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Abs t rac t .  There are many possible implementations of some very useful 
programming abstractions (sets, lists, and maps, to name a few), and select- 
ing from among them is currently one of the early tasks in the design of a 
software system. While programming discipline and/or language features may 
allow the user to change implementations of an abstraction relatively easily, 
there remains the inherent problem of selecting a consistent and efficient 
set of implementations for a particular program. A small set of extensions 
to existing languages allows the specification of the necessary profile data 
within that of the implementation of the abstraction. The TYPESETTER sys- 
tem selects a consistent and efficient set of implementations for a program's 
abstractions based on the collected profile data. 

1 I n t r o d u c t i o n  

The 'ideal system of the future'  will keep profiles associated with source 
programs, using the frequency counts in virtually all phases of a program's 
life . . . .  An optimizing compiler can also make very effective use of the profile, 
since it often suffices to do time-consuming optimization on only one-tenth 
or one-twentieth of a program. (Knuth 1971) 

Software construction systems of the future (including compilers) will be col- 
lecting and using much more information about software than just the source code; 
profile data  will certainly be one such source of information. TYPESETTER was de- 
veloped to explore how compilers and language systems might use profile data in 
the construction of software systems. 

We describe how compilers can use profile data to select appropriate implemen- 
tations for a program. Our approach extends an existing language (C++)  to allow 
the specification of programming abstractions, their implementations, and relevant 
profile data. An earlier paper gave the broad outlines of the goals of this research 
(Samples and Itilfinger 1990). As in that  paper, we distinguish between two dif- 
ferent programmers that  would use TYPESETTER: the User is writing application 
programs with TYPESETTER; the Implementor adds functionality to TYPESETTER. 

* Supported in part by an AT&T Bell Laboratories Scholarship, and by Defense Advanced 
Research Projects Agency (DoD), monitored by Space and Naval Warfare Systems Com- 
mand under Contract N00039-88-C-0292 at University of California, Berkeley. 



74 

2 TypeSetter: The System 

The term 'software crisis' has been around for a long time, and yet programming 
environments still require programmers to be responsible for far too much of the 
implementation of a software system. While research on, say, compiler optimizations 
produce linear speedups for compiled code (usually on the order of 10-20% when they 
work), it doesn't address the problem of programming abstraction implementation 
or software re-use. But before programmers will make use of libraries of reusable 
components two goals must be met: 

- Components matching the programmers' needs must be easily (i.e., automat- 
ically) found within the library. Programmers avoid looking for reusable code 
if the work required to find what they're looking for appears equivalent to the 
work of simply writing their own version of the code. 

- Programmers must be satisfied that the components being used in their program 
are not the cause of any performance problems. If programmers too often find 
that the only way of speeding up their program is to rewrite someone else's 
code, then, again, the effort may appear equivalent to simply (re)writing their 
own version.  

TYPESETTER addresses both of these issues. The system automatically selects 
implementations for the components of a program, and selects the ones that offer 
the best performance for that particular program. In addition, TYPESETTER has 
several other satisfying properties: (1) the User does not have to be an expert in 
compilers or program performance analysis to use the system; (2) the Implementor 
does not have to be an expert in compilers or code generation, and is required only 
to have some knowledge of how to characterize the performance of a function; (3) 
adding an alternative implementation for an abstraction is independent of previously 
existing implementations of that abstraction; and (4) the implementation selection 
algorithm used by the system is independent of the specific alternative implemen- 
tations available to it. The net result is a system that addresses simultaneously the 
issues of code reusability, and efficient automatic construction of software systems. 

Our exploration of the idea of using profile data in a compiler is based on three 
hypotheses. The first is that most programs obey the "90-10" rule, a widely accepted 
rule-of-thumb that says that 90% of execution resources are consumed by 10% of a 
program. The name is arbitrary, since actual numbers vary from program to program. 
Secondly, implementation selection can be done very quickly with a minimum of 
backtracking or use of complicated algorithms; furthermore, decisions based on the 
heavily-used 10% will almost never have to be rescinded due to information contained 
in the remaining 90%. And thirdly, the specification of alternative implementations, 
complete with profiling specification and evaluation, can be done as part of the 
implementation of an abstract data type (ADT), and the evaluation of the profile 
data can be relatively system-independent. 

