimizations
produce linear speedups for compiled code (usually on the order of 10-20% when they
work), it doesn't address the problem of programming abstraction implementation
or software re-use. But before programmers will make use of libraries of reusable
components two goals must be met:

- Components matching the programmers' needs must be easily (i.e., automat-
ically) found within the library. Programmers avoid looking for reusable code
if the work required to find what they're looking for appears equivalent to the
work of simply writing their own version of the code.

- Programmers must be satisfied that the components being used in their program
are not the cause of any performance problems. If programmers too often find
that the only way of speeding up their program is to rewrite someone else's
code, then, again, the effort may appear equivalent to simply (re)writing their
own version.

TYPESETTER addresses both of these issues. The system automatically selects
implementations for the components of a program, and selects the ones that offer
the best performance for that particular program. In addition, TYPESETTER has
several other satisfying properties: (1) the User does not have to be an expert in
compilers or program performance analysis to use the system; (2) the Implementor
does not have to be an expert in compilers or code generation, and is required only
to have some knowledge of how to characterize the performance of a function; (3)
adding an alternative implementation for an abstraction is independent of previously
existing implementations of that abstraction; and (4) the implementation selection
algorithm used by the system is independent of the specific alternative implemen-
tations available to it. The net result is a system that addresses simultaneously the
issues of code reusability, and efficient automatic construction of software systems.

Our exploration of the idea of using profile data in a compiler is based on three
hypotheses. The first is that most programs obey the "90-10" rule, a widely accepted
rule-of-thumb that says that 90% of execution resources are consumed by 10% of a
program. The name is arbitrary, since actual numbers vary from program to program.
Secondly, implementation selection can be done very quickly with a minimum of
backtracking or use of complicated algorithms; furthermore, decisions based on the
heavily-used 10% will almost never have to be rescinded due to information contained
in the remaining 90%. And thirdly, the specification of alternative implementations,
complete with profiling specification and evaluation, can be done as part of the
implementation of an abstract data type (ADT), and the evaluation of the profile
data can be relatively system-independent.

TYPESETTER, provides means for the Implementor to specify the collection and
evaluation of profile data about a program's use of an ADT. An ADT-independent
heuristic evaluates the profile data to select efficient implementations for the vari-
ables and functions in the User's program.

75

An ADT is defined as a set of functions, and may have many implementations
defined for it. Each ADT has a distinguished implementation that serves not only
as the default implementation but is also the implementation that collects profile
data. To add an implementation for an ADT, the Implementor must implement
each function in the specification of the abstraction. For each interface function,
the Implementor must also write an evaluation function that estimates the resources
required by that function. Finally, the Implementor may have to modify the profiling
implementation of this ADT so that the necessary information for compile-time
evaluation of this implementation is collected.

For each ADT implementation, the Implementor writes a feasibility function that
determines whether this implementation can be assigned to a specific variable in the
program being compiled, and an instantiation function that provides mechanical
details of the implementation of the variable. An implementation assignment for a
variable is said to be feasible when all information necessary for the implementation
is available and satisfies the constraints of the implementation.

Each of these functions is discussed in more detail below.

3 T y p e S e t t e r : T h e L a n g u a g e

The TYPESETTEI~ prototype has been implemented as a preprocessor that emits
C-b+ code. 2 From the User's point of view, the enhancements to C++ are minimal.
Figure 1 shows some variable declarations that might appear in a User's TYPE-
SETTER program. The declarations can be minimal or can contain 'hints' which
TYPESETTER can use to select more efficient implementations. For instance, the
integer elements of the set si will never be less than zero or greater than 1024.
This may allow TYPESETTER to assign s i a more efficient fixed-size bit-array imple-
mentation. Before the User added this information to the declaration, the selected
implementation would have had to be able to handle sets of unbounded size, and
any implementation requiring such size information would not have been a feasible
implementation assignment for that variable.

Each ADT in the system defines its own set of auxiliary declarations, some
of which are required in every variable declaration, others of which are optional.
These declarations provide additional information such as mapping functions or
range bounds that cannot be (easily) deduced from the source code. The declaration
of optional information does not constrain TYPESETTER to implementations that
use the information: the most efficient set of implementations will be chosen for a
program, whether or not all of the declared information is used by the resulting
program.

Most of the language enhancements introduced by TYPESETTER impact the Im-
plementor, whose task is three-fold: implement the abstraction, provide the profiling
specifications, and write the evaluation functions. The first task is straightforward
and requires no enhancements to the base language.

