
On Interprocedural Data Flow Analysis for
Object Oriented Languages

Mario Sfidholt* and Christoph Steigner**

Abstract. As object oriented languages ease software construction signifi-
cantly, these languages are very promising candidates for parallelizing com-
pilers. To combine the advantages of object oriented programming with the
power of parallel processing two major problems have to be solved: the virtual
function and the class scope problem. We present solutions to these problems
a n d exemplify them by extending a fast interprocedural data flow analysis al-
gorithm.

Keywords : Object oriented language, interprocedural data flow analysis, virtual
function, class scope

1 Introduct ion

Object oriented languages have two important advantages over conventional (impe-
rative sequential and parallel) programming languages:

- Code reuse by using existing class hierarchies greatly increases efficiency of the
programming process.

- The concept of an object encapsulating its internal state represents a particu-
larly natural model for distribution and parallel execution on distributed memory
architectures.

Hence, object oriented languages gain more and more influence in the field of pro-
grarnming languages and should therefore be available for programming of multipro-
cessor environments.

Interprocedural data flow analysis is a key issue in the field of compiler opti-
mization and parallelizing compiler technology as described elsewhere (see [3], [4]).
Object oriented languages place a still higher demand on the interprocedural data
flow analysis phase of a (parallelizing) compiler, because encapsulation of the internal
state of an object trades off with a higher number of procedures and object methods
used. It is therefore of imminent importance to be able to use fast interprocedural
data flow analysis algorithms to analyze object oriented languages.

The fastest known data flow analysis algorithms for the interprocedural alias-free
ttow-insensitive side-effect problem have a time complexity which is linear in the size
of the call graph. As we will show in section 2 the virtual function problem of object
oriented languages needs a more sophisticated approach in order to meet this time
bound in the presence of virtual functions and late binding.

* Technical University of Berlin, Institute of Applied Computer Science, Franklinstrafle
28/29, D - 1000 Berlin 10, Secretariat: FR 5/13

** University of Koblenz, Institute of Computer Science, Rheinau 3-4, D - 5400 Koblenz

157

A second problem characteristic to object oriented languages is the class scope
problem which arises as a consequence of the introduction of new scoping rules. As
illustrated in section 3 common techniques to cope with problems based on scoping
rules (e. g. nested procedure scope) are not applicable to the class scope problem in
object oriented languages.

The problems and solutions developed in the next two sections are illustrated in
section 4 by extending Cooper's and Kennedy's algorithm (see [1]) for interprocedu-
ral data flow analysis to object oriented languages.

The terminology of the object oriented language C + + is used in this paper and
the examples are written in C++. This means, in particular, that virtual functions
are functions which are bound at run time by late binding.

2 T h e v i r t u a l f u n c t i o n p r o b l e m .

Almost all data flow analysis algorithms are based on the use of different forms of
flow graphs. The complexity of algorithms working on these graphs is usually stated
in terms of traversals of edges and vertices. The fastest known algorithms operate
in time linear to the sum N + E, where N stands for the set of vertices and E the
set of edges.

In the field of interprocedural data flow analysis the graph sizes depend mainly
on two variables, the number of procedure calls (in case of the call graph) and formal
parameters (e. g. in Cooper's and Kennedy's bindlng-multigraph which is defined in
section 4).

Using object oriented languages these two variables may grow exponentially with
the depth of the inheritance graph, which is illustrated by the example shown in
Fig. 1. Figure 1.a) shows a simple class hierarchy and Fig. 1.b) shows the corre-
sponding implementation of various classes and functions. Only the characteristics
essential to the virtual function problem are shown in the implementation. It should
be noted that all seven classes in the class hierarchy implement the virtual function
f (a , b). Figure 1.c) shows an example application in which the function c a l l e r
calls the virtual method va r -> f (a , b).

If the compiler cannot restrict the class type of object *var, it has to assume that
the pointer var can point to an object of class A and all of its subclasses (B-G). In this
case the virtual function call va t -> f (a, b) adds seven edges to the call graph and
not only one edge as in non-object oriented languages. Even a multitude more will
be introduced in the binding-multigraph. It is evident, that the resulting complexity
of the overall graph traversal is exponential in the depth of the inheritance graph in
the worst case.

Since new classes derived from this class hierarchy augment the depth of the
inheritance graph, code reuse (which is performed just by deriving new classes) does
give rise to this problem.

This problem can be solved by using the general algorithm presented in figure 2.

There certain base classes serve as representants for the derived partial graph (of
the inheritance graph) which includes the representants and all classes derived from
them.