TYPESETTER, provides means for the Implementor to specify the collection and 
evaluation of profile data about a program's use of an ADT. An ADT-independent 
heuristic evaluates the profile data to select efficient implementations for the vari- 
ables and functions in the User's program. 
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An ADT is defined as a set of functions, and may have many implementations 
defined for it. Each ADT has a distinguished implementation that serves not only 
as the default implementation but is also the implementation that collects profile 
data. To add an implementation for an ADT, the Implementor must implement 
each function in the specification of the abstraction. For each interface function, 
the Implementor must also write an evaluation function that estimates the resources 
required by that function. Finally, the Implementor may have to modify the profiling 
implementation of this ADT so that the necessary information for compile-time 
evaluation of this implementation is collected. 

For each ADT implementation, the Implementor writes a feasibility function that 
determines whether this implementation can be assigned to a specific variable in the 
program being compiled, and an instantiation function that provides mechanical 
details of the implementation of the variable. An implementation assignment for a 
variable is said to be feasible when all information necessary for the implementation 
is available and satisfies the constraints of the implementation. 

Each of these functions is discussed in more detail below. 

3 T y p e S e t t e r :  T h e  L a n g u a g e  

The TYPESETTEI~ prototype has been implemented as a preprocessor that emits 
C-b+ code. 2 From the User's point of view, the enhancements to C++ are minimal. 
Figure 1 shows some variable declarations that might appear in a User's TYPE- 
SETTER program. The declarations can be minimal or can contain 'hints' which 
TYPESETTER can use to select more efficient implementations. For instance, the 
integer elements of the set si will never be less than zero or greater than 1024. 
This may allow TYPESETTER to assign s i a  more efficient fixed-size bit-array imple- 
mentation. Before the User added this information to the declaration, the selected 
implementation would have had to be able to handle sets of unbounded size, and 
any implementation requiring such size information would not have been a feasible 
implementation assignment for that variable. 

Each ADT in the system defines its own set of auxiliary declarations, some 
of which are required in every variable declaration, others of which are optional. 
These declarations provide additional information such as mapping functions or 
range bounds that cannot be (easily) deduced from the source code. The declaration 
of optional information does not constrain TYPESETTER to implementations that 
use the information: the most efficient set of implementations will be chosen for a 
program, whether or not all of the declared information is used by the resulting 
program. 

Most of the language enhancements introduced by TYPESETTER impact the Im- 
plementor, whose task is three-fold: implement the abstraction, provide the profiling 
specifications, and write the evaluation functions. The first task is straightforward 
and requires no enhancements to the base language. 

2 The syntax used in the examples is an idealized fiction; the actual syntax used in the 
current prototype is less readable. 
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t y p e d e f  ... MyType; 
t y p e d e f  ... Token; 
t y p e d e f  ... Value; 

/ /  simple declarations 
Set(int) a; 
Set( MyType) b; 
Set(Token) c; 
Map( Token, Value) d; 

/ /  declarations with auxiliary information 
Set(int(lowerb=O, upperb=1024)) si; 
Set( MyType(objTolnt=fl O, intToObj=f~O)r upperb=32)) 
Set(Token(order=Y30) ) stkn; 
Map(Token(order=f30) , Value( Iowerb=~o~tp~rb=OxFFFF) ) 

Fig. 1. Auxiliary declarations 

Profiling implementation: Each ADT has a distinguished implementation that  is the 
default implementation for the abstraction, and the implementation that  collects the 
profile data. This implementation must be sufficiently general to allow the implemen- 
tat ion of all functions in the interface of the ADT. Figure 2 shows the code for the 
profiling implementation of the add-an-element function in the interface for sets. 3 
This implementation, called Set_P, uses a linked list to insure that  all functions in 
the interface can be implemented and profiled. 

Profiling variables (declared as p rof i l e r s  in Fig. 2) are allocated per call site in 
the User's program. If the User's program calls add from three distinct sites, then a 
total of three instances each ofpcn~, psizeSum, and pwasln are allocated. On each call 
of the add function, the invocation counter pent is incremented, and the psizeSum 
profile variable is incremented by the current size of the set. One implementation for 
sets wants to know how many times add was invoked to add an element that  was 
already a member: the profiling variable pwasln computes that  statistic. 

