
ACTRESS: an A c t i o n Semant i c s D i r e c t e d
Compi l er G e n e r a t o r

Deryck F. Brown*, t termano Mourn**, David A. Wat t

Department of Computing Science,
University of Glasgow, Glasgow, G12 8QQ, UK.

Abs t rac t . We report progress on the development of ACTRESS, a compiler
generator based on action semantics. It consists of a number of modules,
written in SML, that can be composed to construct either an action notation
compiler or a simple compiler generator. We also outline current and future
developments that will improve the quality of the generated compilers.

1 I n t r o d u c t i o n

We define a compiler generator to be a tool that constructs a compiler automatically,
given a syntactic and semantic description of the source language. This definition
emphasizes the fact that the compiler is not written by a programmer, but generated
from a formal description of the language. Ideally, this formal description is one that
was written by the language designer and is consulted by users of the language.

We can generate an efficient syntactic analyser automatically from a syntactic
description, using tools such as LEX and YaCC. However, generating a code generator
from a semantic description is much more difficult, and so far this problem has eluded
satisfactory solution.

The key efforts have been at tempts to generate compilers from denotational se-
mantic descriptions [3, 7, 11]. The generated compiler translates the source program
to a A-expression, then reduces the latter as much as it can; the residual A-expression
is the "object program". At run-time the residual A-expression is applied to the pro-
gram's input, and when reduced to normal form gives the program's output .

There are many fundamental problems with this approach. Reduction of the
A-expression is slow (both at compile-time and at run-time). Environments and
stores are passed around as arguments, just like ordinary values. Moreover, simple
environment and store operations are represented by A-functions, so the number
of A-reductions is enormous. Thus the generated compilers are hugely inefficient,
typically exhibiting a performance penalty of about 1000 relative to a hand-crafted
compiler (both at compile-time and at run-time).

The only hope of generating realistic compilers from denotational descriptions is
for the compiler generator to "understand" the special properties of environments,
stores, and continuations. For example, Schmidt has formulated sufficient conditions

* Supported by SERC, UK.
** Supported by CNPq, Brazil. On leave from Caixa Econ6mica Federal, Brazil.

Authors' e-mail address: {deryck, moura, daw}@dcs.glasgow.ac.uk.

96

for single-threading of the store arguments; under these conditions all store agu-
ments can be mapped to a global store variable [9]. Similarly, he has attempted to
analyse the use of environment arguments, in order to discover whether the scopes of
bindings and the lifetimes of variables permit stack allocation [8]. But the analyses
are complicated, and it is unlikely that they can be extended beyond toy languages.

Action semantics [4, 5, 12] seems to be a more promising basis for compiler
generation. An action-semantic description in effect specifies a translation from the
source language to action notation. Although designed primarily for readability and
modularity, action notation has a number of properties that make it suitable for the
purposes of compiler generation. The action primitives and combinators correspond
quite closely to the operational concepts in terms of which languages are imple-
mented. The store is by definition single-threaded, and bindings are by definition
scoped. These properties of action notation eliminate the need for Schmidt's stor-
age analysis, and simplify the analysis required to determine, for example, whether
stack allocation is possible. Finally, action notation has numerous algebraic laws
that provide a rigorous foundation for code-improving transformations.

We have constructed a preliminary version of an action semantics directed com-
piler generator, ACTRESS, and we are currently developing a more sophisticated
version. This paper ~is a progress report on our work. Section 2 briefly summarizes
action notation (and may be skipped by readers already familiar with the notation).
Section 3 gives an overview of the compiler generator and its component modules:
the action notation parser, sort checker, code generator, and interpreter, and the
"actioneer" generator. Section 4 takes a closer look at the sort checker, which infers
useful information about the flow of data among actions. Section 5 describes the code
generator, which translates action notation to C. Section 6 gives some performance
measurements on our generated compilers, and describes current and future develop-
ments of our work. Section 7 concludes by comparing our work with contemporary
compiler generation projects.

2 Act ion Nota t ion

An action is a computational entity, which can be performed. When performed, an
action might complete (i.e., terminate normally), or fail (i.e., terminate abnormally),
or diverge, (i.e., not terminate at all). An action may use data supplied to it by other
actions; and it can supply data to other actions if it completes.

