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Abstract.  As object oriented languages ease software construction signifi- 
cantly, these languages are very promising candidates for parallelizing com- 
pilers. To combine the advantages of object oriented programming with the 
power of parallel processing two major problems have to be solved: the virtual 
function and the class scope problem. We present solutions to these problems 
a n d  exemplify them by extending a fast interprocedural data flow analysis al- 
gorithm. 
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1 Introduct ion  

Object oriented languages have two important advantages over conventional (impe- 
rative sequential and parallel) programming languages: 

- Code reuse by using existing class hierarchies greatly increases efficiency of the 
programming process. 

- The concept of an object encapsulating its internal state represents a particu- 
larly natural model for distribution and parallel execution on distributed memory 
architectures. 

Hence, object oriented languages gain more and more influence in the field of pro- 
grarnming languages and should therefore be available for programming of multipro- 
cessor environments. 

Interprocedural data flow analysis is a key issue in the field of compiler opti- 
mization and parallelizing compiler technology as described elsewhere (see [3], [4]). 
Object oriented languages place a still higher demand on the interprocedural data 
flow analysis phase of a (parallelizing) compiler, because encapsulation of the internal 
state of an object trades off with a higher number of procedures and object methods 
used. It is therefore of imminent importance to be able to use fast interprocedural 
data flow analysis algorithms to analyze object oriented languages. 

The fastest known data flow analysis algorithms for the interprocedural alias-free 
ttow-insensitive side-effect problem have a time complexity which is linear in the size 
of the call graph. As we will show in section 2 the virtual function problem of object 
oriented languages needs a more sophisticated approach in order to meet this time 
bound in the presence of virtual functions and late binding. 
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A second problem characteristic to object oriented languages is the class scope 
problem which arises as a consequence of the introduction of new scoping rules. As 
illustrated in section 3 common techniques to cope with problems based on scoping 
rules (e. g. nested procedure scope) are not applicable to the class scope problem in 
object oriented languages. 

The problems and solutions developed in the next two sections are illustrated in 
section 4 by extending Cooper's and Kennedy's algorithm (see [1]) for interprocedu- 
ral data flow analysis to object oriented languages. 

The terminology of the object oriented language C + +  is used in this paper and 
the examples are written in C++.  This means, in particular, that virtual functions 
are functions which are bound at run time by late binding. 

2 T h e  v i r t u a l  f u n c t i o n  p r o b l e m  . 

Almost all data flow analysis algorithms are based on the use of different forms of 
flow graphs. The complexity of algorithms working on these graphs is usually stated 
in terms of traversals of edges and vertices. The fastest known algorithms operate 
in time linear to the sum N + E, where N stands for the set of vertices and E the 
set of edges. 

In the field of interprocedural data flow analysis the graph sizes depend mainly 
on two variables, the number of procedure calls (in case of the call graph) and formal 
parameters (e. g. in Cooper's and Kennedy's bindlng-multigraph which is defined in 
section 4). 

Using object oriented languages these two variables may grow exponentially with 
the depth of the inheritance graph, which is illustrated by the example shown in 
Fig. 1. Figure 1.a) shows a simple class hierarchy and Fig. 1.b) shows the corre- 
sponding implementation of various classes and functions. Only the characteristics 
essential to the virtual function problem are shown in the implementation. It should 
be noted that all seven classes in the class hierarchy implement the virtual function 
f ( a ,  b). Figure 1.c) shows an example application in which the function c a l l e r  
calls the virtual method va r -> f ( a ,  b). 

If the compiler cannot restrict the class type of object *var, it has to assume that 
the pointer var  can point to an object of class A and all of its subclasses (B-G). In this 
case the virtual function call va t -> f  (a, b) adds seven edges to the call graph and 
not only one edge as in non-object oriented languages. Even a multitude more will 
be introduced in the binding-multigraph. It is evident, that the resulting complexity 
of the overall graph traversal is exponential in the depth of the inheritance graph in 
the worst case. 

Since new classes derived from this class hierarchy augment the depth of the 
inheritance graph, code reuse (which is performed just by deriving new classes) does 
give rise to this problem. 

This problem can be solved by using the general algorithm presented in figure 2. 

There certain base classes serve as representants for the derived partial graph (of 
the inheritance graph) which includes the representants and all classes derived from 
them. 



