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A b s t r a c t .  This paper deals with a method how an effective attribute-direc- 
ted top-down parser and attribute evaluator can be constructed from a condi- 
tional L-attributed grammar (CLAG). The method is based on exploitation 
of an attribute stack in attribute evaluation and on definition of a translation 
scheme for CLAG. 

1 B a s i c  C o n c e p t s  a n d  N o t a t i o n s  

Our definition of at t r ibute grammars  is based on [4] and [5]. An attribute grammar 
(AG) G over a semantic domain D is a context-free g rammar  Go = (N, ~ ,  P, S), 
the underlying contexr grammar of G, augmented with at tr ibutes and semantic  
rules. A production p E P is denoted by p : Xo ~ X1X2.. .X~ where X0 E N,  
Xi E (N U ~ )  for all i, 0 < i <_ n, (n > 0). The semantic domain D is a pair 
([2, r  where [2 is a set of sets, the sets of at tr ibute values, and the set {true,false) 
of boolean values, and ~ is a collection of mappings (called semantic functions of 
the form f : V1 • ... • Vm --~ Vo, where m > 0 and V/ E 12,0 < i < m. The 
set of  a~tribute symbols denoted by Art is parti t ioned into Inh (inherited at t r ibute  
symbols)  and Syn (synthesized at tr ibute symbols). For each at t r ibute symbol b E Att ,  
a set V(b) E 12 contains all possible values of the at tr ibutes corresponding to b. 

For X E N, A t t ( X )  denotes the set of at t r ibute symbols of X. An attribule is 
denoted X.a, where X E N and a E A t t (X) .  I n h ( X)  (Syn (X) )  denotes the set of 
inherited (synthesized) at t r ibute symbols of X. We assume that  the s tar t  symbol  
has no inherited at tr ibutes and terminals have no attr ibutes at all. 

For X E N,  let Ord define a linear ordering of the at tr ibutes of X with the inheri- 
ted at t r ibutes  preceding the synthesized attributes. Thus, for all X E N,  Oral(X) is 
an ordering of Art (X)  and for b E Art(X) ,  Ord(X)(b) is the index of b with respect 
to this ordering. 

A production p : Xo -* XIX2. . .Xn has an ailribute occurrence k.b, 0 < k < n, if 
Xk.b is an at tr ibute.  An at t r ibute occurrence k.b of p is called an input occurrence, 
if either b E Inh and k = 0, or b E Syn and k > 0. Otherwise k.b is said to be an 
output occurrence. For each output  occurrence k.b of p, there is exactly one semantic 
rule of the form k.b := f ( j l . a l ,  ...,j,n.am), where every ji.ai is an input occurrence 
of p and f is a semantic function in ~ of the type f : 17t • ... • V,~ --* 1/0, where 
Vo = V(b) and for 1 < i < m: ~ = V(ai). Notice that  a t t r ibute  g rammars  are in 
Bochmann normal  form. An at t r ibute g rammar  is L-attribur if for every semantic  
rule k.b := f ( j l . a l ,  . . . , j , , .am) such that  b is an inherited at t r ibute  holds j~ < k for 
each i = 1, ..., m. 

A finite set C(p) of semantic condir is associated with each production p E P.  
A semantic  condition is an expression of the form q(jl.a~, ..., jm.a,~ ), where every 
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ji.ai is an input occurrence of p and q is a boolean-valued function of the type 
q : V1 x ... x Vm ---* {true, false}, where Vi = V(ai), 1 < i < m. An at t r ibute  
g r a m m a r  in which for all productions p the set C(p) of semantic conditions is empty,  
is called an unconditional at tr ibute grammar.  Otherwise AG is called conditional. 

Let t be a complete derivation tree of underlying CFG Go of G, u its node labelled 
with X. Then for all b E Att(X),  u.b is an attribute instance at tached to a node 
u. I f  a node u has n sons ul,  ..., un which are labelled according to a product ion p : 
Xo ---* X1X2...Xn, then each semantic rule k.b := f ( j l  .al, ..., jm.am) associated with 
p is interpreted as an evaluation instruction uk.b :-- f(ujl  .al, ..., ujm.a,~) associated 
with ~attribute instance uk.b, and each semantic condition q(jl.al, ...,jm.am) from 
C(p) is interpreted as a test instruction q(ujl .al,..., uj,~.am) associated with p. 

