
Session VIII: Multimedia Abstractions II
Chair: Venkat Rangan, University of California at San Diego

The eighth session was devoted to new abstractions for programming multimedia
applications, and tools for specifying their execution and presentation. Programming
abstractions for multimedia have not received much attention before, and are be-
coming increasingly important as multimedia applications grow in both complexity
and number.

In the first paper of this session, Simon Gibbs of the Universite de Geneve together
with Christian Breiteneder, Laurant Dami, Vicki de Mey, and Dennis Tsichritzis
presented "A Programming Environment for Multimedia Applications." The envi-
ronment consists of two levels: A systems level environment for handling synchroni-
zation between media, and a user level environment for specifying media
presentation.

The systems level environment encapsulates hardware dependencies, and enforces
synchronization between media objects which can be sources, sinks, or filters, de-
pending on whether they produce or consume media values, or both. The user level
environment provides an object-oriented framework in which, application designers
can specify in a scripting language the composition, presentation, and communication
among media objects. Sequences of presentations constitute activities, and multiple
activities can be executed sequentially, concurrently, or periodically.

The second paper was by Gerold Blakowski, Jens Htibel, and Ulrike Langrehr of the
University of Karlsruhe ("Tools for Specifying and Executing Synchronized Multi-
media Presentations"). Gerold presented tools for managing synchronized presenta-
tion of multimedia in distributed heterogeneous environments.

Users can define objects of type Medialnformation, Presentation, or Transport. A
graphical synchronization editor helps users to specify both intra-object and inter-
object synchronization using a context-free grammar based description language.
From these synchronization specifications, the synchronizer constructs a presentation
thread of all the media objects, using which it enforces the synchronization relation-
ships. The synchronizer also takes actions such as pause/wait or acceleration/skip in
order to speed up a lagging media presentation or slow down a leading media pres-
entation.

The entire media synchronization management system including the graphical ed-
itor is being designed as part of the MODE project in the NESTOR authoring-
learning environment being developed at the Universities of Karlsruhe and
Kaiserslautern.

The last paper by Ralf Steinmetz and J. Christian Fritzsche of IBM European Net-
working Center and Johann-Wolfgang-Goethe University of Frankfurt ("Ab-
stractions for Continuous-Media Programming"), presents an interesting new concept
in which continuous media are treated as data types within programming languages.

264

Christian elaborated that earlier approaches commonly use multimedia libraries
and toolkits for removing hardware and implementation dependencies of multimedia
applications. However, neither libraries nor toolkits permit full integration of multi-
media into programming environments; the encapsulation they provide frequently
comes at the expense of performance, and they are not efficiently supported by the
operating system. Simply adding abstract data types to programming languages does
not suffice to adequately express synchronization, communication, and parallelism in
multimedia applications.

The authors propose rather to use media as fundamental data types within high-
level languages, thereby greatly enhancing the expressive power within multimedia
applications. Using an object-oriented language, starting with media devices and their
data units as fundamental objects, higher-level media abstractions are built using
class hierarchies. Media objects can also have a lifetime, in which case they become
active objects.

In summary, this session touched upon two significant aspects of multimedia systems:
synchronization and programming abstraction. Interesting questions were raised as
to whether synchronization mechanisms can assume the existence of globally syn-
chronized clocks or not. Another interesting issue was whether media such as video
and audio must be regarded as composed of frames and samples, or higher-level ob-
jects such as images and phonemes. These topics will continue to assume increasing
importance as the use of computer systems to support digital continuous media be-
comes more and more pervasive.

A Programming Environment for
Multimedia Applications
Simon Gibbs, Chris t ian Breiteneder,

Lauren t Dami, Vieki de Mey, Dennis Tsiehritzis

Univers i td de Gen~ve I

Abstract
A programming environment for the development of multimedia applications is described. The
environment is based on a two-level architecture: a systems-oriented framework-level concerned
with hardware control and synchronization and a user-oriented scripting-level concerned with
presentation specification. The two levels are outlined.