Actions have several facets, which differ in the nature and lifetime of the data in-
volved. In the functional facet, an action may use and/or give transients. Transients
are structured as tuples of data, with each datum being individually labeled. Tran-
sients disappear unless used immediately. In the declarative facet, an action may use
and/or produce bindings. Bindings are structured as sets of identifier-datum associ-
ations. Bindings generally propagate throughout a designated action, which is their
scope. In the imperative facet, an action may use and/or change storage. Storage is
structured as a set of cells, each containing a single datum. Stored data are stable,
in that they remain available for use by any action until overwritten.

Action notation provides a number of action primitives, action combinators, and
data operations. An action primitive represents a single step in the computation, and

97

Table 1. Some action primitives

Primitive Informal meaning Example

Completes immediately (i.e., does
complete nothing).

fail Fails immediately.
Gives a single datum d. give sum (the integer, 2) give d

give d label # n

bind k to d

Gives a single datum d, labeled n.
Produces a single binding, of
identifier k to datum d.

give the integer label #2

bind "n" to the integer

store d in c Stores datum d in cell c. store 0 in the cell bound to "x"

Finds an unreserved cell of sort S,
allocate a S reserves it, and gives it. dlocate an [integer] cell

Performs the action incorporated enact the abstraction
enact a by the abstraction a. bound to "p"

generally has an effect in (at most) one facet. An action combinator combines one
or two sub-actions into a composite action, and determines the flow of control and
flow of data between the sub-actions. An action may use data operations to access
the data supplied to it. The most common action primitives, action combinators,
and data operations are summarized in Tables 1, 2, and 3, respectively.

An action semantic description of a small imperative language, MINI-/X [12], is
given in Appendix A. It is structured like a denotational semantic description, with
semantic functions and semantic equations, but the denotations are expressed in
action notation.

Space permits only a very brief and incomplete explanation of action notat ion
here. For a comprehensive account of action notation, together with a formal speci-
fication, see Mosses [4]; for a gentler introduction, see Watt [12]. 3

3 Overv iew of ACTRESS

ACTRESS supports a well-defined subset of action notat ion that is rich enough to
write semantic descriptions of interesting programming languages. The subset in-
cludes all the notat ion listed in Tables 1-3.

ACTRESS consists of a number of modules, which may be composed in various
ways. These modules are briefly explained below. In the following sections two of
the modules are discussed in more detail.

The action notation parser parses a textual action, and translates it to the corre-
sponding action notat ion abstract syntax tree (action tree). It is an LALR(1) parser,
and was generated using ML-YACC.

3 For historical reasons, the action notation used in ACTRESS differs slightly from that
described in the cited texts.

98

Tab le 2. Some action combinators

Combinator -]Informal meaning Example

Performs either A1 or A2. If the give
Az or A2 chosen sub-action fails, the other the value or

sub-action is chosen, give the value stored in the cell

Tests a given truth value, and then give 1 else
A1 else A2 performs A1 if it is true or A2 if it

is false, give 0

A1 and A2

A1 and then A2

A1 then A2

A1 hence A2

A1 before A2

Performs both A1 and A2
collaterally. Any transients given
by Az and A2 are merged. Any
bindings produced by A1 and A2
are merged.
Performs A1 and A~ sequentially.
Otherwise behaves like 'Az and A2'.
Performs A1 and A2 sequentially.
Transients given by A1 are given to
A2.
Performs A1 and A2 sequentially.
Bindings produced by Az
propagate to A2.
Performs A1 and A2 sequentially.
Bindings produced by A1 and A2
are accumulated.
Performs A. Bindings produced by

furthermore A
A override the received bindings.

unfolding A

Performs A iteratively. Dummy
action 'unfold', whenever
encountered inside A, is replaced
byA.

bind "x" to the cell and
store 0 in the cell

give the value stored in the cell
and then store 0 in the cell

allocate an [integer] cell then
store 0 in the cell

bind "h" to 3600 hence
give product (24, the integer

bound to "h")
bind "n" to 7 before
bind "m" to successor (the

integer bound to "n")
furthermore

bind "x" to the argument

unfolding
give successor (the integer)
then unfold

The action notation sort checker traverses the action tree, inferring the sorts
of the transients and bindings tha t flow into and out of each action, and checking
whether the action will fail. The sort checker decorates the action tree with sort
information.

The action notation code generator t ranslates the decorated action tree to a
C object program. Sort information is used to guide register allocation, to generate
code for any run- t ime sort checks, and especially to guide the t ranslat ion of recursive
actions and abstractions. The object p rogram passes transients in registers, explicitly
manipula tes bindings, and operates on a global store.