Evaluation functions: Each implementation of a function in the interface of an ADT 
must have a corresponding evaluation function written for it. An evaluation function 
for the alternative implementations (not the profiling implementation) returns an 
estimate of the runtime resources required by the invocation of that  function at a 
particular call site in the User's program. The profiling implementation's evaluation 
functions return a rough estimate of the relative importance of a particular call 
site in the User's program. The distinction between these uses of the evaluation 
functions is discussed further in section 4. Fig. 3 shows an implementation of the 
add-an-element function when the basic representation of the set is a bit array; the 
class name is Set_bin. 

3 This is a small example, and is not purported to be complete, or even useful as it is. 
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function Set_P::add(any e) 
{ 

profiler pcnt, psizeSum, pwasIn; 
Link lp; 
pcnt++; psizeSum += length; 
lp = first; 
while (lp != nil && e != lp--*data) { 

lp = lp--*next; 
} 

i f  (Iv = =  nil) { 
/ /  e not in the set 
Link newp = new Link; 
newp--*data = e; newp--*next = first; 
first = newp; 
} 

else { 
pwas ln++ ; 
} 

Evaluate Set_P::add( CallSite c) 
{ return psizeSum + p c n t  - pwasIn; } 

Fig. 2. Profiling implementations of add 

Feasibility funct ion:  Finally, the Imp lemen tor  mus t  supply  a feas ib i l i ty funct ion  whose 
task is to evaluate whether a specific implementation can be used for a particular 
User's variable. This is as close as the Implementor gets to the internals of the com- 
piler: she has to be familiar with the data structure representing (a portion of) the 
compiler's knowledge of the variable. The feasibility function returns true if this 
implementation can be used to implement the variable, and bases this decision on 
the information passed to it by the compiler. Figure 4 shows a (simplified) feasibility 
function for sets implemented as unbounded bit maps. 

[nstant iat ion funct ion:  Once an implementation for a variable has been selected, 
then the necessary source code for the implementation may need to be generated. 
The compiler calls the implementation's instantiat ion function which returns three 
sets of specifications: how the implementation is to be generated (if necessary), 
the coercion class necessary to maintain strong type checking in the User's code, 
and the variable declaration. An example of an Instantiation function written by 
an Implementor would not be very instructive since much of its job is simply to 
implement generic classes 4. However, the generation of code to handle generic types 
is under the control of the Implementor. 

For each user variable declared to be, say, a set of some user-type, UType, a naive 

4 Newer C++ compilers that implement templates (Ellis and Stroustrup 1990) will simplify 
Instantiation functions considerably. 
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vois Set_bm::add(any e) 
{ 

int i = map ToInt( e); 
int w = ( i /  (sizeof(int)*sizeof(byte))); 
int b = (i rood (sizeof(int)*sizeof(byte))); 
setbits[w] I= (1 << b); 

} 

Evaluate Set_bm::add( CallSite c) 
{ 

return c.pcnt * 
( idividePwr2_op + modPwr2_op + 

orAssign_op + array_op + shi~_op); 
} 

Fig. 3. An alternative implementation of add with evaluation function 

Feasible Set_bm( Uservar uvar) 
{ 

if (uvar. map Tolnt. defined 
&& uvar.lowerb.defined 
k& uvar.upperb.defined) return true; 

else return false; 
} 

Fig. 4. Feasibility function for Set~bin 

implementation of the generic specification of sets would create a new copy of the 
implementation code for sets with all instances of the generic parameter replaced 
with UType. In practice, this is often unnecessary. For example, code can be written 
once to handle sets of pointers to objects. However, it is important not to give up 
strong type checking to gain this savings in code space. Users should still be notified 
when their programs violate the declarations they themselves have made. All that is 
needed is a single implementation of sets of pointers with appropriate coercion types 
to enforce type checking on the base types. Using TYPESETTER the Implementor 
can generate one implementation of the set functions capable of handling pointers 
and coercion classes for maintaining strong type checking. 