A derivation tree t is well evaluated if all a t t r ibute  instances have values according 
to" the associated evaluation instructions, and all test instructions associated with 
the productions used in the tree yield true. TREES(G)  denotes the set of all well 
evaluated derivation trees of G. The language generated (or defined) by an AG G 
is defined by L(G) = {w I w = yield(t), for some t 6 TREES(G)} .  Notice tha t  
L(G) C L(Go). For an unconditional AG G, L(G) = L(Ge). 

Let the s tar t  symbol of the underlying CFG of an AG G have a distinguished 
synthesized at t r ibute  symbol r. The translation (more precisely string-to-value trans- 
lation) T(G) generated (or defined) by AG G is the mapping  from L(G) to subsets 
of the set Y(r) defined by T(G)(w) = {x I x = u.r, u is the root of a well evaluated 
tree t, r is its distinguished at t r ibute and w = yield(t)}. This set may contain more 
than one element. In this case G is called semantically ambiguous, otherwise G is 
semantically unambiguous. 

Throughout  this paper, conditional L-at tr ibuted grammars  (CLAG) are treated.  
I t  is well known tha t  any derivation tree in CLAG can be evaluted using the one-pass 
evaluation strategy [2]. 

2 A t t r i b u t e  S t a c k  

In order to obtain a translation defined by a L-at t r ibute  g rammar  for an input string, 
we can simulate the one-pass evaluation of a derivation tree and allocate memory  for 
a t t r ibute  instances using a stack of registers, which can hold a t t r ibute  values. For 
a n  interior node u labelled with X,  and its sons ul,  ..., u~ labelled with X1, ..., Xn, 
the stack of at t r ibute registers (at tr ibute stack) will be used in the following way: 

- Before entering a subtree with the root u, the top of the a t t r ibute  stack consists 
of registers with evaluated attr ibutes from Inh(X) and registers with undefined 
values of at tr ibutes from Syn(X).  

- After leaving this subtree, the top of the at t r ibute stack consists of registers with 
at t r ibutes  from Syn(X).  

- Before evaluation of inherited at tr ibutes of Xi, the a t t r ibute  stack contains regis- 
ters with evaluated at tr ibutes from Syn(X~_ 1), ..., Syn(X1), Inh(X)  and regis- 
ters with undefined values of at tr ibutes from Syn(X).  Registers for all a t t r ibutes  
f rom Att(Xi) are then added to the stack, at tr ibutes from Inh(Xi)  are evaluated 
and a subtree with the root ui is entered. 
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After evaluation of attributes from S y n ( X ) ,  the attribute stack contains registers 
with evaluated attributes from S y n ( X ~ ) ,  . . . , Syn (X1) ,  I n h ( X ) , S y n ( X ) .  These 
registers except S y n ( X )  are then removed. 

D e f i n i t i o n  1. Attr ibute stack. 
Let D = ( O , ~ )  be the semantic domain of a conditional L-attr ibute grammar G., 
Let N a t  be the set of natural numbers, Pos  the set of positive integers, Val  = 
V1 t.J ... t3 Vn U { u n d e r }  for all ~ from 12 the set containing all possible at t r ibute 
values including undefined value under .  An attribute stack over the domain D is a 
data  structure of the type As tack  for which the following operations are defined: 

emp ty  : --+ As tack  read : As tack ,  Pos  ---* Va l  
push  : As tack ,  Va l  --~ As tack  wri te  : As tack ,  Pos ,  Val  --~ As tack  
add : As tack ,  N a t  --* As tack  length : As tack  --* Na t  
remove  : As tack ,  N a t  ~ As tack  

These operation should satisfy the following equations: 
add(s,  O) = s 
add(s,  n) = push(add(s ,  n - 1), under )  for n > 0 
remove(s ,  O) = s 
r e m o v e ( p u s h ( s ,  x) ,  n)  = remove(s ,  n - 1) for > 0 
read(push(s ,  x),  1) = z 
read(push(s ,  z) ,  n) = read(s,  n -  1) for n > 1 
write(push(s, ), 1, y) = push(s, y) 
wri t e (push ( s ,  z) ,  n, y) = push (wr i t e ( s ,  n - 1, y), x) for n > 1 
l eng th (emp ty )  = 0 
l eng th (push(s ,  x ) )  = length(s)  + 1 

3 T r a n s l a t i o n  s c h e m e  f o r  C L A G  

In order to formally describe an attribute evaluation using the at tr ibute stack for a 
given L-at tr ibute grammar, each semantic rule will be transformed to an operation 
of the type As tack  --. As tack  and each semantic condition to an operation of the 
type As tack  --~ { true,  f a l se} .  Adding new registers and removing old registers will 
be done in the same way. These operations will be called semantic  operations and 
semant ic  predicates. 