158 

A 

B C 

D E F G 

(a) Example class hierarchy (-~ : "is base class of") 

c l a s s  A { . . .  v i r t u a l  v o i d  f ( i n t  * a ,  i n t  * b ) ;  . . .  } ;  

class B : A { ... virtual void f(int * a, int * b); ... }; 

class C : A { ... virtual void f(int * a, int * b); ... }; 

class D : B 

class E : B 

class F : C 

class G : C 

{ . . .  v i r t u a l  v o i d  f ( i n t  * a ,  i n t  * b ) ;  . . .  } ;  

{ . . .  v i r t u a l  v o i d  f ( i n t  * a ,  i n t  * b ) ;  . . .  ) ;  

{ . . .  v i r t u a l  void f ( i n t  * a, in t  * b) ;  . . .  }; 
{ . . .  v i r t u a l  void fCint  * a, in t  * b) ;  . . .  }; 

(b) Example implementation of class hierarchy (a) 

void caller(int * a, int * b) { 

A * var; 

, . ,  

var->f(a, b); ]] call to virtual f() 

(c) Example function using class hierarchy (a) 

Fig. 1. Virtual functions may cause exponential behaviour in the size of the inheritance 
graph 

To achieve this, the class hierarchy's da ta  flow analysis graph will be investigated 
by means of conventional flow analysis algorithms. All relevant information about  
virtual  functions will then be merged with the representangs' information. 

At compile t ime of the overall application (function c a l l e r  in example 1) each 
call of a virtual  function does hence add only edges from the calling procedure to the 
representants '  virtual procedure. This procedure is most precise, if the represented 
virtual functions behave similar, but  this is the case normally, because the virtual 
function mechanism has been designed especially for this purpose. 
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1. At compile time of a given class hierarchy: 
(a) Determine all base classes which are used as representants. 
(b) Compute the data flow information concerning all procedures and methods 

of the class hierarchy. 
(c) Propagate all information regarding virtual functions of derived classes to the 

representants' vertex and merge it with the information already computed 
there. 

2. At compile time of the overall application use the information of the represen- 
tants' vertex where any information about virtual functions of the representant 
or any class derived from them is needed. 

Fig. 2. General algorithm to solve the virtual function problem 

Strong time bounds can be met by exploiting the fact that the use of representants 
instead of references to all virtual functions affected in step 2 of algorithm 2 can 
already be used incrementally in step 1.b of the algorithm. By using this technique 
we avoid that the virtual function problem applies during step 1.b. 

An example how this technique can be used algorithmically is shown in section 
4, where the general algorithm of figure 2 is specialized. 

3 The  class scope problem 

A second problem is a consequence of the fact that most object oriented functions 
introduce a new sort of scope, the class scope. Variables which are declared to be 
private to an object (i. e. they can only be accessed directly by the object's methods) 
belong to a class scope. Modifications to these variables can be lifted to modifications 
of their respective objects in view of efficiency in certain cases. 

This is a problem, since most efficient data flow analysis algorithms exploit the 
specific features of scoping rules. Cooper's and Kennedy's Mgorithm, for example, 
is applicable in its purest form only to languages with global-local scoping (as in C, 
FORTRAN). They indicate, however, a way to adapt their algorithm to languages 
with nested-procedure scope (such as Pascal). This is done by regarding the nested 
procedures' bodies as an extension of the enclosing procedure. This approach cannot 
be used with class scoping, because objects cannot be necessarily assigned to specific 
procedures. 

In particular, there is the following problem with ordinary data flow analysis 
algorithms based on a call graph or other data flow graphs: Usage or modification of 
an object and its private variables has to be distinguished. This is necessary, because 
at a certain level within the call graph knowledge about the internal variables of 
an object gives no more useful information and can hence be forgone in view of 
efficiency. This is a direct consequence of objects being the means for providing 
encapsulation. 

These problems can be solved by annotating each vertex of the (call) graph 
with both the object and the internal variables changed and providing a function 
which "lifts" modifications of internal variables to modifications of their respective 



160 

objects after which the internal details can be  omitted. After lifting the information 
concerning object variables is ommitted. Since the number of object variables largely 
exceeds the number of object this techniques speeds up data flow analysis. 

This solution is also incorporated in the algorithm presented in the next section. 

4 An interprocedural data flow analysis algorithm 

Cooper's and Kennedy's algorithm (published in [1]) solves the alias-free flow-insen- 
sitive side-effect analysis problem by splitting it into two subproblems, which are 
solved separately. First side-efFects due to formal reference 'parameters (formal refe- 
rence problem) and then the problem of side-effects due to global variables (modified 
global variable problem) is solved. 

To solve the formal reference problem they introduce the binding-multlgraph, 
fl = (N#, E#). N~ is the set {fp~} of all formal parameters at all call sites. There 
is an edge (fpip, fp{) e E~ if there is a binding event, that is p calls q and the ith 
formal parameter of p gets bound to the j t h  formal parameter of q at the call site. 
This definition is illustrated by Fig. 3 which shows the binding multigraph for the 
example in Fig. 1. 

