
Session VII: Multimedia Abstractions I

Chair: Jonathan Rosenberg, Bellcore

The session "Multimedia Abstractions I" comprised three presentations about ab-
stractions that provide a framework for supporting software that manipulates digital
audio and video. These abstractions serve the same purpose as existing system ab-
stractions, such as I/O libraries and windowing systems. They hide the complexity
of underlying hardware and software and provide organized mechanisms for per-
forming common manipulations. These abstractions also ease the design, implemen-
tation and debugging of software and promote portability. As we begin to see
progress on the fundamental systems issues for supporting digital media (such as op-
erating systems and networks), we can expect such multimedia abstractions to be-
come more important.

The first presentation was by David Anderson from the University of California at
Berkeley ("Toolkit Support for Multiuser Audio/Video Applications," David
Anderson and Pamela Chan). David discussed COMET, an extensible toolkit pro-
viding a set of abstractions designed for distributed, multi-user applications that use
continuous digital media. An example application is a teleconferencing system that
provides multiple users with video, audio and graphics communications.

The set of abstractions provided by COMET is implemented by a set of object-
oriented classes. There are classes for abstract I/O devices and audio mixers and a
mechanism for programs to link objects of these classes to form the nodes of a graph.
It is the specific linking of objects that defines the architecture of an application.
Once an application has created and linked objects as desired, the application calls a
COMET-supplied setup routine. This routine realizes the graph by creating processes
and establishing communications as necessary.

In COMET, nodes of the graph must know about their neighbors to allow the
calculation of delay requirements and the determination of data conversions. The
nodes communicate this information among themselves by obeying a set of con-
ventions defined by COMET. The extensibility of COMET comes from allowing
programmers to define new classes and include objects of these classes within the
graph. As long as the objects obey the communications conventions, they participate
as full-fledged COMET objects.

Data conversions along a path are needed to match the source data format to the
capabilities of processing and presentation devices. For example, an input source
might provide a stereo audio data stream, while the system on which it will be played
supports only mono audio. In this case, the stream must be converted from stereo to
mono before it enters the speaker. The places at which data conversions are per-
formed is important because they determine the delays along paths and the amount
of network traffic.

228

The second presentation was by Duane Northcutt of SUN Laboratories ("System
Support for Time-Critical Applications," J. Duane Northcutt and Eugene M.
Kuerner). Duane began his presentation by giving his personal views about the state
and future of multimedia. In his view, multimedia is currently a lot of hype with little
substance. He suggested that multimedia was the application area that would evolve
to support what people will do with the next generation of workstations. What will
people be doing with these workstations? Duane believes that we will use the ma-
chines primarily to support communications, not to support computation as is done
today.

The bulk of Duane's presentation was about abstractions for supporting digital
media within a workstation. The major change required is the introduction of time
as a first-class notion within workstation operating systems. To this end, Duane and
his colleagues are working on a high-level operating system model for supporting
time.

An operating system for supporting multimedia is composed of two parts. The
"kernel" of the operating system provides fundamental resource management for the
machine (such as bus access scheduling and process allocation). Sitting on top of this
is the "system," which augments the kernel's capabilities to provide appropriate
multimedia support to user processes. It is, however, important to note that the sys-
tem level is not expected to be exported directly to application programs. Rather, li-
braries will be built to present a more appealing interface to the machine's
capabilities.

A central notion for the system level is resource management, which must be based
on time constraints to support multimedia. This will require new operating system
abstractions, Duane made an analogy to network support in operating systems,
which necessitated new abstractions, such as ports and sockets.

In supporting time, the researchers feel it is necessary for the definitions of time
constraints to be modular. This is necessary to isolate the effects of constraints to
make their implementation more manageable. In addition, this modularization aids
software reuse. Furthermore, they decided to concentrate all notions of time within
the new programming abstractions as opposed to distributing the mechanisms
throughout the operating system interface. This avoids the need to augment existing
operating system functions with additional parameters to express time constraints.

