
Syntax Directed Translation with LR Parsing

Bofivoj Melichar

Department of Computers, Czech Technical University
Prague, Czechoslovakia

Abstrac t . A simple extension of the usual LR parser construction is made
in order to build a translator. The LR parsing algorithm is extended by a
facility to do output operations within the action shift and reduce. A class
of translation grammars, called R-translation grammars, is introduced as an
extension of the class of postfix translation grammars. Transformations called
shaking-down and postponing of output symbols are used for transformation
of some non-R-translation to R-translation ones.

1 I n t r o d u c t i o n

There is a class of formal translations that can be described by (context-free)
translation grammars. An implementation of such formal translations directed by
L R parsing is simple for postfix translation grammars [1], [2], [3], [6]. In this case,
the output of output symbols is only performed when the right end of a rule is found,
i.e., as a part of the reduce operation.

A class of translation grammars, called the R-translation grammars, has been
introduced in [4] as an extension of the class of postfix translation grammars. This
extension is based on a consideration that output symbols can be emitted also within
a shift operation. Moreover, some non-R-translation grammars may be transformed
to R-translation ones using, for instance, transformations called in [5] shaking-down
and postponing of output symbols. The class of L R translation grammars consists
of those translation grammars that may be transformed to R-translation grammars
with L R input grammars.

2 Bas ic N o t i o n s and N o t a t i o n s

We refer to [1] for basic notions and notation concerning formal languages and
context-free grammars.

By T *k we shall denote the set T *k = {x : z E T*, Ixl < k, k > 0}, where
the length of string x E T* is denoted by Ixl. Let G = (N, T, P, S) is a context-free
grammar. We define the sets FIRSTk(a) for a e (N t2 T)*, and FOLLOWk(A) for
A E N as follows.
FIRSTk(a) = {x E T* :a ~ * xfl and Ixl = k, or a ~ * z and Ixl < k},
FOLLOWk(A) = {x E T* : S :=~* aA/~ and x E FIRSTk(/3)}.

A formal translation Z is a relation Z C A • B, where A and B are sets of input
and output strings, respectively.

A context-free translation grammar is a context-free grammar in which the set of
terminal symbols is divided into two disjoint subsets, the set of input symbols and
the set of output symbols, respectively.

31

A context-free translation grammar is a 5-tuple TG = (N, T, D, R, S), where N
is the set of nonterminal symbols, T is the set of input symbols, D is the set of output
symbols, R is the set of rules of the form A --+ a, where A E N, a E (N U T U D)*,
and S is the start symbol.

The input homomorphism h Ta and the output homomorphism hTo a from
(U u T U D)* to (N u T u D)* are de ned follows:
hTe(a)= { a f ~ hTC(a)= { e f ~

e f o r a E D a f o r a E D U N
The derivation in a translation grammar TG is denoted by :=~, and called the

translation derivation. The formal translation defined by a translation grammar TG
is the set

Z(TG) = {(hTV(w), hTC(w)) : S ==~* w, w E (T U D)* }.
The input grammar of a translation grammar TG is the context-free grammar

Gi = (N,T, Ri ,S) , where Ri -- {A --+ hTC(~) : A --+ ~ E R}.
Note: The superscript TG is omitted when no confusion arises.

A translation grammar TG is called a postfix translation grammar, if the strings
of output symbols only appear at the ends of right-hand sides of the rules.

A translation grammar TG is called an R-translation grammar, if the strings of
output symbols appear at the ends of right-hand sides of the rules and/or immediately
in front of input symbols.

Postponing is the following transformation:
Let TG = (N, T, D, R, S) be a translation grammar, and let R contain a rule
A ---+ ~xC/3, where c~, fl E (NUTUD)*, C is either a terminal symbol or a nonterminal
symbol generating only strings of input symbols, and x E D +. Then translation
grammar TG' = (N, T, D, R', S), in which

R' = (R - { A ~ o~xC/3)) U { A --+ ozCx/3},
is equivalent to grammar TG. String x in TG is the postponed string.

Shaking-down is the following transformation:
Let TG = (N, T, D, R, S) be a translation grammar, where R contains a rule
A ---+ axB/3, z E D +, a, t3 E (N U T U D) * , B E N, and B ~ 71l'~2]...]7~ are all
rules in R with nonterminal symbol B on the left-hand side.
Let TG' = (g U {[xB]}, T, D, R', S), where

R' = (R - {A --+ axB/3}) U {A ,-7* c~[xB]/3, [zB] --+ x~'alx'r21.-. Ix~,}.
Then Z(TG) = Z(TG'). String x in TG is the shaken-down string.