These three modules when composed form the first of our tools, the action nota-
tion compiler. This compiles an action to a C object program. The object p rogram
may then be compiled and executed in the usual way.

The actioneer generator accepts the dynamic semantic description of a source
language Z:, and generates an Z: "actioneer". The lat ter is a module tha t translates

99

Table 3. Some data operations

Operation

the S

Informal meaning
[The given transient datum. I t must
Ibe of sort S.
The given transient datum labeled

Example

the truth-value

the S#n the integer~2
n. It must be of sort S.

the S bound to k The datum currently bound to the cell bound to "x"
I identifier k. It must be of sort S.

The datum currently contained in the integer stored in the cell
ithe S stored in c cell c. It must be of sort S.

The abstraction that incorporates
abstraction A

action A.
The abstraction a with the current

abstraction
Igive successor(the integer)

closure a bindings supplied to the
incorporated action.
The abstraction a with the

the abstraction bound to "f" a with d transient datum d supplied to the
with the argument

incorporated action.

closure abstraction
Istore 0 in the cell bound to "x"

the abstract syntax tree (AST) of an L: program to its denotation, an action tree.
Composing an 1: parser with a generated 1: actioneer, the action notat ion sort

checker, and the action notat ion code generator gives us an 1: compiler. The structure
of this generated compiler is shown in Figure 1.

The action notation interprcterinterprets an action tree and displays the action's
outcome. The outcome includes the transients, bindings and storage produced by
the action, if it completes, or an indication of failure otherwise. The interpreter
closely follows the structure of Mosses' operational semantics of action notat ion [4].
Moreover, it implements nearly all of action notation. A full description can be found
in Moura [6].

The action notat ion interpreter can be composed with the action notat ion parser
to allow the user to perform actions directly - - a valuable tool for students of action
notation. Alternatively, the interpreter can be composed with an s parser and an L:
actioneer to generate an L: interpreter - - a useful prototyping tool.

4 T h e A c t i o n N o t a t i o n Sort Checker

The action notat ion sort checker is similar in principle to an ordinary type checker,
but is in fact significantly more sophisticated. Its purpose is to traverse the action
tree and decorate each action with the tagged sorts of that action's input and output
data. This is done for both the functional facet (transients) and the declarative facet
(bindings). The imperative facet (storage) is not currently analysed.

The sort information is represented by record types similar to those introduced
by Wand, and applied by Even and Schmidt to their own simplified version of action
notat ion [10]. Each action is decorated by four record schemes, representing input

100

1;
syntax

I ml-lex &
ml-yacc

/
/

source parser program

Z,
semantics

I actioneer I action notalJon ~.ll~o~come
generator , j Interpreter /

\.,. / ~

" ~ L I f laction note.on I lection notation L~.. c object
sort ~ code

acU~ I I checker ~] I generator I program

L, ~tbn decorated
program AST tree action tree

Fig. 1. The structure of a compiler generated by ACTRESS

and output transients, and input and output bindings. For example, a record for
transients (data tagged by labels) might be:

{0 : integer, 1 : truth-value}

and a record for bindings (data tagged by identifiers):

{ "n , : 7, "m" : integer, "z" : [integer] cell}

In action notation, individual values (such as 7) are treated as singleton sorts, and
the sort checker can sometimes infer such values. In the example above, n is bound
to a known integer of value 7, but m is bound to some unknown integer, and z to
some unknown cell.

Using sort information, it is possible to detect certain failing actions before code
generation. An action that is guaranteed to fail when performed is rewritten by
the sort checker to a single "fail" action. In turn, this can be used to eliminate
occurrences of the "or" combinator, since 'Tail" is the unit for "or". For example, in
MINI-A (Appendix A), the action denoting the expression z is:

give the value bound to "x" or
give the value stored in the cell bound to "x"

Here one of the sub-actions must fail, since x cannot be bound to both a value and a
cell. Once the sort checker has inferred the sort of the datum bound to x, it replaces
the "or" action by the appropriate sub-action.

The sorts inferred by the sort checker have been specified using a set of inference
rules, somewhat analogous to the type inference rules for a programming language.
Our sort inference algorithm is based on the one given in Even and Schmidt [10].
However, it has been enhanced in several ways. It represents both transients and
bindings using record schemes, which leads to a more regular structure in the sort
checker. Additionally, it handles a larger subset of action notation, including re-
cursive actions, non-deterministic choice, and abstractions (which are essential for
writing useful language descriptions).