2 The syntax used in the examples is an idealized fiction; the actual syntax used in the
current prototype is less readable.

76

t y p e d e f ... MyType;
t y p e d e f ... Token;
t y p e d e f ... Value;

/ / simple declarations
Set(int) a;
Set(MyType) b;
Set(Token) c;
Map(Token, Value) d;

/ / declarations with auxiliary information
Set(int(lowerb=O, upperb=1024)) si;
Set(MyType(objTolnt=fl O, intToObj=f~O)r upperb=32))
Set(Token(order=Y30)) stkn;
Map(Token(order=f30) , Value(Iowerb=~o~tp~rb=OxFFFF))

Fig. 1. Auxiliary declarations

Profiling implementation: Each ADT has a distinguished implementation that is the
default implementation for the abstraction, and the implementation that collects the
profile data. This implementation must be sufficiently general to allow the implemen-
tat ion of all functions in the interface of the ADT. Figure 2 shows the code for the
profiling implementation of the add-an-element function in the interface for sets. 3
This implementation, called Set_P, uses a linked list to insure that all functions in
the interface can be implemented and profiled.

Profiling variables (declared as p rof i l e r s in Fig. 2) are allocated per call site in
the User's program. If the User's program calls add from three distinct sites, then a
total of three instances each ofpcn~, psizeSum, and pwasln are allocated. On each call
of the add function, the invocation counter pent is incremented, and the psizeSum
profile variable is incremented by the current size of the set. One implementation for
sets wants to know how many times add was invoked to add an element that was
already a member: the profiling variable pwasln computes that statistic.

Evaluation functions: Each implementation of a function in the interface of an ADT
must have a corresponding evaluation function written for it. An evaluation function
for the alternative implementations (not the profiling implementation) returns an
estimate of the runtime resources required by the invocation of that function at a
particular call site in the User's program. The profiling implementation's evaluation
functions return a rough estimate of the relative importance of a particular call
site in the User's program. The distinction between these uses of the evaluation
functions is discussed further in section 4. Fig. 3 shows an implementation of the
add-an-element function when the basic representation of the set is a bit array; the
class name is Set_bin.

3 This is a small example, and is not purported to be complete, or even useful as it is.

77

function Set_P::add(any e)
{

profiler pcnt, psizeSum, pwasIn;
Link lp;
pcnt++; psizeSum += length;
lp = first;
while (lp != nil && e != lp--*data) {

lp = lp--*next;
}

i f (Iv = = nil) {
/ / e not in the set
Link newp = new Link;
newp--*data = e; newp--*next = first;
first = newp;
}

else {
pwas ln++ ;
}

Evaluate Set_P::add(CallSite c)
{ return psizeSum + p c n t - pwasIn; }

Fig. 2. Profiling implementations of add

Feasibility funct ion: Finally, the Imp lemen tor mus t supply a feas ib i l i ty funct ion whose
task is to evaluate whether a specific implementation can be used for a particular
User's variable. This is as close as the Implementor gets to the internals of the com-
piler: she has to be familiar with the data structure representing (a portion of) the
compiler's knowledge of the variable. The feasibility function returns true if this
implementation can be used to implement the variable, and bases this decision on
the information passed to it by the compiler. Figure 4 shows a (simplified) feasibility
function for sets implemented as unbounded bit maps.

[nstant iat ion funct ion: Once an implementation for a variable has been selected,
then the necessary source code for the implementation may need to be generated.
The compiler calls the implementation's instantiat ion function which returns three
sets of specifications: how the implementation is to be generated (if necessary),
the coercion class necessary to maintain strong type checking in the User's code,
and the variable declaration. An example of an Instantiation function written by
an Implementor would not be very instructive since much of its job is simply to
implement generic classes 4. However, the generation of code to handle generic types
is under the control of the Implementor.

For each user variable declared to be, say, a set of some user-type, UType, a naive

4 Newer C++ compilers that implement templates (Ellis and Stroustrup 1990) will simplify
Instantiation functions considerably.