Duane closed by stating that a user-level implementation of the system exists and
a kernel-level implementation has begun.

The third presentation was by Daniel Ingold of ETH in Zurich ("An Application
Framework for Multimedia Communications," Stefan Frey and Daniel Ingold).
Daniel discussed the design of an object-oriented framework to support multimedia
applications. This work is part of the ETHMICS project, which is building a testbed
for integrated multimedia communications. Their design provides abstractions for
controlling multimedia devices, signaling among such devices: and controlling the
presentation of media.

The design provides an object hierarchy rooted at the class Stage, which defines a
means for signaling and event propagation among objects. A tree of Stage objects
controls the multicasting of a single media stream. The branches of the tree are made
up of alternating objects of class Device and Channel.

229

The Device class specifies common properties of physical resources such as input
and output actions. A Device instance connects an incoming Channel to an outgoing
Channel. The Device class provides methods for specifying bandwidth demands and
jitter requirements.

Device objects, used to connect Channel objects, support 1-to-many transmission
of a single medium stream. Device objects are responsible for requesting bandwidth
and propagating information concerning synchronization requirements.

The mapping from an object to its presentation is specified by MediaView objects.
For example, the VideoView subclass defines the destination area for video on a dis-
play and allows the video to be scaled and moved as any window. As another sub-
class of MediaView, the AudioControl object provides an interface for audio
manipulations as well as for mixing multiple audio channels.

Daniel concluded his presentation by presenting an example object hierarchy that
implements a simple picturephone application. This application has been partially
implemented.

At the end of the presentations, there was an open discussion among the workshop
attendees. The discussion was sparked by Ralf Guido Herrtwich's comment that
dataflow models appear to be the appropriate basis for multimedia abstractions, but
it was not clear how to turn such models into efficient low-level scheduling decisions.

One group of participants suggested that it was more important to define proper
abstractions than to worry upfront about performance. Someone commented that
this was an instance of a common, but mistaken view: if one gets the abstractions
correct, then appropriate performance "magically" follows. The response to this was
that there is no substitute ~for basic engineering competence. If an abstraction cannot
be implemented efficiently, it is due to poor design engineering.

This led to a heated discussion about the importance of obtaining experience from
building applications as opposed to pushing on fundamental technology. This is the
classic "technology push" versus "demand pull" argument. On the side of demand
pull, it was argued that proceeding without applications experience was likely to
produce "solutions looking for a problem," technology with no apparent practical
application. The other side, technology push, stated that multimedia was a field that
was fundamentally limited by technology. Therefore, it was virtually impossible to-
day to build many of the promising multimedia applications, or even to conceive of
them given today's technology.

T O O L K I T SUPPORT FOR MULTIUSER AUDIO/VIDEO APPLICATIONS

David P. Anderson
Pamela Chan

Computer Science Division, EECS Department
University of California at Berkeley

Berkeley, California 94720

October 25, 1991

ABSTRACT

Comet is a UNIX/C++ toolkit for writing programs that involve multiple
users and that use digital audio and video. Comet provides a simple pro-
gramming interface: the application builds a graph of objects represent-
ing speakers and microphones, mixers, files, and so on. Comet then real-
izes the graph by creating processes to handle mixing and file I/O if
needed, and linking them by network connections to audio/video I/O
servers. In addition, Comet addresses the interrelated issues of client re-
quirements and resource management. It determines delay and
throughput requirements, process placement, and data type conversion;
it deals with resource managers on the application's behalf. These
mechanisms are based on a negotiation protocol among the components
of the object graph.

1. INTRODUCTION

"Multiuser CM applications" are those that 1) use audio/video media (continuous
media, or CM), and 2) are run concurrently by multiple users at different locations,
allowing real-time interaction and collaboration. Such applications typically provide
conferencing (each participant hears and perhaps sees the other participants) and may
also involve storage and playback of CM material. However, applications may differ in
their system-level requirements and preferences: For example, distributed music rehear-
sal needs low delay while distributed music recording needs high data quality and low
loss.

