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Abstract. This paper presents a simple and efficient method for instruction scheduling within 
basic blocks. An implementation prowed to be extremely small while producing results comparable 
to other more complicated techniques. The algorithm is of quadratic complexity in the number of 
instructions but a linear run-time is achieved in practice. Because no (code) look-ahead is needed, 
the algorithm is even suitable for one-pass compilers. 

1 Introduction 

A well-known technique to improve the execuUon speed of  pipeUned computers is the reduction 
of pipeline interlocks due to data dependencies. This is achieved by instruction scheduling, i.e. the 
reordering of  instructions such that interlocks are avoided but data dependencies are preserved. 

We present a new scheduling heuristic (to the best of  our knowledge) operating on basic 
blocks, which is much simpler than other techniques [Gro83, Hen83, Gib86] while performing 
comparably well. Optimal code ordering and optimal register allocation are conflicting goals and 
normally phase ordering problems occur. Recent work tries to improve the situation by using 
information of  the scheduling phase to drive register allocation [Bra91]. We circumvent the sea of  
troubles by doing global register allocation for variables in a first pass but not for temporaries 
occurring during expression evaluation. Despite this common and in some way "naive" approach, 
good results are obtained when enough registers are available. We directly generate the final code 
for basic blocks, except that the exact register numbering is unknown. During this code generation 
phase, a simple method allows us to directly place an instruction at a good position from the 
scheduling point of  view without using a DAG as in traditional compilers. Local register 
allocation is done in a second pass, thereby avoiding artificial dependencies: This is in contrast to 
postpass approaches, which try to improve the code after compilation [Gro83, Hen83, Gib86, 
Day84, Day86]. 

We have implemented the scheduler as a part of  a simple cross-compiler for the Cray Y-MP for 
an experimental language. Although the algorithm is O(n2), in practice a linear run-time in the 
number of  instructions was measured. 

2 A S i m p l e  M a c h i n e  M o d e l  

In the sequel we consider basic blocks only, i.e. a restricted instruction set is sufficient (no jump or 
call instrucUons are of  importance). Conditional jumps depend directly on the value o f  a register 
(specified with the jump), thus no condition code concept has to be introduced. A few instruction 
types will help us to demonstrate the scheduling algorithm using a simple example (Fig. 1). 
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Type Instruction Operation 

1 Ri := Rj op Rk 
2 Ri := f(Rj) 
3 Ri := c(val) 
4 Ri := M[addr + Rj] 
5 M[addr + Rj] := Ri 
6 Ri := vat 
7 vat := Ri 

binary operation op 
unary operation f 
constant operation c with immediate argument val 
load from memory (aliasing possible) 
store to memory (aliasing possible) 
load from memory or register file (no abasing possible) 
store to memory or register file (no aliasing possible) 

Fig. 1 

We distinguish between two different load/store instruction classes for optimization reasons: 
General memory access is done by the Ri := M[addr + Rj] and M[addr + Rj] := Ri instructions 
(Fig. 1, Type 4 and 5), where aliasing is taken into account (i.e. two load or store instructions may 
access the same memory location although its arguments are differen0. In all other cases we use 
the load/store instructions Ri := var and var := Ri (Fig. 1, Type 6 and 7). This mainly has 
consequences for instruction scheduling (dependencies). 

In the following, an unbounded number of  registers is assumed. Hence, it is possible to assign 
a new (result) register number to each computation. We even may identify the current instruction 
count with the result register number (i.e. these register numbers need not be stored). Thus, a 
possible code sequence for the expression A[i, j]  + A[i, k] might look as follows: 

PC Instruction A[i, j]  + A[s k] with A: ARRAY 100, 100 OF INTEGER 
and ~ j, k: INTEGER 

0 R0 := i i 
1 R1 := 100 100 
2 R2 := R0 * R1 i*100 
3 R3 :=j  j 
4 R 4 : = R 2 + R 3  i*100+j  
5 R5 := M[addr(A) + R4] A[i, j] 
6 R6 := k k 
7 R 7 : = R 2 + R 6  i*100+ k 
8 R8 := M[addr(A) + R7) A[i, k] 
9 R9 := R5 + R8 A[i, j] + A[i, k] 

no index check generated 

common subexpression eliminated 

Fig. 2 

3 I n s t r u c t i o n  S c h e d u l i n g  

During code generation, new instructions are simply appended to the already existing code stretch. 
We modify this code emitting scheme such that most interlocks are prevented: Assuming that an 
instruction is issued every clock cycle (without interlocks), file instruction count may be 
interpreted as current clock. Hence, instead of appending consecutive instructions, they are 
directly placed in the code array at the earliest position in time where no interlock is possible any 
more (because its operands are available by then). This leads to a surprisingly simple method for 
scheduling instructions, while observing dependencies. The following example will illustrate the 
situation: 