158

A

B C

D E F G

(a) Example class hierarchy (-~ : "is base class of")

c l a s s A { . . . v i r t u a l v o i d f (i n t * a , i n t * b) ; . . . } ;

class B : A { ... virtual void f(int * a, int * b); ... };

class C : A { ... virtual void f(int * a, int * b); ... };

class D : B

class E : B

class F : C

class G : C

{ . . . v i r t u a l v o i d f (i n t * a , i n t * b) ; . . . } ;

{ . . . v i r t u a l v o i d f (i n t * a , i n t * b) ; . . .) ;

{ . . . v i r t u a l void f (i n t * a, in t * b) ; . . . };
{ . . . v i r t u a l void fCint * a, in t * b) ; . . . };

(b) Example implementation of class hierarchy (a)

void caller(int * a, int * b) {

A * var;

, . ,

var->f(a, b);]] call to virtual f()

(c) Example function using class hierarchy (a)

Fig. 1. Virtual functions may cause exponential behaviour in the size of the inheritance
graph

To achieve this, the class hierarchy's da ta flow analysis graph will be investigated
by means of conventional flow analysis algorithms. All relevant information about
virtual functions will then be merged with the representangs' information.

At compile t ime of the overall application (function c a l l e r in example 1) each
call of a virtual function does hence add only edges from the calling procedure to the
representants ' virtual procedure. This procedure is most precise, if the represented
virtual functions behave similar, but this is the case normally, because the virtual
function mechanism has been designed especially for this purpose.

159

1. At compile time of a given class hierarchy:
(a) Determine all base classes which are used as representants.
(b) Compute the data flow information concerning all procedures and methods

of the class hierarchy.
(c) Propagate all information regarding virtual functions of derived classes to the

representants' vertex and merge it with the information already computed
there.

2. At compile time of the overall application use the information of the represen-
tants' vertex where any information about virtual functions of the representant
or any class derived from them is needed.

Fig. 2. General algorithm to solve the virtual function problem

Strong time bounds can be met by exploiting the fact that the use of representants
instead of references to all virtual functions affected in step 2 of algorithm 2 can
already be used incrementally in step 1.b of the algorithm. By using this technique
we avoid that the virtual function problem applies during step 1.b.

An example how this technique can be used algorithmically is shown in section
4, where the general algorithm of figure 2 is specialized.

3 The class scope problem

A second problem is a consequence of the fact that most object oriented functions
introduce a new sort of scope, the class scope. Variables which are declared to be
private to an object (i. e. they can only be accessed directly by the object's methods)
belong to a class scope. Modifications to these variables can be lifted to modifications
of their respective objects in view of efficiency in certain cases.

This is a problem, since most efficient data flow analysis algorithms exploit the
specific features of scoping rules. Cooper's and Kennedy's Mgorithm, for example,
is applicable in its purest form only to languages with global-local scoping (as in C,
FORTRAN). They indicate, however, a way to adapt their algorithm to languages
with nested-procedure scope (such as Pascal). This is done by regarding the nested
procedures' bodies as an extension of the enclosing procedure. This approach cannot
be used with class scoping, because objects cannot be necessarily assigned to specific
procedures.

In particular, there is the following problem with ordinary data flow analysis
algorithms based on a call graph or other data flow graphs: Usage or modification of
an object and its private variables has to be distinguished. This is necessary, because
at a certain level within the call graph knowledge about the internal variables of
an object gives no more useful information and can hence be forgone in view of
efficiency. This is a direct consequence of objects being the means for providing
encapsulation.

These problems can be solved by annotating each vertex of the (call) graph
with both the object and the internal variables changed and providing a function
which "lifts" modifications of internal variables to modifications of their respective

160

objects after which the internal details can be omitted. After lifting the information
concerning object variables is ommitted. Since the number of object variables largely
exceeds the number of object this techniques speeds up data flow analysis.

This solution is also incorporated in the algorithm presented in the next section.

4 An interprocedural data flow analysis algorithm

Cooper's and Kennedy's algorithm (published in [1]) solves the alias-free flow-insen-
sitive side-effect analysis problem by splitting it into two subproblems, which are
solved separately. First side-efFects due to formal reference 'parameters (formal refe-
rence problem) and then the problem of side-effects due to global variables (modified
global variable problem) is solved.

To solve the formal reference problem they introduce the binding-multlgraph,
fl = (N#, E#). N~ is the set {fp~} of all formal parameters at all call sites. There
is an edge (fpip, fp{) e E~ if there is a binding event, that is p calls q and the ith
formal parameter of p gets bound to the j t h formal parameter of q at the call site.
This definition is illustrated by Fig. 3 which shows the binding multigraph for the
example in Fig. 1.

IpL. Ip~,::s fpb::s Ip~,,! .r fp~:,~ ph::~ f 5,,s

1 9. ' 2 1 : : f IPE::! IPE::I fp ~ ~ G

Fig. 3. Example binding-multigraph

They show that the size of the binding-multigraph is bound by a constant to
the size of the call graph. The virtual function problem, however, applies here, bec-
ause formal parameters of virtual functions may cause an exponential growth of the
binding-multigraph.