101

The sort checker consists of three passes. The first pass decorates the action tree
with record schemes; the second pass removes all the sort variables present in the
record schemes, and reduces the sorts to a canonical form; the third pass simplifies
the action tree where possible, and marks the places where run-time sort checks are
required. For more details see Brown [1].

5 T h e A c t i o n N o t a t i o n C o d e G e n e r a t o r

The actual translation of actions into C object code is done by the code generator~
An action is translated to a C statement (-sequence); a term yielding a datum is
translated to a C expression. In the generated code, transients and bindings are
passed in registers. A register allocation discipline is necessary: the flow of data
between actions must guide the allocation and deallocation of registers. The code
generator is also guided by information received from the sort checker.

Figure 2 shows some of the translation rules built into the code generator. For
example, the action ~'comp[ete" is translated to the C null statement.

Each transient datum is contained in a special kind of register called a d-register.
For example, the action "give d label #n" is translated to an assignment of the value
of d to a d-register allocated at translation-time (di). The translation process must
note the association between n and d~. Thus, "the S~n" is translated to a fetch from
the d-register associated with the label n. A run-time sort check may be necessary
here to guarantee that the content of the register is of sort S; the code generator is
warned by the sort checker and generates the necessary code.

At run-time, a second kind of register called a b-registerpoints to a set of bindings.
The translation of "bind k to d" is just an assignment of a single binding to a b-
register, allocated at translation-time. Such a binding is built by calling an auxiliary
run-time function, BIND(k, [d]). The translation of "the S bound to k" is just a call
to another auxiliary function, BOUND(k,bj), that looks up what datum is bound to
token k in register b~ (which is determined at translation-time).

Storage is represented by an array, s torage , which explains the translation rules
for "store d in c" and "the S stored in c".

"At and then A2" is translated to sequential code: the code for A1 followed by
the code for A2. The generated code for At must not reuse any d-register still to
be read by the translation of A2. Similarly, the generated code for As must not
reuse any d-register written by Az. The bindings produced by the subactions are
merged. Sort information is used to achieve an efficient translation. For example, if
Az produces non-empty bindings in register bi, and A2 produces non-empty bindings
in bj, then the translation-time function merge_bindings 0 generates something like
"bk = MERGE(bi,bj) ;". But if either A1 or A2 produces no bindings, merge_bindings
generates no code at all.

"unfolding A" is translated to a loop, in which each tail-recursive occurrence of
the dummy action "unfold" becomes a jump back to the beginning of the loop. This
gives us an efficient translation of source-language iterators. (ACTRESS does not at
present handle non-tail-recursive occurrences of "unfold" .)

An abstraction is represented at run-time by a C structure with three fields: a
pointer to a C function (the translation of the incorporated action), together with
a datum and a set of bindings (the ones supplied to the incorporated action).

(1) [complete]
(2) [give d label # n]
(3) [the S#n]
(4) [bind k t o d]
(5) [the S bound to k]
(6) [store d in c]
(7) [the S stored in c]
(s) [A t and then A2]

(9) [unfolding A] ~.*

(10) I[unfold] -.*

Fig. 2. Some translation rules

102

d~ ffi [d] ; (associating n with d~)
~,~ di (where n is associated with d~)

bj = BIND (k , [d]) ;
"~ BOUND (k , b j) ;

s torage [[c]] = [4 ;
~* storage [[c]]
-,* [At]

[A2]
merge_bindings 0
li :
[d]
goto l i ; (provided that unfold is tail-recursive)

Appendix B shows an example MINI-A program (Figure 3), its corresponding
program action after sort checking (Figure 4), and its corresponding object program
(Figure 5). By comparing these, the reader should be able to see how the translation
is performed.

The run-time environment defines the data representation as a tagged union
of relevant data types (boo1, in t , etc). The tag allows run-time sort checks to
be performed where necessary. The run-time environment also contains functions
corresponding to data operations (such as SUH and PRODUCT), sort-checking functions,
auxiliary functions (such as BIND and BOUND), and storage management functions
(ALLOCATE_A_CELL and DEALLOCATE_THE_CELL).

