
Integrated Graphic Environment to Develop
Applications based on Attribute Grammars

Tibor Gyim6thy*, Zolt~tn Alexin* and R6bert Szfics**

*Research Group on the Theory of Automata,
Hungarian Academy of Sciences,

H-6720 Szeged Aradi v&~mik tere 1.
e-mail: h42gyi@ella.hu and h157ale@ella.hu

**Cogito, Software Research and Development Ltd.
H-6725 Szeged Szenth[roms~g utea 75/B.

Abstract. This paper presents an overview of an integrated graphic environment
called P-GEN (D to develop applications based on attribute grammars. The
system has a modular structure to enable integration of different modules for all
phases of the processing of an attribute grammar specification. This environment
contains routines for transforming attribute grammar specifications written in
different formalisms to an internal representation. The system assists the
interpretation of the most important evaluation strategies. The graphic
representation of the parse trees and attributed dependency graphs is also
supported.

I Introduction

Attribute grammars [Knu68] are probably the most adequate of the tools available
for the specification and automated implementation of compilers, interpreters and
translators. However only a few commercial applications are based on attribute
grammars the main reason for which probably being the lack of a true user-friendly
integrated environment. In the following we present some requirements for such a
system.

Perhaps the most difficult problem is the absence of a standard formalism for the
attribute grammar specification. Hence such an environment has to contain modules to
convert specifications written in different metalanguages. In addition it is convenient
for the user i f he can make the attribute grammar specification interactively as well.

* This work has been supported by the Cogito Ltd, Hungary and the presentation was
made possible by OTKA under grant No. 99/10441.

52

The system needs a well defined interface that enables the incorporation of different
kinds of parser modules. In many applications it is useful if that the user can direct the
tree-construction corresponding to the (already) known set of production rules (e.g.
Syntax Directed Editors). Ambiguous attribute grammars are applied in numerous fields
of artificial intelligence (e.g. syntactic pattern recognition, natural language
processing). For these grammars it is useful if the computed attribute values can be
used during the parsing. Incremental methods for parser generation are also included
thus providing the possibility of interactive grammar specification. Of course the
system must contain parser generator modules for the most important parsing methods
(LL(1), LALR(1)). The graphical representation of the parsing process helps the user in
the development of a grammar.

The system has to contain interfaces to build different attribute evaluators, but the
real help for a user is if an interpreter for the attribute evaluation is involved in the
system. In such a case the evaluation process takes place before the user's eyes. The
evaluation process can be executed step by step, may be interrupted at any time during
which the computed values of the attributes can be requested from the system. After
this the processing can continue to the next step. The graphic display of the attributed
dependency graph is very useful (e.g. the syntax-tree and the attributes of this tree can
be viewed).

A system developed by taking into consideration the previous points has the
advantage that beginners can define usable attribute grammars in a short time while
experts can use it for debugging and design. Such a system could be a link between
different attribute grammar systems.

The system called P-GEN that has these properties is currently under development
and we now give an overview of this project. The system has a modular structure like
EL1 [GHL92] to integrate different modules for all the phases of processing an attribute
grammar specification. Similar to the TALE [JKP91] system a graphic presentation is
given to assist the user in the development. A unique feature of our system is that it
gives a common platform from which different attribute grammar formalisms are
converted to a standard one.

This paper is organized as follows. Section 2 is a short overview of attribute
grammar specification possibilities in the system. In Section 3 we discuss the parsing
problem. In Section 4 the concept of the attribute evaluation is presented. In Section 5
we demonstrate the user interface and utilities of the system. Finally in Section 6 we
present our conclusions. We assume that the reader is familiar with attribute grammars.

2 Attribute Grammar Specification

There are not many developers who use attribute grammars to produce
applications, in spite of the fact that numerous attribute grammar systems have been

53

constructed during the past few years [DJL88]. In addition there is no indication that
one of the attribute grammar metalanguage will become the standard. This is - in our
opinion - the main obstacle to the spreading of attribute grammar systems i.e. there are
not enough human and financial resource to develop a suitable environment. There are
no standard libraries for particular tasks and because of the different formalisms
sometimes even the understanding of the specifications is hard.

This paper describes the effort of building a general purpose system based on
attribute grammar that have the properties listed in the previous section. First we
developed an internal representation of the I/O data structures of the lexical, syntactic
and attribute evaluation modules. These data structures can be enriched when necessary.

The input to the system is a simple text file which can be edited by any
conventional text editor. Naturally the user has the choice of using the attribute
evaluator interpreter (see Section 4), he may if he wishes start the whole generating
process from a batch.