Integrating CM data in the standard framework (operating system, networks, file
system, user programs) provides many advantages, but it makes muttiuser CM applica-
tion difficult to develop. First, they are highly distributed: a typical application might
involve a graphical user interface program running on each user's workstation, servers on
each workstation for discrete- and continuous-media I/O, processes for audio mixing and
file I/O, and a central process to manage conference membership. Second, the applica-
tion must determine its performance requirements and inform the underlying system,
perhaps to reserve resources. Finally, since many implementation details depend on
hardware and network properties (such as the availability of multicas0, it is hard to write

231

portable programs.

We believe that many of the implementation issues of multiuser CM applications
should be handled by a software layer that we call a multiuser CM toolkit. Applications
based on such a toolkit specify the desired CM functionality in high-level terms, and the
toolkit manages the details. In a distributed system whose components provides real-
time semantics (network channels, CPU scheduler, real-time file systems, etc.) the CM
toolkit layer acts as an "overseer" that interacts with these system components to deter-
mine an application's implementation structure and the corresponding performance
requirements.

As a proof of concept and to explore the issues, we are developing a multiuser CM
toolkit called Comet. Comet supplies a set of C++ classes representing abstract CM
components: microphones, speakers, files, audio mixers, and so on. The application
creates instances of these classes and links the objects to form a dataflow-style graph.
Comet then implements this abstract graph by 1) creating processes, if needed, to handle
CM data, and 2) connecting existing server processes to each other and to the new
processes. It determines the delay and throughput requirements of each component, and
informs resource managers accordingly. Hardware and network properties are encapsu-
lated within Comet classes, so they are transparent to the programmer and can be
changed easily.

A prototype version of Comet has been completed, and has been used as the basis
for a transcribed conferencing application. The implementation of Comet uses ACME
[2], a server that provides shared network-transparent access to workstation CM I/O dev-
ices. Comet also uses the IPC and I/O multiplexing features of InterViews [5], a C++
toolkit for X l l . However, the principles of Comet do not depend on ACME or Inter-
Views.

2. COMET FEATURES

2.1. Master/Slave Architecture

Comet applications have a master/slave structure. Each participant runs a separate
instance of the slave program, and there is a single instance of the master program. The
master program can run as a daemon at a well-known host, or can be run on demand by
the slave program. The hosts must run some version of UNIX, but need not share a com-
mon file system; Internet TCP connections are used for all communication.

The slave program provides the user interface (handling mouse/keyboard events and
generating window system requests) while the master program maintains global state and
issues CM-related commands to Comet. In a basic conferencing application, for exam-
ple, the slave provides mouse-based controls for joining and leaving conferences, while
the master maintains conference membership and tells Comet how CM I/O devices and
files are to be interconnected. In a collaborative editing program, editing may be local to
the slave, but any globally visible changes must be propagated through the master.

Communication between the master and the slaves is done using remote procedure
calls (RPCs). RPCs may be initiated at either end, and include application-defined RPCs
as well as Comet's internal RPCs. The master and slave programs are single-threaded.
Comet uses the InterViews Dispatch library to multiplex among I/O sources (window

232

system events and RPCs on the slave, RPCs from multiple slaves on the master).

2.2. Continuous Media Objects

The master program manages the continuous media (audio/video) components of
the application. The Comet toolkit on the master side provides a set of C++ classes,
derived from a base class CM_..NODE, that represent these components. The current set
of CM._NODE types is as follows:

�9 MICROPHONE and SPEAKER represent CM I/O devices. These devices are
' 'abstract" in the sense that several of them (perhaps from different Comet applica-
tions) may be mapped simultaneously to the same physical I/O device. Constructor
arguments specify the slave where the device is located.

�9 INPUT_FILE and OUTPUT_FILE represent disk files storing CM data. Con-
structor arguments specify the file name, the slave whose file system stores the file,
and (for 0UTPUT FILE) CM data type preferences.