3 Trans la t ion LR(k) I t e m s

The algorithm of formal translation described below is directed by an L R parser.
The conventional LR parser is extended by adding some operations to perform a
translation. Similarly to the LR parser, the algorithm of the formal translation is
table-driven, and the construction of necessary tables is similar to the construction
of LR tables. Hence, we shall use the notion of a translation LR(k) i tem which is
an extension of the notion of the conventional LR(k) item.

D e f i n i t i o n 1. A translation LR(k) item for the translation grammar
TG = (N, T, D, R, S) is an object of the form

[A ---* a . /3, x, w],

32

where A --* (~/~ is a rule in the input grammar of translation grammar TG,
x E D*,w E T *~, k > O.
For k -= 0, an LR(O) translation item will be written in the form [A -* a . fl, x].

Let us now formulate two basic transformations of postponing and shaking-down
in terms of translation items.
Let TG = (N, T, D, R, S) be a translation grammar with a rule A ---* axC~ in R,
where a , f~ E (N U T O D)*, x E D*, C is either a terminal symbol or a nonterminal
symbol generating only strings of input symbols, and c~ does not end with an output
symbol. Let us have a set of translation items M that contains i tem [A ~ h~(a) �9
Chi(fl), y, u]. The set GOTO(M, C) contains item
[A --~ hi(a)C, hi(fl), x, u]. This item corresponds to the rule A --~ aCx~ which may
be obtained by postponing string x in the rule A --* axC~.

Similarly, if there is an item [B -~ hi(a). Chi(fl), x, u] in set i and
C ~ y13'lly272I""' lYnch E R, where for 1 < i < n, Yi E D*, 7i E (NUT)(NUTUD)*,
then translation items
[c x l, v], [C x 2, v], . . . IV -* xy , v],
where v E FIRSTk(flu), correspond to the following rules obtained by shaking-down
string x in the rule B --+ uxC~:

C ---* xy1711xy2721 "'" Ixy~Tn.
The following algorithm constructs the collection P of sets of translation LR(k)

items for a given translation grammar.
A collection of sets of LR(k) items is a finite collection of finite sets for every

context-free grammar, regardless of whether the grammar is LR(k) or not. But there
are translation grammars for which the collection of sets of translation LR(k) items
is an infinite collection of infinite sets. In this case, it is necessary to prevent this
situation by indicating infinite loops in a construction algorithm.

D e f i n i t i o n 2 . In a set M of the collection P of sets of translation LR(k) items,

there is

1. a shift-translation conflict, if there are two items in M of the forms
[A --~ a - a f t , x, u] and [B --* 7" a6, y, v],

for a E T, x r y, and FIRSTk(aflu) n FIRSTk(a6v) ~ 0,
2. an expansion-translation conflict, if there are two items in M of the forms

[A --, o,-Be' , x, u] and [C ---, V" B~, ~,, v],
for B E N, x • y, and FIRSTk(•u) g) FIRSTk($v) r 0,

3. a reduction-translation conflict, if there are two items in M of the forms
[A --* ~., x, u] and [A --* c~., y, u], for x r y.

The algorithm constructing the collection of sets of translation LR(lc) items is
an extended algorithm for a construction of the collection of sets of LR(k) items for
the LR parser. The extensions are

(a) shaking-down a string of output symbols during the computation of a closure,
(b) postponing a string of output symbols during the computation of a set,

(c) an indication of infinite loops in both cases.

33

We first present an algorithm computing the closure of a set of translation LR(k)
items. We assume that the location is appended to each output symbol in the right-
hand side of each rule in R. The location is a pair (r, p), where r is the number of a
rule, and p is the position of the output symbol in its right-hand side.

A l g o r i t h m 1. Computation of the closure of a set of translation LR(k) items.
I n p u t : Translation grammar TG = (N, T, D, R, S), a set M of translation LR(k)
items, and k > 0.
O u t p u t : CLOSURE(M) with shaken-down strings marked, or a signalization of the
infinite loop.
M e t h o d :

1. CLOSURE(M) := M.
2. Let [A --* a . B~, x, u] e CLOSURE(M), B E N, B ---* y 7 E R, where y E D*

and 7 is either empty string or starts with an input or a nonterminal symbol,
and v e F i n S % (hi(~)u).
If [A ~ a �9 Eft, x, u] is in an expansion-translation conflict with some i tem in
CLOSURE(M), then the string x is not shaken-down, and

CLOSURE(M) := CLOSURE(M) U [S --~ h,(7), y, v].
Otherwise, the string x is shaken-down from the item [A --~ a �9 BI3, x, u], and

CLOSURE(M) := CLOSURE(M) U [B -+ h,(7), ~y, v].
3. If the string x is shaken-down, then mark shaken-down string z as x s in i tem

[A ---* a.Bj3, x, u] and check if some output symbol from string y appears in string
x with the same location. If there is such symbol, then finish the computat ion
with a signalization of the infinite loop.