78

vois Set_bm::add(any e)
{

int i = map ToInt(e);
int w = (i / (sizeof(int)*sizeof(byte)));
int b = (i rood (sizeof(int)*sizeof(byte)));
setbits[w] I= (1 << b);

}

Evaluate Set_bm::add(CallSite c)
{

return c.pcnt *
(idividePwr2_op + modPwr2_op +

orAssign_op + array_op + shi~_op);
}

Fig. 3. An alternative implementation of add with evaluation function

Feasible Set_bm(Uservar uvar)
{

if (uvar. map Tolnt. defined
&& uvar.lowerb.defined
k& uvar.upperb.defined) return true;

else return false;
}

Fig. 4. Feasibility function for Set~bin

implementation of the generic specification of sets would create a new copy of the
implementation code for sets with all instances of the generic parameter replaced
with UType. In practice, this is often unnecessary. For example, code can be written
once to handle sets of pointers to objects. However, it is important not to give up
strong type checking to gain this savings in code space. Users should still be notified
when their programs violate the declarations they themselves have made. All that is
needed is a single implementation of sets of pointers with appropriate coercion types
to enforce type checking on the base types. Using TYPESETTER the Implementor
can generate one implementation of the set functions capable of handling pointers
and coercion classes for maintaining strong type checking.

4 T h e I m p l e m e n t a t i o n A s s i g n m e n t A l g o r i t h m

The assignment algorithm is described in detail in the author's dissertation (Samples
1991). Here we will concentrate on communicating the basic idea. Baldly stated,
the call sites are sorted by importance, and the cheapest implementation for each
function is assigned in decreasing order of importance until a consistent assignment

79

of implementations has been found for the program. This single sentence glosses a
great deal of detail, of course.

In TYPESETTER, profile data is collected per call site. While future work with
TYPESETTER will look at what additional information can be gleaned from collecting
profile data per variable or per object, our intuition led us to believe that the selection
algorithm should work approximately in the same way that a human programmer
optimizes a program based on profile data. A programmer asks "Where are the hot-
spots in the program?", and "What can I do to improve the code at that location?"
Answering these questions requires quantitative information about the behavior of
the program at that location; in TYPESETTER such information is summarized by
per-call-site profile data. In contrast with previous work in this area, TYPESETTER's
assignment algorithm does no control flow analysis.

The compiler first ranks all call sites based on the value returned by an initial
estimate function that predicts the potential impact of a call site on the final behavior
of the program. These initial estimate functions are actually written as evaluation
functions for the profiling implementation of the function (see Fig. 2). Sorting call
sites solely by their execution frequency will not work: a sort function that is called
once and that is O(n log n) in the size of the number of elements can easily overwhelm
a function that is called n times and whose execution is O(1).

The algorithm recurses down this ranked list, assigning the cheapest available
implementation to the function at each call site. For a particular call site, a set
of feasible implementations of the function at that call site is computed, such that
each implementation in the set is consistent with all previously assigned call sites.
'Cheapest' is determined by the evaluation functions associated with each possible
implementation function; they return an estimate of the ruutime resources that
would be required by this call site if the associated implementation were assigned to
it. (Our prototype concentrates on runtime performance, and ignores space usage.
See Low (Low 1974), Ramirez (aamirez 1980) and Rowe (Rowe 1976) for discussions
of metrics that incorporate both space and time.)

It is possible that the set of feasible functions for a call site is empty because either
(a) there are no feasible implementations consistent with previous assignments, or
(b) all of the feasible implementations have been tried without success. In either
case, we say the assignment is blocked and the algorithm must backtrack to the
previous call site in the list, unassign it and try the next cheapest implementation.
If every function in the interface of an ADT had an implementation with a type
signature for every combination of possible implementations, then there would be
no blocking. A more realistic approach might be for TYPESETTER to generate the
necessary function with an appropriate signature, as Rowe demonstrated in his work
(Rowe 1976). This is not currently implemented in TYPESETTER.

There are two issues with regard to backtracking: the potentially exponential
nature of the heuristic, and the performance degradation of the constructed software.
The empirical results indicate that backtracking can be controlled, does not increase
the running time of the compiler significantly, and the implemented programs are
efficient.

In practice, the implementation assignment algorithm does very little backtrack-
ing: it zeros in on a consistent implementation rather quickly. The assignment heuris-
tic was parameterized to force it to enumerate across all consistent implementations

80

and choose the one that represents the most efficient solution. This enumeration is
controlled by a parameter p, 0 _ p < 1 to specify that those call sites that account for
an estimated p% of the runtime resources are to be exhaustively enumerated to find
the best possible implementations for those sites. By setting p = 1, all implementa-
tions are enumerated and the ones with the minimum estimate of cost are selected.
At the other extreme, the first consistent implementation is quickly returned by set-
ting the parameter p --- 0. If the User's program satisfies the 90-10 rule, then setting
p = .9 would result in a complete enumeration of all possible implementations for
(approximately) 10% of the call sites, with the remaining 90% assigned the first
consistent implementation found.