6 C u r r e n t a n d F u t u r e D e v e l o p m e n t s

The preliminary version of ACTRESS has been used to generate compilers for:

�9 the small functional language NANO-ML, which has integers, higher-order func-
tions, let-expressions, and conditional expressions;

�9 the small imperative language MINI-A, which has integers, truth values, assign-
ment, if- and while-commands, procedures and parameters (see Appendix A).

Together, these languages are representative of the range of language concepts that
we currently handle.

The compilation of an example MINI-A program is shown in Appendix B (Fig-
ures 3-5). We have measured the running time of this program, and compared it
with the running time of a similar PASCAL program. The results are summarized in
Table 4. All figures have been expressed relative to the running time of the PASCAL
program, which was compiled using the SUN compiler pc. Thus the figures in Ta-
ble 4 may be interpreted as the performance penalty of a generated MINI-A compiler
relative to a hand-crafted compiler.

The performance penalty of 69 is very much better than the classical compiler
generators, but still not satisfactory. We are currently working on transformations

103

Table 4. Performance figures for the generated MINI-A compiler

Object program Running time (relative)

MINI-A object program 69
... after action transformations 27
... after action transformations and object-code improvements 2
PASCAL object program 1

that will dramatically reduce the performance penalty. We have performed these
transformations manually (but mechanically) on our example program. As shown
in Table 4, these transformations reduce the performance penalty to 2. Taking into
account the fact that the generated compiler's target language is C, rather than
machine code, this is very gratifying. The rest of this section summarizes the work
in progress.

Action notat ion was designed to be suitable for describing the semantics of a
wide range of programming languages: imperative and functional, statically and
dynamically typed, statically and dynamically scoped. In order to be as general as
possible, storage allocation, sort checking, and bindings are all dynamic. This is so
even for a source language that happens to be statically typed and scoped. Our
current work is directed to discovering and exploiting impor tant properties of the
source language from its semantic description, such as whether it is statically typed
and /o r statically scoped.

A hand-crafted compiler for a statically-scoped language, such as MINI-/~, would
eliminate all bindings. Consider the MINI-A declaration " c o a s t , n ,,~ 7": here the
identifier a is bound to a statically known integer value (7), so the compiler simply
replaces each applied occurrence of a by that value. Now consider the declaration
" c o n . ~ t r~ ,~ i + j " : here the identifier m is bound to a statically unknown integer
value, so the compiler generates code to compute the unknown value and store it
at a known address, and replaces each applied occurrence of m by a fetch from that
address. This method works uniformly for identifiers bound to known and unknown
values, variables, procedures, etc. Thus, whether identifiers are bound to known or
unknown data, their bindings can be eliminated from the object program.

The next version of the action notat ion code generator will apply this binding-
elimination transformation. In effect it will eliminate the declarative facet from the
program action. The action notation sort checker already supplies the necessary
information about which identifiers are bound to known and unknown data. For
example, if the sort checker infers the bindings { "n" : 7, "m" : integer}, we can tell
tha t n is bound to a known integer but m is bound to an unknown integer. In the
program action of Figure 4, the action "give 1000000 then bind "n" to the value" can
be eliminated, and the term "the value bound to "n replaced by "1000000".

Binding elimination is possible only if the source language is statically scoped.
We are formulating a test on the source language's semantics tha t will determine
whether the language is statically scoped or not. A simple sufficient condition is
tha t the "closure" operation is applied to every abstraction as soon as it is formed
- - closure abstraction (...) - - since the closure operation "freezes" the bindings used

"104

by the incorporated action. The MINI-A semantics of Appendix A clearly exhibits
static scoping.

Another problem that we are currently studying is storage allocation. The "al-
locate" action performs dynamic storage allocation, i.e., by default all variables are
heap variables. We want the generated compiler to use static or stack allocation
wherever possible, because these are inherently faster than heap allocation. More-
over, static and stack allocation assign a known relative address to each variable - -
unlike heap allocation - - so our binding-elimination transformation will work better.

We can classify the "allocate" actions by analyzing the flow of control. Action
notat ion makes this analysis rather easy. If an "allocate" action is performed exactly
once (i.e., neither selectively nor iteratively) in the program action, it is allocating a
global variable that can be statically allocated. If an "allocate" action is performed
exactly once inside an abstraction, it is allocating a local variable. All local variables
in a particular abstraction can be allocated together in a frame, and each of them
will have a known relative address. Any "allocate" action not so classified must be
presumed to be allocating a heap variable.