4. Repeat steps 2 and 3 until no new items can be inserted into the set
CLOSURE(M).

We now present an algorithm constructing sets of translation LR(k) items.

A l g o r i t h m 2. Contruction of the collection of sets of translation LR(k) items.
I n p u t : Translation grammar TG = (N, T, D, R, S), where rules in R are numbered,
and k > 0.

O u t p u t : Collection P of sets of translation LR(k) items for the translation grammar
TG, or a failure signalization.
M e t h o d :

1. Construct an augmented grammar

TG' = (N U {S' }, T, D, R U {S' --~ S}, S ') . To each output symbol on the right-
hand side of each rule in R append its location which is a pair (r, p), where r is
the number of a rule, and p is the position of the output symbol in its right-hand
side.

2. Construct the initial set of translation LR(k) items as follows:
(a) # := CLOSURE({[S' ~ .S, e, el}).
(b) If a signalization of the infinite loop appears during the computat ion of

the closure, finish the computation with a failure signalization. Otherwise
P := {:#:}.

3. If a set Mi of translation LR(k) items has been constructed, construct for each
symbol X E (N U T) which follows the dot in some item in Mi a new set of
translation LR(k) items Mj, in this way:

34

(a) :=

(b) Select the subset Y of items from Mi with symbol X following the dot:
Y = { [A - - ~ a . 7 , z , u] : [A---* a . 7 , z ,u] E M i , 7 = X.13} .

.

5.

(c) For each item [A ---, a . Xfl , z , u] E Y do:
Let A ~ a Xy f l be a rule of translation grammar T G and y E D*,

h ' a = i(a) , f l = hi(fl), i.e., A ~ a X f l is the rule in the input grammar of
T G for this rule. Let fl starts with an input or a nonterminal symbol.
If either the string z is marked as a shaken-down string, or X is an input
symbol and item [A ---* a . Xfl , z, u] is not in a shift-translation conflict, then
the string z is not postponed, and
Mj := Mj U[A --~ a X . ~ , y, u]. Otherwise, if either X is a nonterminal symbol
generating only strings of input symbols, or X is an input symbol, then the
string z is postponed, and

Mj := Mj U [A --* a X . fi, zy, u].
In case when the string z cannot be postponed because the nonterminal
in question generates strings of both input and output symbols, finish the
computation with a failure signalization.
Mark the postponed string z as z v in item [A --~ a . Xfl, z, u].
Mj := CLOSURE(Mj) .
If a signalization of the infinite loop appears during the computat ion of the
closure, finish the computation with a failure signalization.

(f) P : = P U { M j } .
Repeat step 3. for all sets Mi until no new sets can be added into the collection
P.
Replace strings of output symbols marked either as shaken-down or as postponed
by empty strings in all items of all sets.

(d)
(e)

D e f i n i t i o n 3 . Translation grammar T G is called an LR(k) translation grammar
if and only if the input grammar of T G is an LR(k) grammar, and there is no
translation-conflict in any set of translation LR(k) items of the collection P for TG.

Algorithm 2 constructs the collection of sets of translation LR(k) items for a
given translation grammar. This collection differs from the Collection of sets of L R (k)
items for the input grammar. Each of its items contains a string of output symbols.

There is a string y of output symbols in an item with the dot at the end of the
right-hand side of a rule. String y is either a string of output symbols from the end of
the rule in question, or a string of shaken-down or postponed output symbols. This
situation means that a reduce operation will be executed during the translation, and
the string y will be added to the output string.

There is also a string x of output symbols in an item with the dot in front of
an input symbol. In this case, string x is either a string of output symbols from the
rule in question, placed in front of the input symbol following the dot, or a string of
shaken-down or postponed output symbols. The existence of such an item in some
set of translation LR(k) items means that a shift operation will be executed during
the translation, and the string x will be added to the output string.

35

4 Algorithm of the Formal Translation

For an LR(k) translation grammar, the translation can be performed using an
algorithm that is obtained by the following modifications of the LR parser.