�9 AUDIO_MIXER represents a component that takes in N audio streams and generates
as output the sums of each N-1 of these streams, as well as the sum of all N. Each
input and output has a corresponding PORT (see below).

�9 SOURCE_PROCESS, SINK_PROCESS, and FILTER PROCESS represent
processes executing user-defined programs that act as a CM-data source, sink and
filter respectively. Constructor arguments specify the program name and the slave
where the program is stored.

2,3. The CM._NODE Graph

A PORT object represents a source or sink of CM data. A CM._NODE has one or
more associated PORTs. The operation

p->join(PORT* q)

creates an (abstract) connection from output port p to input port q. Each port can have
at most one such connection.

Using j o i n () , the application builds a directed graph of CM_NODEs. When the
CM_NODE graph has been constructed, the application calls s e t u p () on any node of
the graph. This call causes Comet to realize the graph (see Section 3) and starts the flow
of data between the devices, processes, and files represented by the graph.

The CM NODE graph may be modified (by adding or removing nodes or links) dur-
ing program execution. For example, as new participants join a conference, new
MICROPHONE and SPEAKER objects are created and connected to the
AUDIO MIXER. After an addition is complete, the application must call setup () on
a CM_NODE in each modified subgraph.

3. IMPLEMENTATION

Comet must convert a graph of CM NODEs (which are simply C++ objects in the
master program) to a set of processes and network connections that realize the graph.
Our approach is modular: each CM NODE manages its own implementation (this facili-
tates adding new CM NODE types)-- To implement itself, a CM NODE needs informa-
tion about its neighbor-s. For this purpose, Comet defines a C++ interface, which we call

233

the "CM NODE Protocol ''1, between CM NODES.

The CM NODE Protocol addresses four issues: 1) whether data streams require low
delay, 2) the data representation on each stream, 3) the message size on each stream, and
4) connection establishment. The protocol defines a set of functions that each
CM NODE must provide. These functions, enumerated in the following sections, are
implemented differently in each derived class of CM__NODE.

3.1. Delay Bound Determination
If end-to-end delay exceeds 200 milliseconds or so in a conference application,

conversation becomes difficult. When CM data is being written to a file, however, the
end-to-end delay is unimportant. We define a CM data stream to be low-delay if it
involves data being sent between human users (e.g., from a microphone to a speaker) and
high-delay otherwise. For many CM components, the optimal handling of CM data
depends on whether it is low- or high-delay: Low-delay streams must be handled by
high-priority processes and cannot tolerate the delay of buffering, while high-delay data
streams can be buffered and can tolerate high processing delays.

The CM NODE Protocol allows each CM NODE to learn whether the data streams
it handles are low- or high-delay. The function f r o m r t s o u r c e (PORT*) returns
T r u e if the data stream from the given output PORT includes data originating from a
"real-t ime" source (a CM input device). Similarly, t o r t s i n k (PORT*) returns
T r u e if the data stream entering the given input PORT is destined for a real-time sink (a
CM output device).

The implementation of these operations is type-specific. For example,
AUDIO_MIXER implements t o r t s i n k () by examining the outputs to which the
given input stream contributes, calling t o r t s i n k () on each of the input ports con-
nected to these outputs, and returns T r u e if any of these calls returns T r u e . The
result is then cached in the FORT object for subsequent calls (this is necessary to avoid
infinite recursion).

3.2. Data Type Negotiation
The " type" of an audio stream is determined by the number of samples per second,

the number of bits per sample, and possibly a logarithmic compression of samples. For
video, the type includes the image size, the number of frames per second, and so on. We
assume that

�9 There is a fixed finite set of CM data types.

e There is a partial order < on the set of data types. S < T means that S has less
information, and typically a lower data rate, than T.

�9 For any types S and T there is a least type U =sup(S, T) such that U > S and
U>T.