In the program action of Figure 4, the action "allocate an [integer] ceIr' is al-
locating a global variable. Thus it can be replaced by something like "give global
cell 0". The composite action "give global cell 0 then bind "x" to the cell" can now
be eliminated, and each occurrence of "the cell bound to "x replaced by "global
cell 0".

Allocating local variables together in frames is a necessary but not sufficient
condition for stack allocation. If abstractions are first-class values in the source lan-
guage, the frames themselves must be allocated in the heap. Thus we will have to
formulate a test on the source language's semantics to determine whether abstrac-
tions are first-class or not. The MINI-A semantics of Appendix A does in fact permit
stack allocation.

Binding elimination, combined with static and stack allocation, and another
t ransformation (transient elimination) not discussed here, will allow us to reduce
the performance penalty from 69 to 27 in the case of our example program.

The above may be viewed as transformations on the program action. Inspec-
tion of the object code reveals opportunities for improvement at that level too. At
present the object code contains many calls to trivial run-t ime functions, such as
NAKET~ITEGER, SUN, and PRODUCT, whose only purpose is to construct and operate
on tagged data. It will be straightforward to expand these calls into in-line code.
Furthermore, the code generator generates a run-t ime sort check only where there
is a risk of the sort check failing. If no run-t ime sort checks are generated, the code
generator should generate an object program in which da ta are untagged. The com-
bined effect of these simple improvements will be to reduce the performance penalty
from 27 to 2 in the case of our example program, as shown in Table 4.

Figure 6 shows the object code we obtained by manually (but mechanically)
performing all these transformations. It is quite similar to the object code of a
hand-crafted compiler.

As well as the efficiency of the generated compiler's object code, we are addressing
the efficiency of the generated compiler itself. If the source language is known to be
statically typed, there is no need to test at compile-time whether run-t ime sort
checks will be needed.

105

More importantly, at present every generated compiler incorporates the action
notation sort checker. The latter is very general but cumbersome, making three
passes over the (large) action tree, and employing unification. For a language with a
simple type system, such as MINI-A, a much simpler and more efficient sort checker
can be constructed.

We are examining afresh how we should process the given action semantics of
the source language s The existing actioneer generator accepts the given seman-
tics, warts and all. A re-designed generator will perform consistency checks on the
given semantics, and generate a sort checker specific to s as well as generating an
/~ actioneer. The generated L: sort checker will decorate the source program's AST,
employing a simple sort-checking algorithm if s is found to have a simple type sys-
tem. The generated/3 actioneer will then expand the decorated AST to a decorated
action tree. We estimate that these improvements would speed up the sort-checking
phase of the generated MINI-A compiler by a factor of about 10.

7 Conclus ion

Our work on action semantics directed compiler generation should be seen in the
context of the programming language life cycle [12]. Language development proceeds
in several stages: design, specification, prototyping, and compiler construction (not
necessarily in that order). We see action semantics as a means of integrating all stages
of language development. Its excellent pragmatic properties (being easy to write, to
modify, and to read) make action semantics highly suitable for documenting a new
and evolving language design. Its operational flavour and clean structural properties
(facets) make it suitable for generating prototypes and compilers.

Current work on semantics directed compiler generation seems to be concentrat-
ing on applying partial evaluation to denotational semantics. It is not clear how
successful this line of work will prove to be, given that the effectiveness of partial
evaluation in general depends critically on the style of the program being partially
evaluated. In any case, denotational semantics has poor pragmatic qualities as a
language development tool: denotational semantic descriptions of real programming
languages are notoriously hard to write, to modify, and to read.

Also worth mentioning here is Lee's "high-level semantics" [2]. This is a method of
constructing compilers using semantic algebras, which are not unlike action notation.
Using this method Lee has constructed compilers whose object code is excellent.
Unfortunately, the compiler writer has to design a new semantic algebra for each
source language, and must manually implement the translation from this semantic
algebra to the target machine code. We would classify high-level semantics as a
compiler description language, rather than as a true semantic meta-language.

To conclude, action semantics has opened up a rich field of ideas to be explored.
We have been able to exploit the structure of action semantics to build a working (but
primitive) compiler generator, in a comparatively short time. We intend to exploit
this structure further to analyse source languages in ways never before attempted
in any compiler generator. In short, we believe that a realistic semantics directed
compiler generator is now feasible.