4 T h e  I m p l e m e n t a t i o n  A s s i g n m e n t  A l g o r i t h m  

The assignment algorithm is described in detail in the author's dissertation (Samples 
1991). Here we will concentrate on communicating the basic idea. Baldly stated, 
the call sites are sorted by importance, and the cheapest implementation for each 
function is assigned in decreasing order of importance until a consistent assignment 
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of implementations has been found for the program. This single sentence glosses a 
great deal of detail, of course. 

In TYPESETTER, profile data is collected per call site. While future work with 
TYPESETTER will look at what additional information can be gleaned from collecting 
profile data per variable or per object, our intuition led us to believe that the selection 
algorithm should work approximately in the same way that a human programmer 
optimizes a program based on profile data. A programmer asks "Where are the hot- 
spots in the program?", and "What can I do to improve the code at that location?" 
Answering these questions requires quantitative information about the behavior of 
the program at that location; in TYPESETTER such information is summarized by 
per-call-site profile data. In contrast with previous work in this area, TYPESETTER's 
assignment algorithm does no control flow analysis. 

The compiler first ranks all call sites based on the value returned by an initial 
estimate function that predicts the potential impact of a call site on the final behavior 
of the program. These initial estimate functions are actually written as evaluation 
functions for the profiling implementation of the function (see Fig. 2). Sorting call 
sites solely by their execution frequency will not work: a sort function that is called 
once and that is O(n log n) in the size of the number of elements can easily overwhelm 
a function that is called n times and whose execution is O(1). 

The algorithm recurses down this ranked list, assigning the cheapest available 
implementation to the function at each call site. For a particular call site, a set 
of feasible implementations of the function at that call site is computed, such that 
each implementation in the set is consistent with all previously assigned call sites. 
'Cheapest' is determined by the evaluation functions associated with each possible 
implementation function; they return an estimate of the ruutime resources that 
would be required by this call site if the associated implementation were assigned to 
it. (Our prototype concentrates on runtime performance, and ignores space usage. 
See Low (Low 1974), Ramirez (aamirez 1980) and Rowe (Rowe 1976) for discussions 
of metrics that incorporate both space and time.) 

It is possible that the set of feasible functions for a call site is empty because either 
(a) there are no feasible implementations consistent with previous assignments, or 
(b) all of the feasible implementations have been tried without success. In either 
case, we say the assignment is blocked and the algorithm must backtrack to the 
previous call site in the list, unassign it and try the next cheapest implementation. 
If every function in the interface of an ADT had an implementation with a type 
signature for every combination of possible implementations, then there would be 
no blocking. A more realistic approach might be for TYPESETTER to generate the 
necessary function with an appropriate signature, as Rowe demonstrated in his work 
(Rowe 1976). This is not currently implemented in TYPESETTER. 

There are two issues with regard to backtracking: the potentially exponential 
nature of the heuristic, and the performance degradation of the constructed software. 
The empirical results indicate that backtracking can be controlled, does not increase 
the running time of the compiler significantly, and the implemented programs are 
efficient. 

In practice, the implementation assignment algorithm does very little backtrack- 
ing: it zeros in on a consistent implementation rather quickly. The assignment heuris- 
tic was parameterized to force it to enumerate across all consistent implementations 
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and choose the one that represents the most efficient solution. This enumeration is 
controlled by a parameter p, 0 _ p < 1 to specify that those call sites that account for 
an estimated p% of the runtime resources are to be exhaustively enumerated to find 
the best possible implementations for those sites. By setting p = 1, all implementa- 
tions are enumerated and the ones with the minimum estimate of cost are selected. 
At the other extreme, the first consistent implementation is quickly returned by set- 
ting the parameter p --- 0. If the User's program satisfies the 90-10 rule, then setting 
p = .9 would result in a complete enumeration of all possible implementations for 
(approximately) 10% of the call sites, with the remaining 90% assigned the first 
consistent implementation found. 

More precisely, the set of call sites is sorted in decreasing order of the values 
returned by the profiling implementation's evaluation functions. Let S = ~ Ci, 
where Ci is the initial estimate returned for the function at the i th location in the 
sorted list. The sum of these values, S, is multiplied by the parameter p to determine 
a cutoff point k in the list of sorted call sites. The cutoff point is the smallest index k 
such that ~ i<k  C~ >=  p* S. At each point in the assignment algorithm, if call site i 
is below the cutoff point in the list (i > k), only the first consistent implementation 
is assigned, and all others are ignored. If the call site is above the cutoff point (i < k), 
then each consistent implementation for that call site is evaluated. 