More precisely, the set of call sites is sorted in decreasing order of the values
returned by the profiling implementation's evaluation functions. Let S = ~ Ci,
where Ci is the initial estimate returned for the function at the i th location in the
sorted list. The sum of these values, S, is multiplied by the parameter p to determine
a cutoff point k in the list of sorted call sites. The cutoff point is the smallest index k
such that ~ i<k C~ >= p* S. At each point in the assignment algorithm, if call site i
is below the cutoff point in the list (i > k), only the first consistent implementation
is assigned, and all others are ignored. If the call site is above the cutoff point (i < k),
then each consistent implementation for that call site is evaluated.

5 Empirical Results

The TYPESETTEtt prototype has nine implementations of three ADTs: Set, List, and
Map. There are five implementations of Sets: SetP, the profiling implementation;
SeLbmarr, a bit-mapped implementation implemented as an array of 32-bit words;
SeLbmwrd, a bit-mapped implementation that uses only one 32-bit word; Set_slist,
a simple linked list; and Se~_slistord, a linked-list implementation that keeps the
contained objects sorted in the order of their memory addresses. There are two
implementations each for Maps and Lists. We will limit the discussion to showing
how TYPESETTER performs on variables declared to be sets of User-defined objects.

There are two distinct issues that must be examined when evaluating TYPE-
SETTER. First, we want to test our hypothesis that a greedy assignment algorithm
works well. We want to know how quickly an initial assignment of implementations
is made, and how close that assignment is to the 'optimal' solution, assuming that
the performance estimates returned by the evaluation functions are accurate.

The second issue is the accuracy of the estimates returned by the evaluation func-
tions; i.e, how closely the final performance of the implemented program correlates
with the predictions made by the Implementor's evMuation functions.

K-S: Our first example program is an implementation of Knuth and Stevenson's
algorithm (Knuth and Stevenson 1973) for instrumenting a program flow graph
(PFG) with profiling counters; we'll call it K-S. The algorithm finds a minimal set of
nodes that are to be instrumented, and from which the execution count~ of all nodes
can be computed. Our implementation of K-S uses three sets: the variable Graph
is the set of all graph objects, both nodes and arcs. Associated with each node in
the graph are two sets: gozintas, the set of all arcs that come into the node, and
9ozou~as, the set of all arcs that exit the node.

8]

Profile data was generated by running two small PFGs through K-S, one a small
five-node graph that Knuth and Stevenson used as an example in their paper (Knuth
and Stevenson 1973), and the other a six-node, 12-arc PFG. Based on that profile
data and with p = 0, TYPESETTER selected Set_bmarr for the variable Graph, and
Set_slist for the two arc sets, gozintas and gozoutas. This appears to be a reasonable
assignment of implementations. Since Graph is a completely full set, there are no
penalties to pay in a bi tmap implementation for having to check bits in the bit
vector that aren' t set. This is not the case for the gozintas and gozoutas variables: the
number of arcs coming into or leaving an arc is never more than three in our example
graphs; a linked list would be much better for these two variables. This apparently
good choice is further confirmed by running TYPESETTER with p = 1. After a
full enumeration of the possible implementations, TYPESETTER makes exactly the
same choices as it did with p = 0; this lends credence to our hypothesis that a
greedy implementation assignment algorithm is already fairly close to 'optimal' .
Table 1 are K-S's running times when the variables are assigned as shown. The input
data is a 364-node PFG. The first entry in the table reflects the implementations
chosen by THERBLIG, and the remainder show that it was indeed a reasonable set
of implementations.

K-S runtimes]

Graph gozintas & gozoutas time]
Set_bmarr Set_slist 2.50S I

Set_slist 2.92s
Set_slistord 3.37s
Set_bmarr 3.79s I

Table 1. Running times

THERBLIG runtimes

1 p = 0 34.92s
2 p -- .9 32.60s
3 p --- 1 35.98s
4 Set_slist 36.21s
5 Set_slistord 36.36s
6 Set_bmarr 152.17s
7 profiling 44.73s

THERBLIG: THERBLIG 5 is the implementation of the assignment heuristic for the
TYPESETTER system. From the descriptions of the available abstractions and their
implementations, and the description of the User's program, it selects implemen-
tations for the variables declared, and functions invoked, in the User's program.
THERBLIG consists of over 8500 lines of TYPESETTER code and comments. This
includes almost 2500 lines of TYPESETTER code for the analysis portion of the soft-
ware, with the other 6000 lines taken up by the nine implementations of the three
abstractions of Sets, Lists, and Maps. There are 23 variables utilizing these abstrac-
tions: four are Lists, seven are Maps, and eleven are Sets. We concentrate on how
TYPESETTER chose to implement the Set variables.