Let l(a, b) be an instruction depending on the contents of  registers a and b (i.e. the results of  
the instructions starting at time a and starting at time b in our encoding scheme, Section 2). When 
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E(a) and E(b) are the execution times of  these instructions, a+E(a) and b+E(b) are the times when 
each result is available. Consequently, both results are available at Max(a+E(a), b+E(b)). In our 
array expression example (Fig. 2), the computation R2 + R3 depends on R2 and R3 and the 
earliest issue time is 6 = Max(2+4, 3+I), using the execution times in Fig. 3. Instead of  simply 
appending the instruction as before, it is placed at position 6 (remember that the result register 
number equals the instruction position). The resulting free instruction slots at position 4 and 5 may 
be thought of  beeing filled with no-ops. 

PC htstruction Computation Execution time Result available at 

0 R0 := i 
1 R1 := 100 
2 R2 := R0 * R1 
3 R3 := j  
4 no-op 
5 no-op 
6 R6 := R2 + R3 

i 1 1 
100 1 2 
i*lO0 4 6 
j 1 4 

i * 1 0 0 + j  2 8 

Fig. 3 

Hence, whenever a new instruction has to be appended, its earliest issue lime is determined based 
on its data dependencies and the instruction is then placed at the calculated position. Placing an 
instruction past the end of  the current code block extends the block. When placing an instruction 
in the middle or" the code block, the instruction replaces the next free instruction slot (possibly at 
the end of  the code block). Continuing this way, our array example leads to the code sequence 
shown in Fig. 4. 

PC Instruction Computation Execution time Result available at 

0 R0 := i i 1 1 
1 ~ R1 := 100 100 1 2 
2 R2 := R0 * R1 i*100 4 6 
3 R3 := j  j 1 4 
4 R4 := k k 1 5 
5 no-op 
6 R 6 : = R 2 + R 3  i * 1 0 0 + j  2 8 
7 R7 : = R 2 + R 4  i*100+ k 2 9 
8 R8 := M[addr(A) + R6] A[i, j] 14 22 
9 R9 := M[addr(A) + R7] A[i, k] 14 23 

10 no-op 
�9 . . . . .  . . ~  . ~ 1 7 6  . . .  

22 no-op 
23 R23 := R8 + R9 A[i, j] + A[i, k] 2 25 

Fig. 4 

The placing rules are a little bit more complex, when store instructions are involved: To preserve 
the semantics of  a code sequence, the relative ordering of  consecutive loads and stores must 
remain unchanged. Hence, it is necessary to know where previous memory accesses occurcd. 
Such informations can be kept e.g. in a table for each instruction type. We do not explain these 
aspects further. 

The code generated this way is good, however not optimal. The main reason for this is that 
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instructions drift forward in code if no suitable instruction slot is available. Sometimes it would be 
better to choose a (locally) suboptimal instruction position taking an interlock cycle into account. 
Assume a time consuming instruction I to be dependent on instruction 2 in our example (Fig. 4). 
The earliest possible position is 6 which is already occupied. Hence I drifts down until a free 
instruction slot is found, that is at position 10. An instruction J depending on 1 is therefore 
positioned at IO+E(I). If  J is the last instruction in the basic block, it would have been better to 
insert I at position 5, taking one interlock cycle into account, and thereby gaining five interlock 
cycles. Nevertheless, if basic blocks are sufficiently large the algorithm works well: most free 
instruction slots are filled up with subsequent instructions. 

With the representation suggested in Section 2, only a relatively simple array data structure is 
necessary. The length of  the instruction sequence directly represents the time used for its 
execution. When transforming the intermediate code into target machine code, free instruction 
slots may be translated into no-ops for architectures with no hardware interlocks (e.g. MIPS, 
[Kan87]). Further, the scheduling algorithm may be combined with a common subexpression 
elimination algorithm: Before trying to place a new instruction in the code array, the already 
generated code is searched for this instruction. If the instruction is found, no code is emitted, but a 
reference to the found instruction is remembered instead. The run-time complexity of  the 
scheduler is O(n2): In the worst case all instructions are independent and a free instruction slot 
must be searched from the beginning of  the code block. 

4 T a r g e t  C o d e  G e n e r a t i o n  

After the intermediate code for a basic block has been generated, it must be translated into tim 
target machine code. That is, for each intermediate instruction one or several target machine 
instructions have to be selected and local register allocation must be done. When register pressure 
is too high, eventually spill code has to be inserted. The techniques described here are well-known 
and mentioned only to sketch the environment of  the instruction scheduling algorithm. 