5 Empirical Results 

The TYPESETTEtt prototype has nine implementations of three ADTs: Set, List, and 
Map. There are five implementations of Sets: SetP, the profiling implementation; 
SeLbmarr, a bit-mapped implementation implemented as an array of 32-bit words; 
SeLbmwrd, a bit-mapped implementation that uses only one 32-bit word; Set_slist, 
a simple linked list; and Se~_slistord, a linked-list implementation that keeps the 
contained objects sorted in the order of their memory addresses. There are two 
implementations each for Maps and Lists. We will limit the discussion to showing 
how TYPESETTER performs on variables declared to be sets of User-defined objects. 

There are two distinct issues that must be examined when evaluating TYPE- 
SETTER. First, we want to test our hypothesis that a greedy assignment algorithm 
works well. We want to know how quickly an initial assignment of implementations 
is made, and how close that assignment is to the 'optimal' solution, assuming that 
the performance estimates returned by the evaluation functions are accurate. 

The second issue is the accuracy of the estimates returned by the evaluation func- 
tions; i.e, how closely the final performance of the implemented program correlates 
with the predictions made by the Implementor's evMuation functions. 

K-S: Our first example program is an implementation of Knuth and Stevenson's 
algorithm (Knuth and Stevenson 1973) for instrumenting a program flow graph 
(PFG) with profiling counters; we'll call it K-S. The algorithm finds a minimal set of 
nodes that are to be instrumented, and from which the execution count~ of all nodes 
can be computed. Our implementation of K-S uses three sets: the variable Graph 
is the set of all graph objects, both nodes and arcs. Associated with each node in 
the graph are two sets: gozintas, the set of all arcs that come into the node, and 
9ozou~as, the set of all arcs that exit the node. 
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Profile data  was generated by running two small PFGs through K-S, one a small 
five-node graph that  Knuth and Stevenson used as an example in their paper (Knuth 
and Stevenson 1973), and the other a six-node, 12-arc PFG. Based on that  profile 
data  and with p = 0, TYPESETTER selected Set_bmarr for the variable Graph, and 
Set_slist for the two arc sets, gozintas and gozoutas. This appears to be a reasonable 
assignment of implementations. Since Graph is a completely full set, there are no 
penalties to pay in a bi tmap implementation for having to check bits in the bit 
vector that  aren' t  set. This is not the case for the gozintas and gozoutas variables: the 
number of arcs coming into or leaving an arc is never more than three in our example 
graphs; a linked list would be much better for these two variables. This apparently 
good choice is further confirmed by running TYPESETTER with p = 1. After a 
full enumeration of the possible implementations, TYPESETTER makes exactly the 
same choices as it did with p = 0; this lends credence to our hypothesis that  a 
greedy implementation assignment algorithm is already fairly close to 'optimal' .  
Table 1 are K-S's running times when the variables are assigned as shown. The input 
data  is a 364-node PFG.  The first entry in the table reflects the implementations 
chosen by THERBLIG, and the remainder show that  it was indeed a reasonable set 
of implementations. 

K-S runtimes ] 

Graph gozintas & gozoutas time] 
Set_bmarr Set_slist 2.50S I 

Set_slist 2.92s 
Set_slistord 3.37s 
Set_bmarr 3.79s I 

Table  1. Running times 

THERBLIG runtimes 

1 p = 0 34.92s 
2 p -- .9 32.60s 
3 p --- 1 35.98s 
4 Set_slist 36.21s 
5 Set_slistord 36.36s 
6 Set_bmarr 152.17s 
7 profiling 44.73s 

THERBLIG: THERBLIG 5 is the implementation of the assignment heuristic for the 
TYPESETTER system. From the descriptions of the available abstractions and their 
implementations, and the description of the User's program, it selects implemen- 
tations for the variables declared, and functions invoked, in the User's program. 
THERBLIG consists of over 8500 lines of TYPESETTER code and comments. This 
includes almost 2500 lines of TYPESETTER code for the analysis portion of the soft- 
ware, with the other 6000 lines taken up by the nine implementations of the three 
abstractions of Sets, Lists, and Maps. There are 23 variables utilizing these abstrac- 
tions: four are Lists, seven are Maps, and eleven are Sets. We concentrate on how 
TYPESETTER chose to implement the Set variables. 