1. Introduction
It is perhaps self-evident that programming environments providing specific support for multi-
media would facilitate the development of multimedia applications. Looking more closely,
however, one can discern many reasons why such environments are needed:

First, multimedia involves concepts from audio recording, video production, animation, and
music - concepts that are novel to many programmers. Additionally, multimedia operations of-
ten involve special hardware, leading to lack of portability and longer development times. In-
formation about media properties and hardware dependencies should be incorporated within the
programming environment.

Second, the equipment used by the traditional "composers" of multimedia (video professionals,
music editors, etc.) is relying more and more on digital technology and consequently becoming
more and more programmable. Until fairly recently, multimedia equipment could be viewed as
interconnectable hardware "boxes" (recorders, mixers, monitors, etc.). Now, however, with
software controllable components playing a greater role in both producing and transforming
multimedia data, such a model breaks down. We must recognize that software-related concepts,
such as process and operation, are an integral part of multimedia and a general environment for
multimedia must allow for the incorporation of software-based components with the traditional
hardware-based components.

A third reason for considering a multimedia programming environment is that complex user in-
terfaces, such as virtual realities can be viewed as multimedia applications. Yet such applica-
tions, because of novel interface devices (e.g., stereoscopic displays, head-position and orien-
tation trackers) and the need for real-time performance, are difficult to construct with current
programming tools.

Finally, we hope that multimedia programming environments, and their associated concepts,
may lead to a general model for describing and developing a wide range of multimedia appli-

1. Authors" address: Centre Universitaire d'Informatique, 12 rue du Lac,
CH-1207 Geneva, Switzerland.
Email: {simon, chris, dami, vicki, dt}@cui.unige.ch
Tel: +41 (22) 787.65.80
Fax: +41 (22) 735.39.05

266

cations. At present there seems to be a tendency to develop multimedia applications in an ad
hoc one-of-a-kind fashion - so, we believe, a unifying conceptual model is needed.

This paper describes a programming environment for developing multimedia applications. The
requirements for the environment are that it:

�9 be based on a simple conceptual model of multimedia functionality, yet one which is
general enough to capture the variety of multimedia, including sound, video, music, and
animated sequences,

* be easy to use and not require expertise in multimedia technology, yet be open and ex-
tensible so that more experienced programmers are not constrained,

�9 encapsulate hardware dependencies,

�9 allow complex multimedia effects, for example the synchronization of an audio and vid-
eo signal, or the juxtaposition of two video signals.

One approach for such an environment is a two-level architecture consisting of a system-orient-
ed layer and a user-oriented layer. The first, called the "framework level," is concerned with
hardware control and synchronization, the second, called the "scripting level," is concerned
with presentation specification.

2. The Framework Level - Mult imedia Objects

The framework level has been described elsewhere [5][6], here we provide just a summary 1.
The starting point is the use of data types to characterize media information:

l)etinition: A media value, v, of data type D, is a (finite) sequence d i, where the encoding and
interpretation of the d i are governed by D. In particular D determines how the presentation
of v (the physical realization of v, within some medium, over some time interval) can be
obtained from the d i. Presentation of v takes place at a rate r D, the data rate of D. This rate
indicates the number of sequence values presented per second.

Media values are related to media objects, these are defined as follows:

Definition: A media object is an active object which produces and/or consumes media values
(of specified types) at their associated data rates.

Active objects, like ordinary or passive objects, have state (instance variables) and behavior
(methods). In addition, each active object is associated with a process which may be running
even if no messages have been sent to the object.

Each media object can be viewed as a collection of ports. A port has a (media) data type and is
used either for input or output. Media objects are divided into three categories: sources, sinks,
and filters. A source produces media values, a sink consumes values, and a filter both produces
and consumes.

Informally, multimedia values are aggregates of media values, while multimedia objects are ag-
gregates of media objects. How these aggregates are formed is discussed in section 2.2.

Media objects and media values make use of two inheritance hierarchies. For example, the class
I_aserDisePlayer would be (ultimately) a subclass of MediaObjeet, similarly LaserDiseVideo would
be (again ultimately) a subclass of MediaValue.