Seven different implementations of THERBLIG were compiled, either by THERBLIG
itself, or by hand; the results of running the versions of THERBLIG produced by

s The name is based on Frank Gilbreth's unit of time-motion(Gilbreth, Jr. and Carey
1948).

82

compiling each of the implementations is in Table 1. The times result from running
THERBLIG with p = 1 on the same set of profile data: several thousand possibilities
were enumerated each run. Line 1 shows that running THERBLIG with p = 0 to make
an implementatioii assignment, using that assignment to re-compile THERBLIG, and
then running this new THERBLm over a fixed set of profile data with p = 1, resulted
in the new THERBLIG taking 34.92 seconds to run (averaged over ten runs). Line
2 shows that creating an implementation assignment for THERBLIG by enumerat-
ing all call sites that account for 90% of the runtime resources, resulted in a faster
THERBLIG: it required only 32.60 seconds to run. Setting p = 1 did not result in a
faster program.

Lines 4, 5, and 6 show the result of assigning all the set variables in the pro-
gram the same implementation. Even though the abstraction is the same (Set), the
variables are used differently enough to warrant different implementations. Line 7 is
the running time of THERBLIG when every variable is implemented with the default
profiling implementations.

The first three lines tell us that a greedy assignment (p = 0) yields results
comparable to a full enumeration (p = 1). This is important because setting p = 0
results in a much faster running of the selection algorithm. There were a total of
208 call sites in the TttERBLIfi sources. When p = 1, all 208 were exhaustively
enumerated with all possible implementations. When p = 0, only thirty, or about
15%, of the call sites were enumerated. In other words, THERBLIG satisfies a 90-15
rule: 15% of its call sites were estimated to account for about 90% of the run time.

We would expect raising p to lower the execution time of the resulting implemen-
tation if indeed the evaluation functions correspond to the actual behavior of their
corresponding interface functions. Given that p = 1 resulted in a slower implemen-
tation than p = 0 we hypothesize that either the evaluation functions are inaccurate
and do not adequately capture the behavior of the implementations, or the difference
is in the noise resulting from the fact that we are estimating based on profile data.
TYPESETTER does not solve the problem of the reliability of "predictive" test data.
In either case, given that the other implementations are worse than THERBLIG's
choices - - and that the really incorrect implementation (Set_bmarr) is five times
worse than our 'nearly' correct ones - - the anomaly does not appear serious.

Based on the fact that the profiling implementation of Sets is identical to the
SeLslist implementation with all the profiling code removed, Line 7 (all profiling)
and line 4 (SeLslis~) allow us to conclude that the profiling code slows down the
execution of the program about 20%. If the profiling implementation had used bit-
mapped arrays instead, then the slowdown would have been worse (line 6). But then,
the slowdown would not have been from profiling, but from the unsuitability of the
profiling implementation for this particular program.

6 P r e v i o u s W o r k

There are two issues: the use of profile data in compilation, and implementation se-
lection. While there are many studies that utilize profile data to analyze experiments
or verify analytical techniques, only recently has serious attention been paid to the
use of profile data by the compiler. Wall has used profile data in the linking phase

83

to do register allocation (Wall 1986). Karr explored instruction selection combined
with register allocation using profile data (Karr 1984) (see also Morris (Morris 1991).
Samples (Samples 1991; Samples 1988), McFarling (McFarling 1989), and Pettis and
Hansen (Pettis and Hansen 1990) have looked at using profile data for improving
cache performance. Wall has also examined the question of whether real profiles are
necessary or whether estimated profiles will do (Wall 1991); his not too suprising
conclusion is that real profiles worked "much better" than existing techniques for
estimating profile data.