IpL. Ip~,::s fpb::s Ip~,,! .r fp~:,~ ph::~ f 5,,s 

1 9. ' 2 1 : : f  IPE::! IPE::I fp ~ ~ G  

Fig. 3. Example binding-multigraph 

They show that the size of the binding-multigraph is bound by a constant to 
the size of the call graph. The virtual function problem, however, applies here, bec- 
ause formal parameters of virtual functions may cause an exponential growth of the 
binding-multigraph. 

The solution stated in section 2 is perfectly applicable to this problem, since the 
formal parameter problem constitutes a problem which is invariant to the surroun- 
ding context in which functions are called. This means, that the representants which 
are calculated have to be updated only if the class hierarchy is changed, but not if 
the same class hierarchy is used in another context. In example 3 twelve edges are 
removed if the representant chosen is the base class A, because the only remaining 

1 fPcau*r ~ fPa::l" By using this technique we can edges are fPcal~er -"* fPla::! and 2 2 
achieve the linear time bound with the algorithm shown in figure 4. 
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1. Designate the base classes which are used as representants. In the simplest case 
all base classes which have virtual methods can be used. 

2. Compute all modifications to formal reference parameters within the class hier- 
archy by using Cooper's and Kennedy's algorithm. 

3. Use Cooper's and Kennedy's algorithm to solve the formal reference problem for 
the whole application. 

Fig. 4. Solving the formal reference parameter problem 

The most important observation with this algorithm is that steps 1. and 2. have 
to be done only once for a class hierarchy (e. g. system libraries etc.). The whole 
algorithm certainly meets the linear time bound on the call graph, for the following 
reasons: 

- Depending on the criteria to select the representants the first step can be done 
in constant time. 

- Step 2 applies Cooper~s and Kennedy's algorithm to the methods in the class 
hierarchy - -  that is a small subproblem compared to the overall application. In 
addition, representants can already be used while analyzing the class hierarchy 
as stated in section 2. 

- Step 3 only requires linear time as shown in [1], because the virtual function 
problem does not apply while using representants, 

After determination of side effects due to the formal reference parameter prob- 
lem, side effects due to global variables are determined. Here the virtual function 
problem is also avoided by a specialized version of algorithm 2. In the following a pre- 
sentation is given how their algorithm to solve the global modifications problem can 
be adapted to object oriented languages. Cooper and Kennedy observed that sets of 
modified variables can eitlciently be computed by regarding the strongly connected 
components 3 (henceforth SCC) of the call graph. An adaption of Tarjan's algorithm 
(described in [2])can thus be used for computation of the modified global variable 
problem. Once all members of a SCC are found they propagate all side effects to 
global variables between these members. 

The class scope problem can then be solved using the following functions and 
variables: 

0 V[p]: These sets are bit vectors used to register modifications to object variables 
for each procedure p. 

IMOD+[p]: These sets hold all object variables which are modified either directly 
in procedure p or due to side effects to reference parameters within p and the 
functions which are ever called in p. These sets have been determined by solving 
the formal reference problem as described in algorithm 4. 

GlassScopeO: This function yields the subset of all modifications of object variables 
in OV[p] which have to be lifted to modifications of objects in GMOD[p]. To 

3 Two vertices are members of a strongly connected component iff there are two destinct 
paths linking them. 
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determine the object variables which have to be lifted, it uses the root of the 
actual strongly connected component and the object of the procedure considered. 

The vAaption of the algorithm to object oriented languages with scoping rules 
as described above is now rather straightforward. Modifications to object variables 
axe recorded in sets OV[p], which are initialized to IMOD+~].  They are updated 
along with modifications to other variables while treating edges which link two dif- 
ferent SCCs in the call graph. If all vertices of a SCC are found, the algorithm lifts 
modifications to object variables to modifications of their respective objects using 
the function ClassSeope(). 

Cooper's and Kennedy's correctness proof has been extended to our approach by 
extending their recursive flow equation scheme and adapting their proof accordingly. 
The proof ensures that all variables modified as side effects of a strongly connected 
component (henceforth s; s be closed 4 in line (26) of the algorithm) are correctly 
propagated to all other strongly connected components which can reach 8. 

5 Conc lus ion  and future work 

We have shown that conventional data flow analysis algorithms are not applicable 
for object oriented languages because of the virtualfunctiou and class scope problem. 
To solve these problems new techniques have been presented which have been proven 
useful in the framework of conventional data flow analysis algorithms. 

Further work will be done in order to apply the techniques presented here to 
a greater number of analysis techniques (especially in the field of analyzing array 
accesses). The overall approach will be enhanced in order to use our techniques in 
the more general framework of a parallelizing compiler for object-oriented languages. 
Efficiency and granularity constraints in relation to object sizes and communication 
will be investigated with regard to different target multiprocessors. 
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