1. It should perhaps be pointed out that there has been a change in terminology from refer-
ences [5] and [6]. In particular, what were previously called Multimedia, MultimediaObject and
CompositeMuttimediaObject are now MediaValue, MediaObject and MultirnediaObject respectively.

267

2.1 Operations on Media Objects
All classes of media objects inherit methods from the class ActiveObject and the class MediaOb-
jeet. A schematic and partial C++ specification of these classes is:

class ActiveObject {
public:

bool
bool
bool
bool

};

StartO;
StopO;
Pause0;
Resurne0;

class MediaObject {
public:

//
//temporal coordinates
//
objectTime
objectTime
worldTime
worldTirne
objectlnterval
worldlnterval
//
//composition
//
void
void
void
MultimediaObject
//
//synchronization
//
void
woddlnterval
worldl nterval
SyncMode
void
void

};

CurrentObjectTime0;
WorldToObject(worldTime);
CurrentWorldTime0;
ObjectToWorld(objectTime);
WorldToObjectl(worldlnterval);
ObjectToWorldl(object Interval);

Translate(worldTime);
Scale(float);
Invert0;
Parent0;

Sync(worldTirne);
Synclnterval0;
SyncTolerance0;
SyncMode0;
Cue(woddTime);
Jump(worldTime);

At any time an ActiveObject is in one of three states: IDLE, RUNNING or SUSPENDED. The meth-
ods of ActiveObject are used to change state.

The class MediaObject makes use of two temporal coordinate systems: world time and object
time. The origin and units of world time are set by the application. The origin would normally
be set to coincide with the beginning of presentation activity. World time would run while the
activity is in progress, and be stopped or resumed as the activity is stopped or resumed.

Object time is relative to a media object. In particular, each object can specify the origin of ob-
ject time with respect to world time and the units used for measuring object time. (Normally
these units relate to the data rates of the object's ports.) Furthermore, each object can specify
the orientation of object time, i.e., whether it flows forward (increases as world time increases)
or backwards (decreases as world time increases).

268

2.2 Composition and Synchronization of Multimedia Objects
The framework level provides a technique for aggregating media objects. This technique, called
temporal composition, is used to form multimedia objects.

The motivation for temporal composition comes from the need to model situations where a
number of media components are simultaneously presented. Television and fdms are two obvi-
ous examples, each containing both audible and visual components.

Definition: A multimedia object is a media object containing a collection of component media
objects and a specification of their temporal and configurational relationships.

The two groups of relationships specified by a multimedia object are used for different purpos-
es. In particular:

�9 temporal relationships - indicate the synchronization and temporal sequencing of com-
ponents.

~ configurational relationships - indicate the connections between the input and output
ports of components.

A composite, e, maintains synchronization by attempting to assure
Abs(c.CurrentWorldTime0 - q.CurrentWoddTime0) < ci.SyncToleranee 0

for each activated component c i. However, because of the varying nature of components, mul-
timedia objects must be flexible and support a variety of synchronization techniques. In the
framework, each component has a synchronization mode attribute. Depending on the value of
this attribute, which can be queried by the method ~/neMode, the multimedia object adopts dif-
ferent approaches to synchronization. Presently there are four synchronization modes:
NO_SYNC, DEMAND_SYNC, TEST_SYNC, and INTERRUPT_SYNC (see [6] for further details).

3. The Script Level - Scripts and Activities
In the previous section we discussed techniques to combine media objects in order to obtain
more elaborate behavior. Such composition techniques are very powerful but their proper ap-
plication depends on two important constraints. First, the objects to be composed have to be
well understood both individually and in partnership with other relevant objects. Second, com-
position requires programming, i.e, it is both tedious and error prone. In this section we discuss
a higher-level way to specify composites called "scripting" [7]. Scripting is based on a scripting
model which defines the allowed ways that objects can be composed. In this manner many of
the details of the composition do not have to be explicitly stated. In addition, scripting smooths
over certain incompatibilities between objects and allows the composition of objects which
have not been a priori designed to work together.

We now show how the notion of scripting can be applied to multimedia. We first provide a def-
inition of "script" for the multimedia programming environment:

Definition: A script is an instance of a script class. Script classes are specializations of the class
of MultimediaObject.