Seven different implementations of THERBLIG were compiled, either by THERBLIG 
itself, or by hand; the results of running the versions of THERBLIG produced by 

s The name is based on Frank Gilbreth's unit of time-motion(Gilbreth, Jr. and Carey 
1948). 



82 

compiling each of the implementations is in Table 1. The times result from running 
THERBLIG with p = 1 on the same set of profile data: several thousand possibilities 
were enumerated each run. Line 1 shows that  running THERBLIG with p = 0 to make 
an implementatioii assignment, using that  assignment to re-compile THERBLIG, and 
then running this new THERBLm over a fixed set of profile data  with p = 1, resulted 
in the new THERBLIG taking 34.92 seconds to run (averaged over ten runs). Line 
2 shows that  creating an implementation assignment for THERBLIG by enumerat- 
ing all call sites that  account for 90% of the runtime resources, resulted in a faster 
THERBLIG: it required only 32.60 seconds to run. Setting p = 1 did not result in a 
faster program. 

Lines 4, 5, and 6 show the result of assigning all the set variables in the pro- 
gram the same implementation. Even though the abstraction is the same (Set), the 
variables are used differently enough to warrant different implementations. Line 7 is 
the running time of THERBLIG when every variable is implemented with the default 
profiling implementations. 

The first three lines tell us that  a greedy assignment (p = 0) yields results 
comparable to a full enumeration (p = 1). This is important because setting p = 0 
results in a much faster running of the selection algorithm. There were a total of 
208 call sites in the TttERBLIfi sources. When p = 1, all 208 were exhaustively 
enumerated with all possible implementations. When p = 0, only thirty, or about 
15%, of the call sites were enumerated. In other words, THERBLIG satisfies a 90-15 
rule: 15% of its call sites were estimated to account for about 90% of the run time. 

We would expect raising p to lower the execution time of the resulting implemen- 
tation if indeed the evaluation functions correspond to the actual behavior of their 
corresponding interface functions. Given that  p = 1 resulted in a slower implemen- 
tation than p = 0 we hypothesize that  either the evaluation functions are inaccurate 
and do not adequately capture the behavior of the implementations, or the difference 
is in the noise resulting from the fact that  we are estimating based on profile data. 
TYPESETTER does not solve the problem of the reliability of "predictive" test data. 
In either case, given that  the other implementations are worse than THERBLIG's 
choices - -  and that  the really incorrect implementation (Set_bmarr) is five times 
worse than our 'nearly' correct ones - -  the anomaly does not appear serious. 

Based on the fact that  the profiling implementation of Sets is identical to the 
SeLslist implementation with all the profiling code removed, Line 7 (all profiling) 
and line 4 (SeLslis~) allow us to conclude that  the profiling code slows down the 
execution of the program about 20%. If the profiling implementation had used bit- 
mapped arrays instead, then the slowdown would have been worse (line 6). But then, 
the slowdown would not have been from profiling, but from the unsuitability of the 
profiling implementation for this particular program. 

6 P r e v i o u s  W o r k  

There are two issues: the use of profile data in compilation, and implementation se- 
lection. While there are many studies that  utilize profile data to analyze experiments 
or verify analytical techniques, only recently has serious attention been paid to the 
use of profile data  by the compiler. Wall has used profile data  in the linking phase 
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to do register allocation (Wall 1986). Karr explored instruction selection combined 
with register allocation using profile data (Karr 1984) (see also Morris (Morris 1991). 
Samples (Samples 1991; Samples 1988), McFarling (McFarling 1989), and Pettis and 
Hansen (Pettis and Hansen 1990) have looked at using profile data for improving 
cache performance. Wall has also examined the question of whether real profiles are 
necessary or whether estimated profiles will do (Wall 1991); his not too suprising 
conclusion is that real profiles worked "much better" than existing techniques for 
estimating profile data. 