Some pairs of types, such as 44 KHz mono and 22 KHz stereo, may be incomparable; the
preference of one over the other is then application- or user-specific (see Figure 1).

i We call it a "p ro toco l " because function calls must be made in a certain order;, it is not a network protocol.

234

The CM NODE Protocol allows CM._NODEs to negotiate the data types of the CM
data streams that connect them. The goals of the negotiation is to find an assignment of
types to streams that 1) is feasible (the conversions are implementable by the
CM__NODEs); 2) provides the maximum possible quality at the outputs; and 3) minimizes
network traffic by doing conversions as far "upstream" as possible.

A CM.._NODE provides functions

TYPE_SET feasible_types (PORT* p) ;
TYPE_LIST prime_types(PORT* p);

where p is an input PORT of the CM_NODE. feasible_types () returns the set
of types the CM_NODE is able to accept on the port. p r i m e t y p e s () returns the
list of feasible types that have no redundant information; i.e., for which no lesser type
will produce identical output. The list is sorted by decreasing preference, allowing the
CM N O D E tO rank incomparable types.

For an output device such as SPEAKER, p r i m e _ t y p e s () depends on the speed
and width of the DAC. For example, the prime types for a 22 KHz monoaural DAC
might be 22 KHz mono and 8 KHz mono (in that o/der). 44 KHz mono is not prime
because it would produce the same output as 22 KHz mono. Incomparable types can be
ranked, if desired, by the application, f e a s i b 1 e _ t yp e s () depends on the conver-
sion capabilities of the I/O server. If the server can convert 44 KHz stereo to 22 KHz
mono in real time (along with its other tasks) it would list 44 KHz stereo as a feasible
type.

The determination of prime and feasible types for AUDIO_MIXER is more com-
plex. Suppose I is an input stream of the mixer, and let S be the set of output streams to

which I contributes. A type T is feasible for I if, for each s e S, the mixing agent 2 is
able to mix input in format T with the other inputs of s , and convert the result to a type
that is feasible for the destination port of s. The prime type list for I might be deter-
mined as follows. Fix a type T and a stream s e S. Let <P 1 " "" P n > be the prime types
of the destination port of s. Let V (s) be the least i such that P i < T (V (S) is the
"value" of type T for stream s). Define R (r) = ~ V(S); R (T) is the aggregate value

s e S
over all output streams to which I contributes. The p r i m e _ t y p e s list is then formed
as follows: enumerate all types by increasing value ofR (T); delete from this list types T
that are not feasible or for which there is a type U such that R (T) = R (U) and U < T .
An example is shown in Figure 2.

Each CbI__NODE supplies a function

TYPE actual_type(PORT* p);

where p is an output PORT of the CM NODE. This returns the actual type to be output
on the given PORT. The policy is t~e-specific. For example, an AUDIO_MIXER
might use the following policy to determine the actual type for an output stream R. Let
S = s 1 " " " sn be the input streams that contribute to R. Call a c t u a l _ t y p e () on the
nodes that generate these streams to learn their types T 1 ' " 7",, and let
T = sup (T 1 " " " T n) . Let U be the set of types S in the feasible set of the destination

2 This agent may be an YO server or a separate mixing process; see Section 3.6.

235

such that the mixer can convert the output stream to S. Let T O . . . T n _be the prime
types of the port to which R is connected. Let i be the least such that T i < T and there is
a type T ~ U with T i < T . T is then the actual output type of R. An example is shown
in Figure 3.

3.3. Message Length Negotiation
The length of messages (the units in which data is written on connections) is an

important issue for low-delay connections. There is a tradeoff between packetization
delay and per-message overhead. To minimize delay and overhead simultaneously, the
temporal message size on data stream should approximate the maximum of the I/O inter-
rupt periods of the input and output devices (see Figure 4).