106

References

1. D. F. Brown. Sort inference in action semantics. Research report, Department of
Computing Science, University of Glasgow, Scotland, 1992. In preparation.

2. P. Lee. Realistic Compiler Generation. MIT Press, Cambridge, Massachusetts, 1989.
3. P. D. Mosses. SIS - semantics implementation system, reference manual and user

guide. Departmental Report DAIMI MD-30, Computer Science Department, Aarhus
University, Denmark, 1979.

4. P. D. Mosses. Action Semantics. Cambridge University Press, Cambridge, England,
1992. In preparation.

5. P. D. Mosses and D. A. Watt. The use of action semantics. In M. Wirsing, editor,
Formal Description of Programming Concepts III, pages 135-163. North Holland, Am-
sterdam, Netherlands, 1987.

6. H. Mourn. An implementation of action semantics. Research report, Department of
Computing Science, University of Glasgow, Scotland, 1992. In preparation.

7. L. Paulson. A compiler generator for semantic grammars. PhD thesis, Stanford Uni-
versity, California, 1981.

8. D. A. Schmidt. Detecting global variables in denotational specifications. ACM Trans-
actions on Programming Languages and Systems, 7(2):299-310, April 1985.

9. D. A. Schmidt. Detecting stack-based environments in denotational definitions. Sci-
ence of Computer Programming, 11:107-131, 1988.

10. D. A. Schmidt and S. Even. Type inference for action semantics. In N. Jones, editor,
ESOP '90, 3rd European Symposium on Programming, pages 118-133, Copenhagen,
Denmark, 1990. Springer-Voting, Berlin, Germany. Lecture Notes in Computer Science,
Volume 432.

11. M. Wand. A semantic prototyping system. SIGPLAN Notices (SIGPLAN '84 Syrup.
On Compiler Construction), 19(6):213-221, June 1984.

12. D. A. Watt. Programming Language Syntax and Semantics. Prentice Hall International
Series in Computer Science. Prentice Hall, tIemel ttempstead, England, 1991.

A The Act ion Semantics of MINI-/k

MINI-A is a simple imperat ive language. I ts main features are integers, t ru th vM-
ues, assignment, if- and while-commands, procedures and parameters . The following
semantic description of MINI-A is precisely the input for the ACTRESS system (al-
though par ts of it have been omi t ted due to space constraints).

1 Commands

(1) e x a c u t e _ : : Command -> no% .

(2) execute [[s l:Iduntifier E:Exprussion]] =
e v a l u a t e E %hen s%ore the v a l u e i n %he c e l l bound %0 i d I .

(3) e x e c u t e [[CALL I : I d e n t i f i e r a:krgumQn%]] =
g i v e k r g u m e n t I t h e n
e n a c t (t h e a b s t r a c t i o n bound %0 id I u i~h t h e axgueen%) .

(4) e x e c u t e [[CSEq Cl:Comuand C2:Comaand]] =
e x e c u t e C1 and %hun e x e c u t e C2 .

(5) e x e c u t e [[LET D : D e r C:Comaand]] ffi
f u r t h o r m o r e e l a b o r a t e D

hence e x e c u t e C .

1 0 7

(6)

(7)

2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(S)

o..

(IS)

3

(I)

(2)

(3)

(4)

(S)

(6)

(7)

(S)

execu te [[IF E : E x p r e s s i o n Cl :Couuand C2:Counand]] =
evaluate E Shun
[execu te C1 e l se execu te C2 .

execu t e [[WNILE E : E x p r e s s i o n C:Counand]] =
u n f o l d i n g
I g v a l u a t e E t hen
[I I execu te C and t hen u n f o l d
I I e l s e o o i p l e t e .

E x p r e s s i o n s

evaluate . :: Expression -> ucs ,

e v u l u a s e [[l i T I : I n t e g e r]] = g i v e i n t e g e r V a l u a t i o n I .

o v a l u a s e [[B00L B:Boolean]] = g i v e b o o l e a n V a l u u t i o n B .

e v a l u a t e [[ID I : I d e n S i f i e r]] =
g i v e She v a l u e bound t o i d I or
g i v e she v a l u e s t o r e d i n t he c e l l bound $o i d I .

e v a l u a t e [[U|ARY O:Operasor E : E x p r e s s i o n]] =
eva luaSe E Shun app ly O .

e v a l u a t e [[BINAEu E l : E x p r e s s i o n O:Oporutor E 2 : E x p r e s s i o n]] =
J [e v a l a a t e E1 Shen g i v e She va lue l a b e l #1
I and
| I e v a l u a t e E2 t hen g i v e she v a l u e l a b e l | 2
shun app ly 0 .

app ly _ : : Opera to r -> ucS .

app ly [[ADD]] = g i v e s u n (t h e v a l u e t l , t h e v a l u e # 2) .

app ly [[lOT]] = g i v e noS(the v a l u e) .