Gilbert Hansen (Hansen 1974) modified a FORTRAN compiler to produce an 
intermediate representation of a program in one simple, quick pass. When that in- 
termediate form was interpreted, execution counts identified the potential 'hot spots' 
of the program. An optimizer was invoked only over 'hot spot' code. Each invoca- 
tion of the optimizer would perform the next level of optimization on the frequently 
exectuted code. If the code were executed sufficiently often, it would eventually be 
compiled to machine code. His results showed that the cost of doing a quick, one- 
pass compilation followed by interpretation and iterative optimization of 'hot spots' 
was often less than that of doing an equivalent optimization of the original program 
with a traditional optimizing compiler. Of course, the traditional compiler does not 
have the benefit of knowing which sections of a program should be optimized, so 
it optimizes the whole program. This observation lead directly into our research 
program.  TYPESETTER is the first system to use a general technique for collecting 
ADT-specific profile data, and using that data to choose implementations. 

Low did the original work on implementation selection (Low 1974; Low 1978; Low 
and Rovner 1976). He used a library of implementations, all written in assembler. 
His evaluation functions returned the exact number of machine cycles and bytes 
required on any one invocation of a function. Given that any precision is lost in 
the estimation of future performance of a real program, TYPESETTER's evaluation 
functions accept inexactness as inevitable, and assume that programs satisfying the 
90-10 rule are skewed enough that such loss of precision will be irrelevant to the final 
decisions. Furthermore, Low's system did not allow operators to work on multiple 
representations: a union operator's two operands had to have the same representa- 
tion. In our approach, a particular implementation function can be assigned to a call 
site if the actual parameters at the call site can be assigned the types of the imple- 
mentation function's formal parameters. The Implementor decides which functions 
are implemented, including mixed-representation functions. 

Ramirez (Ramirez 1980) attempted to apply zero-one integer programming to 
the implementation assignment problem. His solution works only if it assumed that 
costs of assignments are independent of one another. That is, he assumes that if 
implementation j is assigned to variable i, then t(i, j) ,  the amount of time required 
by that assignment, is independent of any other assignments. This is almost never 
the case, particularly when operators can accept operands with differing implemen- 
tations (e.g. a union of a set implemented as a bitmap with a set implemented as 
a linked list). TYPESETTER moves the focus from the representation of the variable 
to the implementation of functions. This allows the interacting costs of assignments 
to be taken into account. 

Sherman's Paragon (Sherman 1985) is an ambitious system that attempts to 
solve many problems at once, including selection of an implementation of an ADT 
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based solely on the program text. Profile data could be used, but he does not discuss 
this in any depth. In the Paragon model, the User (our terminology) is responsible 
for writing the complete evaluation function (Sherman calls it the policy procedure) 
that selects the implementations of the variables of the program. This puts the onus 
of selection on the wrong member of the programming team. We have attempted to 
design a system that puts the onus of implementation evaluation on the Implementor, 
and selection of implementations for functions and variables on the system. 

There has been much research into the synthesis of programs from very high- 
level descriptions. Rowe's system (Rowe 1976) approached the problem from the 
direction of selecting an implementation based on an algebraic description of the 
desired data relations and functionality. In those cases where there did not exist an 
implementation satisfying the description, Rowe investigated ways of generating an 
implementation. However, he did not look at the use of profile data in his work. 
Our use of 'auxiliary declarations' is similar to his declarations of properties of the 
abstraction. 

Barstow's PECOS system (Barstow 1977; Barstow 1985) is a database of rules 
and deductive heuristics to give a programmer's specification of a program an imple- 
mentation. Kant (Kant 1981) extended the system to consider rules and heuristics 
regarding the efficiency of various implementations; she did not investigate the use 
of profile data. 

Kestrel's REFINE system is another example of a high-level approach, and they 
appear to have paid more attention to the possibility of using profile data (Smith 
and Goldberg 1986; Smith, Kotik and Westfold 1985). 