1. During a reduce operation, add the string of output symbols from the translation
LR(k) item corresponding to the reduce operation performed.

2. During a shift operation, add the string of output symbols from the translation
LR(k) item corresponding to the shift operation performed.

Strings of output symbols may be inserted into entries of the action table of the
LR parser. The resulting table will be called a translation table.

A l g o r i t h m 3. Construction of the translation table for an LR(k) translation grammar.
I n p u t : LR(k) translation grammar TG = (N, T, D, R, S), and collection P of sets
of translation LR(k) items grammar TG.
O u t p u t : Translation table p for the translation grammar TG.
M e t h o d : Translation table has a row for each set of items from P, columns are for
all elements of the set T *k.

1. p(Mi, u) = shi f t (z), if [A ---* a . ~, z, v] e Mi, ~ E T(N U T)*,
u E FIRSTk(/~v), x E D*,

2. p(Mi, u) = reduce j(z), if j > 1, [A ~ hi(a)., x, u] E Mi, A --~ a is j - th rule in
R, u E T *k, and x E D*,

3. p(Mi, e) = accept, if [S' ~ S., e, e] e Mi,
4. p(Mi, u) = error in all other cases.

Note: The goto table may be constructed in the same way as that for the LR
parser (see [1]).

A l g o r i t h m 4. Formal translation for LR(k) translation grammar.
I n p u t : The translation table p and the goto table g for a translation grammar
TG = (N , T , D , R , S) , and an input string z E T*, k > 0.
O u t p u t : Output string y in case that for x e L(G~), (x, y) E Z(TG). Otherwise an
error signalization.
M e t h o d : The symbol # is the initial symbol in the pushdown store. Repeat steps
1, 2, and 3 until accept or error appears. Symbol X is on the top of the pushdown
store.

1. Fix the string u of first k symbols from the unused part of the input string.
2: (a) I fp(X, u) = shi f t (x), then read one input symbol, add the string z to the

output string, and go to step 3.
(b) I fp(Z , u) = reduce i(x), then pop from the pushdown store the same number

of symbols as that of input and nonterminal symbols in the right-hand side
of the i-th rule (i)A ~ a, and add string x to the output string. Go to step
3.

(c) If p(X,u) = accept, then finish the translation. The output string is the
translation of the input string provided that the input string is read completely.
Otherwise finish the translation by an error signalization.

(d) If p(X, u) = error, then finish the translation by an error signalization.

36

3. If W is a symbol that is to be pushed on the pushdown store (the read symbol
in 2(a) or the left-hand side of a rule used in the reduction in 2(b), and Y is the
symbol at the top of the pushdown store, then:
(a) If g(Y, W) -- M, then push M on the top of the pushdown store, and go to

step 1.
(b) If g(Y, W) -= error, then finish the translation by an error signalization.

A configuration of Algorithm 4 is a triple (a, x, y), where a is the contents of the
pushdown store, x is the unused part of the input string, and y is the created part
of the output string.

The initial configuration is a triple (# , x, e), the accepting configuration is a triple
(#Mi , c, y), where Mi is the symbol at the top of the pushdown store, and it holds
for Mi that p(Mi, e) = accept.

5 C o n c l u s i o n

An approach similar to that for LR(k) translation grammars may also be used to
define LALR(k) translation grammars. A slightly different approach must be used in
case of SLR(k) translation grammars. An inspection of translation conflicts must be
performed during the computation of translation LR(O) items in order to postpone
output symbols.

The class of LR(k) translation grammars does not contain all translation gramm-
ars with LR(k) input grammars. For example, all translation grammars with output
symbols in front of left-recursive nonterminal symbols do not belong to this class.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

[6]

Aho, A.V., Ullman, J.D. (1971,1972) The theory of parsing, translation and
compiling. Vol.l: Parsing, Vol.2: Compiling, New York: Prentice - Hall.
Lewis, P.M., Stearns, R.E (1968) Syntax directed transductions. Journal of the
ACM, Vol. 15, No. 3, pp. 465 - 488, July 1968.
Lewis, P.M., Rosenkrantz, D.J.,Stearns, R.E. (1976) Compiler design theory.
London, Addison - Wesley.
Melichar I B. (1992) Formal translation directed by LR parsing. Kybernetika, Vol.
28, No.l, pp. 50 - 61, January 1992.
Melichar, B. (1992) Transformations of translation grammars. Kybernetika (to
appear).
Purdom, P., Brown, C.A. (1980) Semantic routines and LR(k) parsers. Acta
Informatica, Vol. 14, No. 4, pp. 229 - 315.