To allow negotiation of message size, each CM_NODE provides a function
m e s s a g e _ l e n g t h (PORT* p) . If p is an input PORT, this returns the largest mes-
sage length (measured in milliseconds) that will minimize packetization delay. For a
SPEAKER, this is determined by the device interrupt period. For an input stream S of an
AUDIO...MIXER, it is the minimum of the m e s s a g e _ l e n g t h () values of the input
ports to which S contributes.

If p is an output PORT, m e s s a g e _ l e n g t h () returns the actual message length
to be sent on p. In general, this is computed as max (N, M), where N is the message
length of the connected input PORT and M is the minimum of the message lengths of
data streams that contribute to p.

3.4. Connection Establishment
Comet uses TCP connections to convey CM data. Each TCP connection is used as

a simplex channel. By convention, the sending end plays the active role in connection
establishment (in BSD UNIX terminology, the sender does the c o n n e c t () and the
receiver does the l i s t e n () and a c c e p t ()). Each PORT object includes a net-
work address (host Intemet address and port number) for the corresponding TCP socket.
Each CM.__NODE must provide the following operations:

bind() ;
connect () ;
accept () ;

b i n d () creates listening sockets for all input PORTs, and stores their addresses in the
PORT objects, c o n n e c t () sets up outgoing connections for the object's output ports.
a c c e p t () accepts incoming connections, finishes setup in a class-specific way. Each
function then performs the same operation on all neighboring objects. The s e t u p ()
function (called by the application to "activate" a CM_._NODE graph) simply calls
b i n d () , c o n n e c t () and a c c e p t () on the target CM.__NODE; these calls eventu-
ally propagate throughout the graph.

3.5. Collapsing Subgraphs
It is sometimes useful to "collapse" portions of the CM_NODE graph, and have

one CM._NODE assume the responsibility for implementing some of its neighbors. For
example, an AUDIO_MIXER object handles the implementation of any MICROPHONE
or SPEAKER objects to which it is connected (see Section 3.6). This is accomplished by

236

having a type field in the CM_NODE base class. The s e t u p () function of MICRO-
PHONE checks if it is connected to an AUDIO_..MIXER, and if so it simply forwards the
call there.

3.6. Implementation of Some CM_NODE Types

Abstract CM !/O devices (MICROPHONE, etc.) are implemented using ACME.
When a slave arrives, the master sets up an RPC connection to the ACME server on the
user's workstation. If a CM I/O device is connected to an AUDIO_MIXER, then the
graph is collapsed and the implementation is left up to the AUD I O_MIXER (see below).

File I/O (INPUT_FILE and OUTPUTFILE) is implemented using the Comet
slave library. The b i n d () and a c c e p t () operations for an OUTPUTFILE, for
example, makes RPCs to the Comet library in the appropriate slave. The a c c e p t ()
handier accepts a CM connection, then creates an I/O activity (using the InterViews I/O
multiplexer) that reads data from the socket and writes it to a disk file.

An AUDIO MIXER object can implement itself in either of two ways (see Figure
5). Both implem~tations use an audio mixer program that runs on the master host. The
mixer program takes an arbitrary number N of digital audio input streams, and produces
output streams for the total sum and for each N - 1 sum. It performs conversions
between different data types, and it distinguishes between low- and high-delay streams,
dealing appropriately with each one.

The constructor for AUD IO__MIXER takes as an argument the estimated number K
of MICROPHONEs and SPEAKERs to be directly connected. If K is below a system-
dependent threshold, a distributed implementation is used: AUD I O_MIXER examines its
neighboring nodes and, for MICROPHONEs and SPEAKERs, connects the correspond-
ing ACME servers directly. Each ACME server receives audio streams from the other
ACME servers, and mixes them itself. If other objects (e.g., files) are also connected to
the mixer, then an audio mixer process is created to handle all such objects.

The above approach (direct interconnection of ACME servers) minimizes delay, but
does not scale well: it generates O (N 2) network traffic, and causes each ACME server to
do O (N) work for mixing. Therefore, if K exceeds the threshold, AUDIO_MIXER
implements itself using a central mixing process only; this reduces network traffic to
O (N) and ACME workload to O (1), at the cost of roughly doubling the delay.