For any production p : Xo ~ X 1 X 2 . . . X n ,  we will define the following semantic 
operations and predicates: 

Ap,i adding registers for attributes of Xi, 1 < i < n, to the at tr ibute stack, 
Ep,i evaluation of the inherited attributes of Xi, 1 < i < n, 
Ep,e evaluation of the synthesized attributes of X0, 
Rp removing registers with synthesized attributes of the right-hand side of p 

and inherited attributes of the left-hand side of p from the at t r ibute stack, 
Pp,0 a predicate which is evaluated and tested before entering a subtree with the 

root X1 
- Pp, i a predicate which is evaluated and tested after leaving a subtree with the 

r o o t X i ,  l < i < n .  
Semantic operations and predicates can be constructed by the Algorithm 1. 
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A l g o r i t h m  1: Construction of semantic operations and predicates. 
Input: A conditional L-attributed grammar G .  
Output: OP, the set of semantic operations, and PR, the set of semantic predicates. 
Method: For each production p : Xo ~ X1X2...X~, let Fk be the set of all semantic 
rules k.b := f ( j l  .el,..., jm.am), 0 < k < n, and C~ the set of all semantic conditions 
q(jl .al ,  ...,jm.am), for which k = max(j1, ...,jm). For k = 0 ,1 , . . . , n  construct the 
semantic operations and the semantic predicates according to the following rules: 
(1) For each a t t r ibu te  occurrence i.a in Fk define the a t t r ibu te  stack selector 

selk(i.a) as follows: 

selk(i.a) = 
Ord(Xk)(a) if k > 0, i =  k, 

IAtt(Xk)j + E~S_)+I ISyn(Xj)[ + Ord(X,)(a) - tInh(Xi)l i fk  > 0,0 < i < k, 

IAtt(X~)] + E~'-~ ISyn(Xj)I + Ord(Xo)(a) if k > O, i = O, 
I@n(Xi)l + Ord(XO(a) -IInh(Xi)l i fk  = 0, i > 0, 

E~-=i ISyn(Xj)l  + Ord(XO(a) if k = 0, i = 0. 
(2) For each at tr ibute occurrence i.a in Ck define the at tr ibute stack selector 

selck (i.a) as follows: 

selck(i.a) = 
Ord(Xk)(a) -IInh(X~)(a)l  if k > 0, i =  k, 

Eff_-,+~ ISyn(S~)l + Ord(S~)(a) -IInh(X~)l  i fk  > 0,0 < i < k, 

Ej=17~ ISyn(Xj)I + Ord(Xo)(a) if k > 0, i = 0, 
Ord(Xo)(a) if k=0,i=0.  

(3) For each semantic rule k.b := f ( j l .al ,  ..., jm.am) define the semantic operation 

SOpk,b a s  

sopk, ( ) =  rite(s, selk sel, (jl .dO),...,  ead(s, selk 
Construct the semantic operation Ep,k as a composition of the operations sopk,b: 

Ep,~ ( s) = sops,ha ( SOpk,b~ (.. .( sopk,b,~ (S))...)). 
Add Ep,, to OP. 

(4) For each semantic condition q(jl.al, ...,jm.am) from Ck define the semantic 
predicate sprk,q as 

sprk,q( S) = q( read( s,'selck (jl.al ) ), ..., read(s, selck (jm.am ) ) ). 
Construct the semantic predicate Pp,k as a conjuction of the predicates sprk,q: 

Pp,k(s) = sprk,q,(s) a n d  ... a n d  sprk,q~(s). 
Add Pp,k to PR. 

(5) If k > 0 and sz = IAtt(Xk)l is greater then 0, then add to OP the semantic 
operation Ap,k defined as Ap,k(s) = add(s, sz). 

n (6) If k = 0 and sz = ]Inh(Xo)l + ~ j= l  ISyn(Xj)I is greater then 0, then add to 

OF the semantic operation Rp defined as Rp(s) = remove(s, sz). 