Selection of implementation based only on static declarations has proven to be 
difficult and expensive, even when attention is focused on a small set of abstractions, 
as in the SETL language effort. Work within the SETL project (Dewar et al. 1979; 
Schwartz et al. 1986) derives implementations from declarations in the language and 
from analysis; e.g., frequencies are estimated by an analysis of the program text. I 
know of no work using profile data in the synthesis of SETL programs. The SETL 
optimizing compiler attempts to determine a good implementation for the set and 
mapping abstractions in the language (there is only one representation for tuples). 
The default representation for sets and maps uses hash tables. If the analysis can 
determine bases for the elements of the sets, or if the programmer declares elements 
to belong to specific bases, then other more efficient implementations are possible 
for subsets of the bases. A subset can be represented as a bit in the structures for 
the elements of the bases (if the bit is one, then the element belongs to that subset, 
if zero, then not). If all elements of a base set are assigned unique integers, then a 
subset can be implemented as a bit-map. Or a subset might be represented with a 
separate hash table of pointers into the base set. 

Straub's Taliere system improves on the optimization phase of the SETL compiler 
by considering estimates of performance, including symbolic analysis of execution 
frequencies(Straub 1988). However, since he does not utilize profile data, the User 
must answer questions 6 of the form What is the average size of s * t in line 2157; 
or even What is the expected number of iterations in an average execution of the 
loop starting at line 12357. Even worse examples of the kinds of dialogue the system 

6 The questions are taken from his dissertation. 
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forces on the User are questions about probabilities: What is the probability of the 
CASE statement of line 1113 taking the alternative of line 11267 It seems extremely 
doubtful to me that  a User would know this information with any precision or 
confidence without profile data. And if the profile data exists, then TYPESETTER 
shows that  the compiler can use it directly to answer many, if not most, of these 
kinds of questions. 

Weiss (Weiss 1986) worked on finding types of recursive SETL variables, and 
presented methods for implementing such structures. However, he is not concerned 
with selection of 'best '  implementations by numeric criteria. 

TYPESETTER does not a t tempt  to synthesize programs analytically, nor does it 
a t tempt  to work with program synthesis at a high level. Rather than seek a Coper- 
nican revolution and invent a totally new language in which to specify programs, 
we sought a more evolutionary approach to give existing languages and systems as 
much capability as possible. 

7 F u t u r e  W o r k  

We have only scratched the surface with the TYPESETTER prototype. More imple- 
mentations need to be added to the database of implementations, and more programs 
need to be written in TYPESETTER to provide further evidence that  the greedy as- 
signment heuristic 'scales up'.  In addition to issues mentioned throughout the paper, 
there are other questions that  we are pursuing. 

While we are convinced that  concentrating on information available at call sites 
yields a simple and effective algorithm, there is useful information that  is not asso- 
ciated with a call site but with a specific variable or even with a specific object. For 
example, we can record at a call site that  the elements of a sorted list were added in 
increasing order, but  only for that  call site. What  may be more relevant is whether 
there are other call sites that  add elements to a specific list, and if those elements are 
added in increasing order also. The current system could keep track of per-variable 
information with some work, but  it loses all per-object information. However, the 
addition of  this extra profile information will be worth while only if the evaluation 
functions for the ADT interface functions can take advantage of it. 

Programmers will always write programs that  implicitly use real-world knowledge 
that  need not be expressed in code. TYPESETTER provides a mechanism-optional 
auxiliary declarations-whereby some of that  knowledge can be expressed and used. 
Some of the optionals currently in use could be deduced by a more integrated im- 
plementation of TYPESETTER. For instance, a set of (ASCII) characters can have 
at most 256 elements. Currently, TYPESETTER has no mechanism for automatically 
deducing such information. 

Currently, TYPESETTER has one profiling implementation for each abstract data 
type in the library. In the long run, this may be inadequate. Consider the possible 
implementations of sets as linked lists or as bit arrays. The latter has many possible 
variation in implementation, each more suitable for certain applications than for 
others. Choosing which bit array implementation should be used may be decidable 
only with statistics that  are extremely difficult to gather with a profiling imple- 
mentat ion using linked lists. In this case, we would almost certainly want another 
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profiling implementation for bit-mapped sets, one that collects statistics on how sets 
implemented as bit arrays behave. Then a more accurate choice can be made be- 
tween the bit array implementations. We need to integrate this hierarchy of profiling 
implementations into TYPESETTER. 

Under the current model, the Implementor is responsible for writing the eval- 
uation functions for an implementation. This is tedious and error prone. It is not 
yet known how much one badly written evaluation function can affect the final im- 
plementation of a program. More analysis is needed into how imprecise evaluation 
estimates can be and still be useful. 
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