Scripts differ from multimedia objects in that there are constraints on the types of components
allowable within a script and, possibly, constraints on their configuration. These constraints are
part of the specification of script classes.

A scripting language can be used to specify scripts. Interpretation of such a language relies on
the scripting model. For multimedia, the scripting model contains:

269

1. multimedia hierarchies
The scripting model knows about MediaValue and ldediaObject classes and their respec-
tive subclass hierarchies.

2. connection types
We have not discussed component connections in detail, but the framework level sup-
ports a number of different types of connections. Examples are comlections correspond-
ing to Communication by message passing, buffering, or physical cable.

3. ports
For each media object class the scripting model contains port descriptions. A port de-
scription identifies whether the port is for input or output, the media data type of the
port, the connection types which can be attached to the port, and whether the port ac-
cepts multiple connections.

4. object interfaces
Part of the interface of a media object is only used within the framework level whereas
other parts are available for scripting (these correspond to the FII or framework internal
interface and the FEI or framework external interface described in [3]). The scripting
model identifies the FII and FEI for each media object class. For instance, "temporal
transformations" (e.g., the Scale and Translate methods) belong to the FEI for all media
object classes, while synchronization methods belong to the FII.

5. script membership constraints
The scripting model contains the constraints on component types for the various script
classes.

6. script configuration constraints
Script classes may specify constraints on the configuration of components and connec-
tions within their instances. This information is part of the scripting model.

The scripting language contains two main constructs: scripts themselves and activities. A script
is specified by combining activities; an activity, in turn, is either a script or a media object.
(Consequently a script reduces, at the framework level, to a multimedia object.) There are three
operators used to combine activities:

�9 a 1 >> a 2 : sequential execution. Activity a 2 will be scheduled after the completion ofa 1.

�9 a 1 & a 2 : parallel execution. Activities a 1 and a 2 start together.

�9 n*a : repeated execution. Activity a is repeated n times.

Examples of scripting facilities are described in [1] [2][4].

4. Conclusion
The above has outlined an approach for constructing an environment for programming multi-
media applications. The environment contains two layers: a system-oriented layer consisting of
an object-oriented class framework, and a user-oriented layer based on a scripting language. At
the moment we are refining the environment's design by developing a demanding "driver" ap-
plication [8].

270

References
[1] Dami, L, Flume, E., Nierstrasz, O. and Tsichritzis, D. Temporal Scripts for Objects. InAc-

tive Object Environments, (Ed. D. Tsichritzis) Centre Universitaire d'Informatique, Uni-
versit6 de Gen~ve, 1988.

[2] Dami, L. Musical Scripts. InActive Object Environments, (Ed. D. Tsichritzis) Centre Uni-
versitaire d'Informatique, Universit6 de Gen~ve, 1988.

[3] Deutsch, L.P. Design Reuse and Frameworks in the Smalltalk-80 System. In Software Re-
usability, VoL II, (Eds. T.J. Biggerstaff and A.J. Perils) ACM Press, 57-71, 1989.

[4] Fiume, E., Tsichritzis, D., and Darni, L. A Temporal Scripting Language for Object-Ori-
ented Animation. Proc. Eurographics'87, North-Holland, 1987.

[5] Gibbs, S. Composite Multimedia and Active Objects. Proc. OOPSLA '91, 97-112.
[6] Gibbs, S., Dami, L., and Tsichritzis, D. An Object-Oriented Framework for Multimedia

Composition and Synchronisation, Eurographics Multimedia Workshop, Stockholm,
1991.

[7] Nierstrasz, O., Dami, L., de Mey, V., Stadelmann, M., Tsichritzis, D., and Vitek, J. Visual
Scripting: Towards Interactive Construction of Object-Oriented Applications. In Object
Management, (Ed. D. Tsichritzis) Centre Universitaire d'Inforrnatique, Universit6 de
Gen~ve, 1990.

[8] Tsichritzis, D. and Gibbs S. Virtual Museums and Virtual Realities. Proc. of the Interna-
tional Conference on Hypermedia and Interactivity in Museums, 17-25, 1991.