Gilbert Hansen (Hansen 1974) modified a FORTRAN compiler to produce an
intermediate representation of a program in one simple, quick pass. When that in-
termediate form was interpreted, execution counts identified the potential 'hot spots'
of the program. An optimizer was invoked only over 'hot spot' code. Each invoca-
tion of the optimizer would perform the next level of optimization on the frequently
exectuted code. If the code were executed sufficiently often, it would eventually be
compiled to machine code. His results showed that the cost of doing a quick, one-
pass compilation followed by interpretation and iterative optimization of 'hot spots'
was often less than that of doing an equivalent optimization of the original program
with a traditional optimizing compiler. Of course, the traditional compiler does not
have the benefit of knowing which sections of a program should be optimized, so
it optimizes the whole program. This observation lead directly into our research
program. TYPESETTER is the first system to use a general technique for collecting
ADT-specific profile data, and using that data to choose implementations.

Low did the original work on implementation selection (Low 1974; Low 1978; Low
and Rovner 1976). He used a library of implementations, all written in assembler.
His evaluation functions returned the exact number of machine cycles and bytes
required on any one invocation of a function. Given that any precision is lost in
the estimation of future performance of a real program, TYPESETTER's evaluation
functions accept inexactness as inevitable, and assume that programs satisfying the
90-10 rule are skewed enough that such loss of precision will be irrelevant to the final
decisions. Furthermore, Low's system did not allow operators to work on multiple
representations: a union operator's two operands had to have the same representa-
tion. In our approach, a particular implementation function can be assigned to a call
site if the actual parameters at the call site can be assigned the types of the imple-
mentation function's formal parameters. The Implementor decides which functions
are implemented, including mixed-representation functions.

Ramirez (Ramirez 1980) attempted to apply zero-one integer programming to
the implementation assignment problem. His solution works only if it assumed that
costs of assignments are independent of one another. That is, he assumes that if
implementation j is assigned to variable i, then t(i, j) , the amount of time required
by that assignment, is independent of any other assignments. This is almost never
the case, particularly when operators can accept operands with differing implemen-
tations (e.g. a union of a set implemented as a bitmap with a set implemented as
a linked list). TYPESETTER moves the focus from the representation of the variable
to the implementation of functions. This allows the interacting costs of assignments
to be taken into account.

Sherman's Paragon (Sherman 1985) is an ambitious system that attempts to
solve many problems at once, including selection of an implementation of an ADT

84

based solely on the program text. Profile data could be used, but he does not discuss
this in any depth. In the Paragon model, the User (our terminology) is responsible
for writing the complete evaluation function (Sherman calls it the policy procedure)
that selects the implementations of the variables of the program. This puts the onus
of selection on the wrong member of the programming team. We have attempted to
design a system that puts the onus of implementation evaluation on the Implementor,
and selection of implementations for functions and variables on the system.

There has been much research into the synthesis of programs from very high-
level descriptions. Rowe's system (Rowe 1976) approached the problem from the
direction of selecting an implementation based on an algebraic description of the
desired data relations and functionality. In those cases where there did not exist an
implementation satisfying the description, Rowe investigated ways of generating an
implementation. However, he did not look at the use of profile data in his work.
Our use of 'auxiliary declarations' is similar to his declarations of properties of the
abstraction.

Barstow's PECOS system (Barstow 1977; Barstow 1985) is a database of rules
and deductive heuristics to give a programmer's specification of a program an imple-
mentation. Kant (Kant 1981) extended the system to consider rules and heuristics
regarding the efficiency of various implementations; she did not investigate the use
of profile data.

Kestrel's REFINE system is another example of a high-level approach, and they
appear to have paid more attention to the possibility of using profile data (Smith
and Goldberg 1986; Smith, Kotik and Westfold 1985).

Selection of implementation based only on static declarations has proven to be
difficult and expensive, even when attention is focused on a small set of abstractions,
as in the SETL language effort. Work within the SETL project (Dewar et al. 1979;
Schwartz et al. 1986) derives implementations from declarations in the language and
from analysis; e.g., frequencies are estimated by an analysis of the program text. I
know of no work using profile data in the synthesis of SETL programs. The SETL
optimizing compiler attempts to determine a good implementation for the set and
mapping abstractions in the language (there is only one representation for tuples).
The default representation for sets and maps uses hash tables. If the analysis can
determine bases for the elements of the sets, or if the programmer declares elements
to belong to specific bases, then other more efficient implementations are possible
for subsets of the bases. A subset can be represented as a bit in the structures for
the elements of the bases (if the bit is one, then the element belongs to that subset,
if zero, then not). If all elements of a base set are assigned unique integers, then a
subset can be implemented as a bit-map. Or a subset might be represented with a
separate hash table of pointers into the base set.