D e f i n i t i o n  2. Translation scheme for CLAG. 
Let G be a conditional L-attributed grammar over a semantic domain D with un- 
derlying CFG Go = (N, Z, P, S), OP the set of semantic operations, and P R  the 
set of semantic predicates constructed by the Algorithm 1. A translation scheme for 
G is the translation grammar Q = (N, r ,  F, R, S), where F = OP U P R  and each 
production r E R corresponds to one and only one production p E P in the following 
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way: 
p : Xo ---* X1X2...X,~ 
r : Xo ~ Pp,oAp,l Ep,lX1Pp,1...Ap,,~Ep,nX, Pp,nEp,oRp 

If any of the symbols Pp,i, Ap,i, Ep,i or Rp does not exist then empty string is used 
instead of the symbol in production r. Any symbol from the set F will be called an 
action symbol. 

D e f i n i t i o n  3. Attr ibuted derivation. 
Let Q -= ( N, ~,  O PU P R, R, S) be the translation scheme of a CLAG. An attributed 
form (A-form) is a pair (~, s) where ~ E Z'* {.}(N U Z U OF U PR)*, s e dstack. A 
direct attributed derivation is the relation between attr ibuted forms denoted by 
and defined as follows: 
1. (aXfl,  s) ~ (a6fl, s) if X E N, X --* 6 is a rule in R, 
2. (a.afl,  s) ~ (aa.fl, s) if a e Z,  
3. (u.Ej3, s) ~ (u.fl, E(s)) if E �9 OR, 
4. (u.Cfl, s) ::a (u.fl, s) if C �9 PR, C(s) = true. 
The direct at t r ibuted derivation according to the first rule is called a syntax deriva- 
lion, the others are called semantic derivations. Notation f ~ *  g expresses that  an 
A-form g is derived from an A-form f ,  i.e. that  there is a sequence of a t t r ibuted 
forms f = f0, f2, . . . ,fn = g, where fi ~ fi+l, 0 < i < n. This sequence is called an 
attributed derivation of the length n of the A-form g from the A-form f .  

D e f i n i t i o n  4. Let Q = (N, Z,  OPUPR,  R, S) be the translation scheme of a CLAG. 
The language generated by Q is defined by 

L(Q) = {u [ (.S, add(empty, [Syn(S)I)) ~*  (u.,s), u �9 Z*}. 
The translation generated by Q is the mapping from L(Q) to subsets of the set V(r), 
r is the distinguished attribute of S, defined by 

T(Q)(u) = {v [( .S,  add(empty, ISyn(S)[)) =:a* (u., s), v = read(s, Ord(S)(r))}. 

T h e o r e m 5 .  Let G be a conditional L-altribuled grammar, Q be the translation 
scheme for G. Then L(G) =- L(Q) and T(G) = T(Q). 

Proof. Can be found in [6]. 

4 Nondetermin i s t i c  Machine for CLAG 

The translation defined by a CLAG can be performed by a pushdown automaton 
with an infinite set of states. We define a pushdown automaton M as a system 
M = (K, ~ ,  F, 6, q0, Z0, F )  in the same way as in [1] with the only exception that  
the set of states K may be infinite. 

T h e o r e m 6 .  Let G be a CLAG, r the distinguished synthesized attribute. There 
exists a pushdown automaton M with potentially infinite set of states K, and a 
mapping f of the type K --+ V(r), such that the language accepted by M equals L(G) 
and for w E L(G), v = T(G)(w) if and only if (qo, w, Zo) F-* M (q, e, e) and v -- f(q). 

Proof. Let Go -= (N, X', P, S) be the underlying CFG of G and Q = (N, Z, OP U 
PR,  R, S) the translation scheme for G. Then M = (I(, Z,  F, 6, q0, S, 0) where 



42 

K is the set of all possible values of the type Astack, 
F -- ~ U N U O P  U P R O  {E}, E is a new symbol, 
q0 is value of the operation add(empty, [Syn(S)l ) 
/5(q, a, a) -- {(q, e)} for all a E Z,  
6(q, e, X) contains (e, ~) for all production X ---* a ~ R, 
~(q, e, Op) = {(Op(q), e)} for all Op E O P  
6(q, e, Pr )  --- {(q, if Pr(q) then e else E)} for all P r  C PR.  

The mapping f is defined as f ( s )  = read(s, Ord(S)(r ) ) .  The rest of the proof can 
be found in [6]. 