In the import menu-item of the system different kinds of attribute grammar
specifications can be read and converted to the internal data structures. In the export
menuitem the internal representation of an attribute grammar can be transformed to
different attribute grammar formalisms. At present the system contains routines to
import from and export to PROF-LP [GHK89].

An additional feature of our system is that the attribute grammar specification can
be written interactively. In this case the system checks the consistency of the
specification during editing. The function of the interactive part of our system is similar
to that used by the interactive PROF-LP as presented in [GHK89].

3 Building The Syntax-tree

The best founded part of compiler theory is the syntactic parsing (e.g. algorithms
to generate effective LL(1) and LALR(1) parsers are presented in [ASU86]).

Our system offers the opportunity to use a separate parser. The user can use his
"own" parser, but this parser is expected to output a sequence of productions as the
syntax-tree used to derive the actual input. Our system provides built-in LL(1) and
LALR(1) parser generators.

In certain fields of attribute grammar applications the underlying CF grammar itself
is ambiguous (e.g. natural language interfaces, syntactic pattern recognition). To deal
with these grammars a backtrack parser generator has been developed in our system
[GYT86]. The generated parsers use the LL(1) tables so a lot of redundant backtracks
can be eliminated. A further characteristic of the generated parsers is that the parsing
can be influenced by the evaluated attributes. Calling the start symbol of an ambiguous

54

grammar repeatedly allows all possible derivations of the grammar to be constructed for
a given input.

" l Polyp for Windows - d:lusers~szucs~.winpolypl, sourceWemo'
Conlrol-P, uleLJbran/ Tree View Option s ~indow Help

DdJ |e ~ " l t " " I" I v ,,L

I '1*[

~,ule

Rule

~ul�9
Enal~

Control Settings

i ij

4 -

Figure 1.

Another option available when building a derivation-tree is that the user can
control the tree creation himself. The derivation-tree appears on the screen and the tree
building can be directed by cursor movements (cricking, dragging) - see Figure 1. -
thus the tree evolves templatewise. (A template is a labelled and attributed inner node
of the derivation-tree.) We plan to integrate a complete syntax directed editor generator
into the system.

The interactive specification of attribute grammars requires the incremental
generation of parsers especially large grammars. There are methods for generating
LL(1) and LALR(1) parsers incrementally [HIGR89][GHK89]. The system will
eventually be augmented with such parser generators.

4 The Attribute Evaluation

Our main goal was the interpretation of different attribute evaluators. The
evaluation can be performed step by step or continuously, the values of the attribute
instances can be printed out in response to a user request.

55

The result of the parser module is a derivation-tree which is read by the interpreter
which in turn builds its own internal attributed tree. Each node contains space to store
attribute values occurring in the regarded production rule. The central part of this
module is a routine that can compute an arbitrary attribute instance (presuming that all
other needed attributes have already been computed). The routine looks for the semantic
function that sets the value of the corresponding attribute, then pushes the parameters,
i.e. the known attributes, onto the stack then finally interprets the function call and
stores the computed attribute value. Hence all of the semantic equations are expected to
be a function. In order to make perfect calls, functions have to be declared in the
attribute grammar specification. Declaration means the declaration of function names,
the parameter types and order, and the type of the return value.

By using this basic routine it is not too difficult to implement different attribute
evaluation strategies (e.g. in the ease of the visit-sequence oriented evaluators [KasS0]
this routine is caUed by the actual attribute instances).

--1 Polyp for Windows - cxamrle2 example: ~ I ' I - II
~ontrol Rule Lihrap/ Tree V_icw Options Window Help

Control

Left aide:cxpr
~a~:assignmcnt cxpr cxpr

~ r m

laouai ~pc

]aCtual type

expr expr
i expected type] >, expecled~pe I
i

],c,.
iexpcdcd type

Figure 2.

Since the evaluated trees can be modified directly the integration of the incremental
attribute evaluator modules will be useful [Alb90].

56

To give as much freedom as possible we have developed a dynamic evaluator. The
system computes the set of those attributes which can be computed in the next step,
then the user chooses the next attribute to be computed and instructs the interpreter to
do a step and so on and so on

The system can display the attributed dependency graph of a node (see Figure 2).
The global flow of the evaluation process can be followed by viewing the
previouslymentioned syntax-tree display and the local flow can be followed by viewing
the dependency graph.

5 User Interface and Utilities

P-GEN is written in C++(2) and requires the MS Windows 3.xx(3) graphical
environment. Our system is devoted to becoming a standard specification tool for
attribute grammars and to be an integrated tool for running, testing and debugging the
generated parsers and evaluators.