Other implementations are possible. Network multicast capabilities could be
exploited. If a mixer joins devices clustered in two LANs connected by a WAN, it could
by implemented by a central mixer processes in each LAN, with the two processes linked
by a single WAN connection~

4. RELATED WORK

Comet was inspired by graphical user interface toolkits such as InterViews [5].
These toolkits provide abstractions (menus, editors, etc.) for displaying and interacting
with discrete data such as graphics and text. Comet is concerned purely with continuous
media.

A centralized CM toolkit provides access to CM I/O at a single workstation. Such a
toolkit, in combination with an existing window-system toolkit, makes it easy to define
objects for acquiring and playing sound; these objects can then be added to marl or

237

document systems. The Andrew Toolkit [7] takes this approach; we also developed a
centralized toolkit for ACME that provides similar functionality. While this approach is
useful for some applications, it has two fundamental limitations. First, it does not sup-
port multiuser applications well because management of global state, such conference
membership and floor control, requires complex protocols for synchronization and failure
handling. Second, handling CM data in the client program is nonoptimal in some situa-
tions: the telephony application directly connects the I/O servers, and file playback may
be done more efficiently by sending data directly from a file server to an I/O server rather
than having data pass through the client program.

A system described by Bates and Segal [3] offers object-oriented software layers for
writing multi-user CM applications. The abstractions are similar to those of Comet: I/O,
storage, mixing and multicasting. Ludwig [6] describes an analogous system based on a
hierarchical dataflow model. These systems differ from Comet in that they are grounded
in the telecommunications World. Because the underlying hardware is a dedicated net-
work or crossbar switch, they have no mechanisms corresponding to the CH._NODE pro-
tocol. They are targeted at developing "services" rather than user-defined applications,
so they do not emphasize integration with existing programming environments.

Other distributed CM toolkits are based on a "conference server", reflecting the
viewpoint that the CM portion of most multiuser CM applications is simply generic
audio/video conferencing. Examples include MMConf [4] and CoLab [8]. Comet takes
a different viewpoint: we think of conferencing as itself being a class of applications with
a broad range of requirements (scalability of the number of speakers and listeners, delay
bounds, synchronization of recorded material playback, floor control policies, security,
etc.).

5. CONCLUSION

Like other systems for multiuser audio/video applications, Comet provides a set of
classes representing CM resource types; low-level details and hardware dependencies are
hidden within the implementation of these classes. Comet makes two additional contri-
butions. First, the CM NODE Protocol, embodied in the C++ interface between
CM__NODE objects, addresses issues that are crucial for handling CM data in general-
purpose distributed systems: delay bounds, data type, message size, and connection
establishment. Because these issues are dealt with in a uniform way, new CM.._NODE
types can be added easily. Second, Comet's master/slave model simplifies the manage-
ment of global state (handled by the master) while providing fast response to local GUI
interactions (handled by the slaves).

The Comet prototype lacks some key features. Comet provides audio capabilities
only; we expect that many of the ideas will extend to video. Since the CM data graph is
closed, cross-linking between discrete and continuous media (as would be needed for
speed recognition or synthesis) is not possible. Comet should be combined with a system
for CM data storage, linkage and indexing more sophisticated than the UNIX file system.
Finally, it would be convenient to have classes that combine GUI and CM (e.g., a control
panel for playing a sound file).

Similarly, the Comet implementation might be extended in several ways. Currently,
mixer processes are run on the master host, and user-defined processes and file I/O on the
slave host. More generally, these processes might be placed on faster or less loaded

238

machines, perhaps taking network communication costs into account as well. Beyond
load-balancing, one might ask that resources (CPU time, network and disk bandwidth) be
reserved so that the application will receive a guaranteed performance level. Issues of
distributed resource reservation are discussed in [1].

R E F E R E N C E S

.

2.

3.

.

Q

6.