Target instruction selection: When the intermediate machine instructions differ from the target 
machine instructions only in the unbounded number of  registers used, this part of  the translation 
process is obviously trivial. Hence, we propose to choose the intermediate code instructions to 
match exactly the target code instructions (despite the unlimited number of  registers). Although 
this model is quite simple, it covers several popular machine architectures [Cra88, Dec92, Kan87, 
Sun87]. Irregulafites in the instruction set may be fixed by introducing special intermediate 
instructions which must be translated into several target instructions. However, it will probably be 
difficult to support irregular architectures like the i860 CPU or the 80x86 family. 

Register allocation: Note that at this level only registers for temporaries occurring during 
expression evaluation have to be allocated. Hence, a set of  general purpose registers must be 
reserved for expression evaluation. During translation of  the intermediate code, whenever a new 
result is computed (i.e. basically for every instruction except for stores), a new real register is 
allocated out of  this set using a simple stack or round-robin algorithm. The real register number is 
remembered together with the corresponding virtual register. Whenever the virtual register is 
referenced again, the real register number is used instead. However, at some point, the virtual 
register is not referenced any more and the corresponding real register should be released. This 
situation is easily detected using reference counts. A similar technique was described by 
Freiburghouse [Fre74]. 

Spill code generation: When straight-forward code is generated for expressions, only a few 
registers are usually necessary to hold temporaries. However, instruction scheduling may 
significantly raise register pressure, i.e. the number of registers which are alive at any one time. 
Excessive register demand may require to spill currently unused registers to memory. When 
spilling to memory, reload instructions have to be inserted which may impose new interlocks. 

In our context (Cray Y-MP) spilling is relatively cheap: because of  the large number of  
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temporary registers (64 registers for each of two main register classes), a good portion of the 
register files can be reserved for this purpose. Load and store accesses to temporary registers 
execute in one cycle, there/ore no additional interlocks are introduced. Spilling to main memory 
would be impractical due to the large interlocks introduced (14 cycles [Rob89]) as long as no 
additional scheduling pass is involved. However, on machines with a single cycle delay for 
memory access this might be acceptable. 

5 M e a s u r e m e n t s  

We have integrated our instruction scheduler in a compiler for an experimental subset of the 
Oberon language [Wir88]. Compilation is performed in three phases using a well-known 
technique: first, during lexical analysis an abstract syntax tree is built, semantic checks and minor 
optimizations are made [Cre90]. At the same time, a weighted usage count is computed for each 
variable. Using this information, variable allocation is done in a second phase, allocating registers 
for the statically most frequently used variables. It is hoped that the static measurements reflect the 
dynamic variable usage. Note that temporaries are not considered in this phase. Thirdly, the syntax 
tree is traversed and intermediate code is generated using the instruction scheduling method 
described above. The intermediate code differs from the real machine code only in the use of 
unbounded register numbers, and is quite good without any further optimizations (as long as no 
interlocks are concerned). This in contrast to other compilers (e.g. [Aus82]), where in a first pass 
relatively simple code is generated, wifich must be improved during a lot of optimization steps. 

The Compiler generates code for the Cray Y-MP, but in our sample programs no attempt for 
vectorization is made. The Cray Y/MP is a heavily pipelined machine and hence, despite its small 
clock cycle time of 6.5ns, simple scalar programs perform poorly without instruction scheduling 
because of long delays. Integer operations have an execution time of 2-3 cycles (depending on the 
operation), 64-bit real operations need 6-7 cycles and reciprocal approximation as well as scalar 
memory access take 14 cycles [Kan87]. 

Reduction of." Execution time ( Cray) 
Program 
MatrixMul 
Matrixlnv 
Gradient 
Fractal 
Quicksort 
Sieve 
Bubble 
Fibonaeci 
Average 

cf77 
0.07821s 
0.24289s 
0.67267s 
4.42827s 

0.39802s 

IS - IS + Red. 
~0.40670s 
i0.49889s 
1.65865s 
7.43025s 
0.11618s 
0.83557s 
0.69936s 
2.91846s 

0.32225s 
0.35505s 
1.07755s 
4.70283s 
0.10821s 
0.77295s ~ 
0.60650s 
2.81848s 

21% 
29% 
35% 
37% 
7% 
7% 

13% 
3% 

19% 

NOPs (Cray) 

IS- IS+ Red. 
101 70 31% 
482 317 34% 
296 171 42% 

165 136 18% 
83 64 23% 

268 247 8% 
67 60 10% 

24% 

NOPs (Hyp. M.) 