•J Polyp for Windows - cxampla2 example2 I " I
Control Fruit Library _Tree View ,Options Window Help

|

,--] Polyp - Small
CoJitiu| Settings

Control
Left side:term
Path:assignment cxpr cxpr term

cxpcctcd ~pc " Icxpedcd type I "

I,.oo, I,l,o,~
aclual type laclual type

_ p o, " [
Icxpected type I

cxpr]
aclnal ty'pc

U

o
13

D

|

0

,, U

�9 .-J Example 2
Value: real

Figure 3.

57

Reading outer attribute grammar specification into the system is supported by
conversion routines.

The attribute grammar specification can be typed interactively by means of
structured dialog boxes after which the system checks the typed production rule to
determine wether it is consistent with the previously typed rules. The attributed trees
constructed by an attribute grammar can be stored in the system. If an attribute
grammar is modified the system checks the consistency of the constructed trees. The
system can generate the valid trees for a grammar. The nodes of the trees can be
selected by different ways (e.g. by name, by rule-name, by attribute-name).

There are several possibilities for the interpretation of the attribute evaluations. The
user can request evaluation concerning to a standalone attribute instance, to a group of
attributes and to a total subtree. The process is shown on the graphic representation of
the syntax-tree or on the dependency graphs. The computed attribute values can be
displayed on the screen (see Figure 3). The initial values can be set manually or the
computed values can be changed.

6 Summary

P-GEN is a unified graphic environment to develop attribute grammar
specifications. The different specification methods can be linked together. So far the
PROF-LP import/export routines are implemented. Thus the system can be tested by
the attribute grammar applications written in PROF-LP dialect.

Our system can be used for different applications - it can be considered as a user-
friendly integrated development system; The most convenient specification methods can
be used as well as parser generator and evaluator modules; The debugging facilities
make the process of development faster by an unestimatable amount; The system has
applications in teaching where it may be used to demonstrate the working of parsers and
attribute evaluators; And last but not least we refer to a project of our research group
that deals with the learning of attribute grammars in a pattern recognition environment
where an interactive system provides great help in evaluating the different learning
strategies.

7 References

[Alb90] H. Alblas: Concurrent Incremental Attribute Evaluation. In: P.
Deransart, M. Jourdan (eds.): Attribute Grammars and their
Applications Lecture Notes in Computer Science 461. Berlin: Springer
Verlag 1990. pp. 343-358

[ASU86]

[DJL88]

[GHK89]

[GHP92]

[GYT86]

[HKR89]

[JKP91]

[Kas80]

[Knu68]

58

A.V. Aho, R. Sethi, J.D. Ullman: Compilers - Principles, Techniques
and Tools. Addison-Wesley 1986.

P. Deransart, M. Jourdan, B. Lorho: Attribute Grammars. In: Lecture
Notes in Computer Science 323. Berlin: Springer Verlag 1988.

T. Gyimdthy, T. Horv~th, F. Kocsis, J. Toczki: Incremental Algorithms
in PROF-LP. In: D. Hammer (eds.) 2nd Workshop on Compiler-
Compilers and High-Speed Compilation 1988. Lecture Notes in Computer
Science 371. Berlin: Springer Verlag 1989. pp 93-102

R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, W.M. Waite: ELI:
A Complete, Flexible Compiler Construction System In: Communications
of the ACM. February, 1992. Vol. 35. No. 2. pp 121-130

T. Gyim6thy, J. Toczki: Syntactic Pattern Recognition in the HLP/PAS
System. Acta Cybernetica 8, Vol 1. Szeged: 1987. pp 79-88

J. Heering, P. Klint, J.G. Rekers: Incremental Generation of Parsers In:
Proc. of ACM Sigplan '89 Conference on Programming Language Design
and Implementation, Portland, Oregon, 1989. ACM Sigplan Notices 24,
7 1989. pp 179-191

E. J~'nwall, K. Koskimies, J. Paakki: The Design of the Tampere
Language Editor. Department of Computer Science University of
Tampere Technical Report A-1991-I0.

U. Kastens: Ordered Attributed Grammars. Acta Informatica 13. 1980. pp
229-256

D.E. Knuth: Semantics of Context-Free Languages Mathematical Systems
Theory 2 (June 1986.) pp 127-146

(1) P-GEN is a product of Cogito Co. Ltd.

(2) C + + is a product of Borland Inc.

(3) Windows 3.xx is a product of Microsoft Inc.