Straub's Taliere system improves on the optimization phase of the SETL compiler
by considering estimates of performance, including symbolic analysis of execution
frequencies(Straub 1988). However, since he does not utilize profile data, the User
must answer questions 6 of the form What is the average size of s * t in line 2157;
or even What is the expected number of iterations in an average execution of the
loop starting at line 12357. Even worse examples of the kinds of dialogue the system

6 The questions are taken from his dissertation.

85

forces on the User are questions about probabilities: What is the probability of the
CASE statement of line 1113 taking the alternative of line 11267 It seems extremely
doubtful to me that a User would know this information with any precision or
confidence without profile data. And if the profile data exists, then TYPESETTER
shows that the compiler can use it directly to answer many, if not most, of these
kinds of questions.

Weiss (Weiss 1986) worked on finding types of recursive SETL variables, and
presented methods for implementing such structures. However, he is not concerned
with selection of 'best ' implementations by numeric criteria.

TYPESETTER does not a t tempt to synthesize programs analytically, nor does it
a t tempt to work with program synthesis at a high level. Rather than seek a Coper-
nican revolution and invent a totally new language in which to specify programs,
we sought a more evolutionary approach to give existing languages and systems as
much capability as possible.

7 F u t u r e W o r k

We have only scratched the surface with the TYPESETTER prototype. More imple-
mentations need to be added to the database of implementations, and more programs
need to be written in TYPESETTER to provide further evidence that the greedy as-
signment heuristic 'scales up'. In addition to issues mentioned throughout the paper,
there are other questions that we are pursuing.

While we are convinced that concentrating on information available at call sites
yields a simple and effective algorithm, there is useful information that is not asso-
ciated with a call site but with a specific variable or even with a specific object. For
example, we can record at a call site that the elements of a sorted list were added in
increasing order, but only for that call site. What may be more relevant is whether
there are other call sites that add elements to a specific list, and if those elements are
added in increasing order also. The current system could keep track of per-variable
information with some work, but it loses all per-object information. However, the
addition of this extra profile information will be worth while only if the evaluation
functions for the ADT interface functions can take advantage of it.

Programmers will always write programs that implicitly use real-world knowledge
that need not be expressed in code. TYPESETTER provides a mechanism-optional
auxiliary declarations-whereby some of that knowledge can be expressed and used.
Some of the optionals currently in use could be deduced by a more integrated im-
plementation of TYPESETTER. For instance, a set of (ASCII) characters can have
at most 256 elements. Currently, TYPESETTER has no mechanism for automatically
deducing such information.

Currently, TYPESETTER has one profiling implementation for each abstract data
type in the library. In the long run, this may be inadequate. Consider the possible
implementations of sets as linked lists or as bit arrays. The latter has many possible
variation in implementation, each more suitable for certain applications than for
others. Choosing which bit array implementation should be used may be decidable
only with statistics that are extremely difficult to gather with a profiling imple-
mentat ion using linked lists. In this case, we would almost certainly want another

86

profiling implementation for bit-mapped sets, one that collects statistics on how sets
implemented as bit arrays behave. Then a more accurate choice can be made be-
tween the bit array implementations. We need to integrate this hierarchy of profiling
implementations into TYPESETTER.

Under the current model, the Implementor is responsible for writing the eval-
uation functions for an implementation. This is tedious and error prone. It is not
yet known how much one badly written evaluation function can affect the final im-
plementation of a program. More analysis is needed into how imprecise evaluation
estimates can be and still be useful.

References

Barstow, D. (November 1977): Automatic Construction of Algorithms and Data
Structures using a Knowledge Base of Programming Rules. PhD Dissertation,
Stanford University

Barstow, D. (January 1985): On Convergence Toward a Database of Program Trans-
formations. ACM Transactions on Programming Languages and Systems 7, 1-9

Dewar, R.B.K., Grand, A., Liu, S-C., Schwartz, J.T. (January 1979): Programming
by Refinement, as Exemplified by the SETL Representation Sublanguage. ACM
Transactions on Programming Languages and Systems 1, 27-49

Ellis, M., Stroustrup, B. (1990): The Annotated C++ Reference Manual. Addison
Wesley, Reading, MA