IS-  IS+ Red. 
32 7 78% 
90 13 86% 
56 15 73% 

16 12 25% 
7 7 0% 

23 15 35% 
5 4 20% 

45% 

Table I Table 2 Table 3 

Tables 1 to 3 show static and dynamic aspects for some characteristic programs. The first three 
routines operate on 100 by 100 matrices, Fractal .calculates a 400 by 290 pixel Mandelbrot picture; 
all make heavy use tloating-point arithmetic. The last four programs are integer benchmarks. 
Table 1 shows the absolute execution times (IS-) and the reduction (Red.) thereof gained by 
instruction scheduling (IS+). As expected, the number crunching applications offer more potential 
for improvements due to larger basic blocks. Overall, the instruction scheduling optimization 
achieves about 19% shorter execution times. When concentrating on floating-point intensive 
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applications, the improvement is 30% in average (without extending basic blocks, e.g. by loop 
unrolling). The dynamic improvements are comparable to the results described in [Gro83] for the 

reorganizer of pipeline constraints. 
The corresponding Fortran programs (Table 1, c177 column) perform much better; although 

vectorization is disabled. Massive DO loop unrolling [Don79] leads to this improvements, as can 
be seen when analyzing the corresponding cf77 code. However, loop unrolling is an orthogonal 
optimization which we have not supported in our compiler (unfortunately it seems to be 
impossible to disable unrolling done using cf77 5.0). Where this optimization is not possible 
(Fractal), our code is only about 6% slower than the cf'/7 code. Vice versa, when doing loop 
unrolling by hand, about the same speedups are gained (e.g. a factor of four for the MatrixMul 
routine)i 

Table 2 shows how many interlocks have been found statically due to data dependency 
conflicts before and after instruction scheduling. For this mix of basic blocks a static reduction of 
*about 24% is achieved. Again, for the applications with long basic blocks (MatrixMul, MalrixInv 
and Gradien0 a better reduction of 35% is r~eached in average. 

Table 3 shows the same static interlock analysis for a hypothetical machine with shorter 
pipelines. We have assumed a one-cycle delay for memory accesses, floating-point addition and 
subtraction, and a two-cycle delay for floating-point multiplication and division. The static 
reduction of 45% is much better, however not optimal. 

For the purpose of estimating the compile-time behavior when enabling or disabling the 
instruction placer, we have modified the code generation phase such that after building the syntax 
tree, the code generator is activated 100 times lbr every program, thereby not writing out the 
object file. The measurements did not indicate a significant slow-down of the compilation process 
due to scheduling (compile-time differences less than 5%). When compiling a single huge basic 
block, doubling the length of the basic block raised the compile-time by only little more than a 
factor of two. The second pass for target code generation is a simple sweep and is of complexity 
O(n). By that, a linear run-time of the instruction scheduling algorithm can be expected for 
practical cases. 

The absolute compile times range between 0.54s (Fibonacei) and 0.88s (Matrixlnv) on a 
Ceres-2 workstation ([Hee88], NS32032 CPU, 25MHz clock; more than 10 times slower then the 
Cray Y-MP in scalar mode). The absolute compile times for cf77 range between 0.21s user time 
(Fractal) and 1.17s (!) (Matrixlnv) on the Cray Y-MP. Although the two compilers are not directly 
comparable, this indicates that our compiler would translate corresponding programs by at least an 
order of magnitude faster than cf77 on the Cray. 

6 Conclusions 

We have described an instruction scheduling heuristic for pipelined computer architectures. The 
algorithm may be implemented as an extension of already existing optimizations like common 
subexprcssion elimination. While speed gains produced by our method are comparable to other 
techniques, our method seems to be much simpler; e.g. no complicated data-structures like 
dependency DAGs need be maintained. An implementation of the scheduler within a 
cross-compiler for the Cray Y-MP proved to be fast and small (including a common 
subexprcssion elimination algorithm about 400 lines of around 4000 lines for the complete 
compile0. Because no form of look-ahead during scheduling is necessary, the method is adequate 
even for one-pass compilers without introducing much complexity. 

We have not analyzed how the method is related to more sophisticated scheduling techniques 
(e.g. Circular Scheduling). Another issue we have not investigated is the extension of the 
scheduling scheme across basic block boundaries. However, simple extensions towards this goal 
seem to be relatively straight-forward: e.g. instructions after a conditional jump may be placed 
before the jump as long as no side-effects occur (and as long as there are free instruction slots). 
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This would not increase the run-time when the jump is taken, but decrease it when the jump is not 
taken. 

There is always a tradeoff between reaching very high and "reasonable good" performance. 
The former often causes long compile times, the latter may cost expensive execution time. For 
machines like a Cray one obviously has decided to pay nearly everything for fast code and it 
remains questionable if a "reasonably good" but not "optimal" scheduling method might be 
acceptable. However, the small effort for our instruction scheduling algorithm may improve 
simple compilers on more conventional architectures considerably without introducing much 
complexity. 
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