Declarations

e l a b o r a S e : : D e c l a r a t i o n -> a c t .

e l a b o r a t e [[CDNST I : I d e n t i f i e r E : E x p r e s s i o n]] =
e v a l u a t e E short b ind td I So She v a l u e .

e l a b o r a t e [[Vik I : I d o n s i f i e r T:Type]] =
u l l oca t eYorTypo T then b ind i d I so she c e l l .

elaborate [[P~OC I:Identifier F:FornulParaleser C:Counand]] =

bind id I So closure absSraction

[furthermore bindPara|eSer F

hence execute C .

elaborate [[DSEq Dl:DeolaraSion D2:Declurasion]] =

elaboraSe DI before elaboraSu D2 .

allocaseForType . : : Type -> a c t .

allocaSeForType [[I|TTYPE]] = allocase an [inSeger] cell .

allocaseForType [[BOOLTYPE]] = allocate a [truth-value] cell ,

108

B The Generated M[NI-A Compiler

Consider the MINI-/~ source program in Figur e 3. Applying the parser, actioneer,
and sort checker to this source program, we obtain the p rogram action shown in
Figure 4. Applying the code generator to this action, we obtain the object code
shown in Figure 5. Figure 6 shows the improved object code we would obtain after
performing the t ransformations discussed in Section 6.

l e t
const n ~ 1000000;
va t x : I n t e g e r

in
begin

X := n;
.hile x > 0 do x := x - I

end

F|g . 3. A MINI ~ loop program

Ifurthermore
lllgive 1000000 then bind "n" to the value

llbefore
lilallocatean [integer]cell then bind "x" to the cell

hence
Igive the value bound to "n" then store the value in the cell bound to "x"

and then
lunfolding
[llllgive the value stored in the cell bound to "x"

[[[[[then give the value label #i

llland
[[[[give 0 then give the value label #2
[]then give isGreaterThan(the value#1,the value#2)

[then
lllllllgive the value stored in the cell bound to "x"
[[[[[llthen give the value label #I

[[[[[[and
[][ll]Igive I then give the value label #2
[[[[]then give difference(the value#1,the value#2)

i][]]then store the value in the cell bound to "x"

[[[[and then unfold

[ilelse complete

Fig. 4. The program action for the loop program

109

#include "runtime.c"
DATUM_dl,_d2,_d3,_d4;

BINDINGS _bl,_b2;
in t main () {

_dl ffi _MAKE_INTEGER (1000000); _bl ffi _BIND ("n",_dl);

_dl ffi _ALLOCATE_A_CELL O; _b2 = _BIND ("x",_dl);
_bl ffi _OVERLAY_BINDINGS (_bl,_b2);

_dl = _BOUND ("n",_bl); storage[(_BOUND ("x",_bl)).datmn.cell] ffi _dl;
_repeat_l:

_dl - storage[_BOUND ("x",_bl).datum.cell];

_d2 = _MAKE_INTEGER (0); _d3 = _IS_GREATER_THAN(_dl, _d2);
if (_d3.datum.truth_value =ffi true)

_dl = storage[_BOUND ("x",_bl).datum.cell];

_d2 - _MAKE_INTEGER (1); _d4 - _DIFPERENCE(_dl, _d2);

storage[(_BOU~D ("x" ,_b l)) .da tum.ce l l] = _d4; goto _repeat_l ; }
e lse { ; };
ex i t (0);

_failure_O:
exi t (1);

}

Fig. 5. Object code for the loop program

#include "runtime-notags.c ' ,
DATUN_dl;
in t main () {

s to rage [O] . in t ege r = 1000000;
_repeat_l:

_dl.truth_value = storage[O].integer > O;
if (_dl.truth_value) {

storage[O].integer ffi storage[O].integer - I;
goto _repeat_l; }

else { ; };

exi t (0);
_failure_O:

ex i t (1);
}

Fig. 6. Improved object code for the loop program