.

8.

D. P. Anderson, "Meta-Scheduling for Distributed Continuous Media", UC
Berkeley, EECS Dept., Technical Report No. UCB/CSD 90/599, Oct. 1990.

D. P. Anderson and G. Homsy, "A Continuous Media I/O server and its
Synchronization Mechanism", IEEE Computer, Oct. 1991.

P. C. Bates and M. E. Segal, "Touring Machine: A Video Telecommunications
Software Testbed", First International Workshop on Network and Operating
System Support for Digital Audio and Video, Berkeley, CA, November 8-9, 1990.

T. Crowley, P. Milazzo, E. Baker, H. Forsdick and R. Tomlinson, "MMConf: An
Infrastructure for Building Shared Multimedia Applications", Proc. 1990 CSCW
Conference, Oct. 1990, 329-342.

M. Lint,n, J. Vlissides and P. Calder, "Composing User Interfaces with
InterViews' ', IEEE Computer 22, 2 (Feb. 1989), 8-22.

L. Ludwig, "A Threaded/Flow Approach to Reconfigurable Distributed Systems
and Service Primitives Architectures", Proc. of ACM SIGCOMM 87, Stowe,
Vermont, Aug. 1987, 306-316.

A. J. Palay, "The Andrew Toolkit: An Overview", Proceedings of the 1988
Winter USENIX Conference, Dallas, February 9-12, 1988, 9-21.

M. Stefik, G. Foster, D. Bobrow, K. Kahn, S. Lanning and L. Suchman, "Beyond
the Chalkboard: Computer Support for Collaboration and Problem Solving in
Meetings", Comm. of the ACM 30, 1 (Jan. 1987), 32-47.

23g

44KHz/stereo

Z \
22KI-Iz/stereo 44K/-Iz/mono
Z \ Z

8Khz/stereo 22KHz/mono
\ Z
8KHz/mono

Figure 1: Comet assumes that the data types for a particular medi-
um (audio or video) are partially ordered by <; S < T means that
S contains less information than T. Audio types might be ordered
as above (an arrow from S to T means S < T).

LINPUT_FILE i

feasible types: all
prime types: 22KIstereo, 22Kimono, 8KIstereo

feasible types: 8K/stereo, 8Kimono ~/
prime types: 8K/stereo

I SPEAKER II

feasible types: all
prime types: 22Kimono, 8Kimono

SPEAKER "i

Figure 2: Each input port is assigned a set of feasible types and a
list of prime types. For output devices, these are determined by
the hardware of the I/O server. For other CM_NODE types, they
are determined by the corresponding lists from the ports to which
the data is destined, and by the conversion capabilities of the
CM NODE.

240

INPUT FILE I
ui actual type: 22KIstereo

actualtype:8K/st~ "-~ualtype:22KImono

Figure 3: A CM..NODE selects the actual data type to be sent on
each output PORT based on the feasible and prime types of the
corresponding input PORT. In this example (continued from Fig-
ure 2), the INPUT FILE stores 44KHz stereo data. Because this
high quality is not usable, it converts the data to 22 KHz stereo be-
fore sending it to the AUDIO_MIXER.

sender

[

receiver
TCP connection | buffer r-----'n]

128 128

Figure 4: In this example, 128-sample messages are being sent to
an output device with a 1024-sample interrupt period. Since the
device must receive 8 messages before it can output, it would be
more efficient to use 1024-sample messages. Increasing the mes-
sage size beyond 1024, however, would increase packetization de-
lay.

241

a) distributed

mixer

ACNE

b) centralized

Figure 5: An AUDIO_MIXER object can implement itself in ei-
ther of two ways. If the number N of participants is small (a), it
directly interconnects the microphone (M) of each ACME server
to the speakers (S) of the other servers, and has each server do its
own mixing. If N is large (b), it creates a separate mixer process;
each ACME server sends its input to the mixer process and re-
ceives a mixture of the other N - 1 inputs.