Gilbreth, Jr., F.B., Carey, E.G. (1948): Cheaper by the Dozen. T.Y. Crowell, New
York

Hansen, G.J. (1974): Adaptive Systems for the Dynamic Run-time Optimization of
Programs. PhD Dissertation, Carnegie-Mellon University, Pittsburgh, PA

Kant, E. (1981): Efficiency Considerations in Program Synthesis. Stanford Univer-
sity, PhD Dissertation

Karl M. (June 1984): Code Generation by Coagulation. Proceedings of the ACM-
SIGPLAN 1984 Symposium on Compiler Construction, SIGPLAN Notices 19

Knuth, D.E. (1971): An Empirical Study of FORTRAN Programs. Software-Practice
Experience 1, 105-133

Knuth, D.E., Stevenson, F.R. (1973): Optimal measurement points for program fre-
quency counts. BIT 13, 313-322

Low, J.R. (August 1974): Automatic Coding: Choice of Data Structures. Computer
Science Department, Stanford University, PhD Dissertation, Technical Report CS-
452

Low, J.R. (May 1978): Automatic Data Structure Selection: An Example and Overview.
Communications of the ACM 21,376-385

Low, J.R., Rovner, P. (January 1976): Techniques for the Automatic Selection of
Data Structures. Conference Record of the Third ACM Symposium on Principles
of Programming Languages

McFarling, S. (April 3-6, 1989): Program Optimization for Instruction Caches. Sym-
posium on Architectural Support for Programming Languages and Operating Sys-
tems, Boston, MA

87

Morris, W.G. (June 26-28, 1991): CCG: A Prototype Coagulating Code Generator.
Proceedings of the ACM-SIGPLAN 1991 Conference on Programming Language
Design and Implementation 26, 45-58

Pettis, K., Hansen, R.C. (June 20-22, 1990): Profile Guided Code Positioning. Pro-
ceedings of the ACM-SIGPLAN 1990 Conference on Programming Language De-
sign and Implementation 25, 16-27

Ramirez, R.J. (March 1980): Efficient Algorithms for Selecting Efficient Data Storage
Structures. Faculty of Mathematics, University of Waterloo, PhD Dissertation,
Technical Report CS-80-18

Rowe, L.A. (1976): A Formilization for Modelling Structures and the Generation of
Efficient Implementation Structures. University of California, PhD Dissertation

Samples, A.D. (April 1991): Profile-driven compilation. Computer Science Division,
EECS, University of California, Berkeley, Technical Report UCB/CSD 91/627

Samples, A.D. (October 1988): Code Reorganization for Instruction Caches. Com-
puter Science Division, EECS, University of California, Berkeley, Technical Report
UCB/CSD 88/447

Samples, A.D., Hilfinger, P. (October 1990): Profile-Driven Compilation. InfoCon
'90, Tokyo, Japan. [The pages are out of order in the proceedings; the order should
be: 169, 172,171,170,174,173,175,176.]

Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E. (1986): Programming
with Sets: An Introduction to SETL. Springer Verlag, Berlin

Sherman, M.S. (1985): Paragon: A Language Using Type Hierarchies for the Speci-
fication, Implementation and Selection of Abstract Data Types. (Lecture Notes in
Computer Science, vol. 189) Springer Verlag, Berlin

Smith, D.R., Goldberg, A. (November 1986): Towards a Performance Estimation
Assistant. Palo Alto, CA. KES.U.86.10

Smith, D.R., Kotik, G.B., Westfold, S.J. (November 1985): Research on Knowledge-
Based Software Environments at Kestrel Institute. IEEE Transactions on Software
Engineering SE-11

Straub, R.M. (May 1988): Taliere: An Interactive System for Data Structuring SETL
Programs. PhD Dissertation, Courant Institute of Mathematical Sciences, NYU

Wall, D. (June 1986): Global Register Allocation at Link Time. Proceedings of the
ACM-SIGPLAN 1986 Symposium on Compiler Construction, SIGPLAN Notices
21,264-275

Wall, D.W. (June 26-28, 1991): Predicting Program Behavior Using Real or Esti-
mated Profiles. Proceedings of the ACM-SIGPLAN 1991 Conference on Program-
ming Language Design and Implementation 26, 59-70

Weiss, G. (March 1986): Recursive Dat a Types in SETL: Automatic Determination,
Data Language Description, and Efficient Implementation. Courant Institute of
Mathematical Sciences, NYU, Department of Computer Science, Technical Report
102