The solution stated in section 2 is perfectly applicable to this problem, since the
formal parameter problem constitutes a problem which is invariant to the surroun-
ding context in which functions are called. This means, that the representants which
are calculated have to be updated only if the class hierarchy is changed, but not if
the same class hierarchy is used in another context. In example 3 twelve edges are
removed if the representant chosen is the base class A, because the only remaining

1 fPcau*r ~ fPa::l" By using this technique we can edges are fPcal~er -"* fPla::! and 2 2
achieve the linear time bound with the algorithm shown in figure 4.

161

1. Designate the base classes which are used as representants. In the simplest case
all base classes which have virtual methods can be used.

2. Compute all modifications to formal reference parameters within the class hier-
archy by using Cooper's and Kennedy's algorithm.

3. Use Cooper's and Kennedy's algorithm to solve the formal reference problem for
the whole application.

Fig. 4. Solving the formal reference parameter problem

The most important observation with this algorithm is that steps 1. and 2. have
to be done only once for a class hierarchy (e. g. system libraries etc.). The whole
algorithm certainly meets the linear time bound on the call graph, for the following
reasons:

- Depending on the criteria to select the representants the first step can be done
in constant time.

- Step 2 applies Cooper~s and Kennedy's algorithm to the methods in the class
hierarchy - - that is a small subproblem compared to the overall application. In
addition, representants can already be used while analyzing the class hierarchy
as stated in section 2.

- Step 3 only requires linear time as shown in [1], because the virtual function
problem does not apply while using representants,

After determination of side effects due to the formal reference parameter prob-
lem, side effects due to global variables are determined. Here the virtual function
problem is also avoided by a specialized version of algorithm 2. In the following a pre-
sentation is given how their algorithm to solve the global modifications problem can
be adapted to object oriented languages. Cooper and Kennedy observed that sets of
modified variables can eitlciently be computed by regarding the strongly connected
components 3 (henceforth SCC) of the call graph. An adaption of Tarjan's algorithm
(described in [2])can thus be used for computation of the modified global variable
problem. Once all members of a SCC are found they propagate all side effects to
global variables between these members.

The class scope problem can then be solved using the following functions and
variables:

0 V[p]: These sets are bit vectors used to register modifications to object variables
for each procedure p.

IMOD+[p]: These sets hold all object variables which are modified either directly
in procedure p or due to side effects to reference parameters within p and the
functions which are ever called in p. These sets have been determined by solving
the formal reference problem as described in algorithm 4.

GlassScopeO: This function yields the subset of all modifications of object variables
in OV[p] which have to be lifted to modifications of objects in GMOD[p]. To

3 Two vertices are members of a strongly connected component iff there are two destinct
paths linking them.

162

determine the object variables which have to be lifted, it uses the root of the
actual strongly connected component and the object of the procedure considered.

The vAaption of the algorithm to object oriented languages with scoping rules
as described above is now rather straightforward. Modifications to object variables
axe recorded in sets OV[p], which are initialized to IMOD+~]. They are updated
along with modifications to other variables while treating edges which link two dif-
ferent SCCs in the call graph. If all vertices of a SCC are found, the algorithm lifts
modifications to object variables to modifications of their respective objects using
the function ClassSeope().

Cooper's and Kennedy's correctness proof has been extended to our approach by
extending their recursive flow equation scheme and adapting their proof accordingly.
The proof ensures that all variables modified as side effects of a strongly connected
component (henceforth s; s be closed 4 in line (26) of the algorithm) are correctly
propagated to all other strongly connected components which can reach 8.

5 Conc lus ion and future work

We have shown that conventional data flow analysis algorithms are not applicable
for object oriented languages because of the virtualfunctiou and class scope problem.
To solve these problems new techniques have been presented which have been proven
useful in the framework of conventional data flow analysis algorithms.

Further work will be done in order to apply the techniques presented here to
a greater number of analysis techniques (especially in the field of analyzing array
accesses). The overall approach will be enhanced in order to use our techniques in
the more general framework of a parallelizing compiler for object-oriented languages.
Efficiency and granularity constraints in relation to object sizes and communication
will be investigated with regard to different target multiprocessors.

References

1. Keith. D. Cooper, Ken Kennedy: "Inter-procedural Side-Effect Analysis in Linear Time";
Proceedings of the SIGPLAN '88 Conference on Programming Language Design and
Implementation, Atlanta, Georgia, June 22 - 24, 1988

2. Jfirgen Ebert: "Effiziente Graphenalgorithmen"; Studientexte, Al~demische Verlagsge-
setlschaft, 1981

3. Laurie J. Hendren, Alecandru Nicolau: "Parallelizing Programs with Recursive Data
Structures", in: IEEE Transactions on Parallel and Distributed Systems, Vol. 1, No. 1,
January 1990

4. Paul Havlak, Ken Kennedy: "An Implementation of Interproeeduraf Bounded Regular
Section Analysis", in: IEEE Transactions on Parallel and Distributed Systems, Vol. 2,
No. 3, July 1991

This article was processed using the IbTEX macro package with LLNCS style

4 A strongly connected component is closed if its root has been identified and all its mem-
bers have been popped off the stack.