5 D e t e r m i n i s t i c  T o p - d o w n  M a c h i n e  f o r  C L A G  

A deterministic top-down parser for CLAG can be driven not only by a lookahead 
symbol but  also by conditions over attributes. Such parser is said to be attribute- 
driven. The following definition determines a class of t ranslat ion schemes for which 
a deterministic top-down attribute-driven parser can be constructed. 

D e f i n i t i o n  7. A translation scheme Q = (N, ~ ,  O P  U PR,  R, S)  of a CLAG G is a 
ALL(I)  translation scheme if for all X E N the following holds: if there are distinct 
productions pl : X ---+ a l  and P2 : X ~ c~2, such that: 

F I R S T 1  ( a l . F O L L O W I ( X ) )  N FIRST1 ( a 2 . F O L L O W I ( X )  ) • 0, 
then a l  = Plfll ,  a2 = P2f12, P1 and P~ E PR,  and for any value s of the type 
Astaek,  for which both Pl(s) and P2(s) are defined, expression (P~(s) a n d  P2(s)) 

yields false. 

D e f i n i t i o n  8. A parse table for an ALL(l)  translation scheme Q is a mapping M of 
the type N x (~UU{e}) ---* A C T ,  in which A C T  is a set of actions containing elements 
e x p a n d ( p ) ,  select(p1, P2,-.-, P,,) and e r r o r ,  where p, Pl, . . . ,  P,~ are productions of T. 

- M ( X ,  u) = e x p a n d ( p )  i fp  : X --~ ~, u E FIRST1  ( a . F O L L O W I  (X) )  and either 
the first symbol of the string c~ is a predicate symbol or for any other production 
X -* fl holds u E F I R S T I ( ~ . F O L L O W I ( X ) ) .  

- M ( X , u )  = se lec t (p l , . . . ,pn)  if pl : X --~ Pla i  ... p~ : X --~ P~a,~ are all X- 
production for which Pi is in P R  and u E F I R S T I ( a i . F O L L O W I ( X ) ) .  
Otherwise M ( X ,  u) -- error. 

A l g o r i t h m  2: ALL(l )  parser for translation scheme. 
Input: An ALL(l )  translation scheme Q for CLAG G with the distinguished attri- 

bute r, an input string w. 
Output: if w E L(G),  then T(G)(w);  otherwise, an error indication. 
Melhod: Let M be the parse table for T. A configuration of the parser is a triple 
(v, a,  s), where v E 5?* is an unread part of the input, ~ E ( N  U ~ U O P  U PR)* is a 
current content of the parsing stack and s is a current value of the at tr ibute stack. A 
move of the parser is the relation between configurations denoted by ~- and defined 

as follows: 
1. (av, Z~,  s) ~ (v, ~, s) if Z ~ X, Z = a, 
2. (av, Za ,  s) F (av, Za, s) if Z G N, M ( Z ,  a) = e x p a n d ( Z  --* •), 
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3. (av, Za, s) t- (av, 13c~, s) if Z e N, M(Z, a) = select( . . . ,  Z --+ PI3, ...), 
P E PR, P(s) = true, 

4. (av, Za, s) F- (av, a, s) if Z e PR, Z(s) = true, 
5. (av, Za, s) F- (av, a, Z(s)) if Z E OP. 
The execution of the algorithm is as follows: 
(1) Starting in the initial configuration Co = (w, S, add(empty, ISyn(S)I)), compu- 

te successive next configurations Co t- C1 F- ... ~- ... until no further configura- 
tions can be computed. 

(2) If the last computed configuration is (e, e, s) then result is read(s, Ord(s)(r)). 
Otherwise, report an error. 

Translation schemes can be transformed by transformations known for trans- 
lation grammars. Therefore an ALL(I)  parser can be constructed also in case the 
underlying CF grammar of a CLAG G is not LL(1) but a transformation of the 
translation scheme for G into an ALL(l)  form succeeds. Moreover, special trans- 
formations for translation schemes can be developed. These transformations respect 
the semantics of action symbols. For more details see [6]. 

6 Implementation 

The method described in the previous sections has been fully implemented in the 
compiler constructor ATRAG 4.0 [6]. This system was used several times as a tool 
supporting development and implementation of a commercial compiler. For instance, 
the front-end part  of the Pascal compiler for processor Intel 8096 family was specified 
by a conditional L-attr ibute grammar with non LL(1) syntax. The recent practical 
expoitat ion of ATRAG is the front-end part of a translator ~from Hewlett-Paekard 
Basic 5.5 into ANSI-C language. 
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