
Parallel Algori thms for the Distance Transformation

Hugo Embrechts * and Dirk Roose

Katholieke Universiteit Leuven, Department of Computer Science, Celestijnenlaan 200A, B-3001
Leuven, Belgium

A b s t r a c t . The distance transformation (DT) is a basic operation in image
analysis where it is used for object recognition. A DT converts a binary
image consisting of foreground pixels and background pixels, into an image
where all background pixels have a value equal to the distance to the nearest
foreground pixel.

We present several approaches for the parallel calculation of the distance
transform based on the "divide-and-conquer" principle. The algorithms and
their performance on an iPSCO/2 are discussed for the city block (CB)
distance that is an approximation for the Euclidean Distance.

1 I n t r o d u c t i o n

A DT converts a binary image consisting of foreground and background pixels, into an
image where all background pixels have a value equal to the distance to the nearest
foreground pixel.

Computing the Euclidean distance from a pixel to a set of foreground pixels is es-
sentially a global operation and therefore needs a complicated and time-consuming algo-
rithm. However, reasonable approximations to the Euclidean distance measure exist that
allow algorithms to consider only a small neighbourhood at a time. They are based on
the idea that the global distances are approximated by propagating local distances, i.e.
distances between neighbouring pixels. Two of the distance measures proposed in [I, 2]
are the city block distance and the chamfer 3-4 distance. They are defined by the masks
of Fig. 1. The DT applied to an image with one foreground pixel centered at the middle
of the image is shown in Fig. 2. For the CB distance we present parallel algorithms.

The DT is a basic operation in image analysis where it is used for object recognition.
It can be used for computing skeletons in a non-iterative way. Further applications are
merging and segmentation, clustering and matching [1].

2 T h e S e q u e n t i a l A l g o r i t h m

The sequential algorithm is a known algorithm [1] consisting of two passes during which
the image is traversed, once from top to bottom and from left to right, and the second
time in reverse order. When a pixel is processed, its distance value (infinity if not yet
determined) is compared to the distance value of a number of neighbours augmented by
their relative distance and is replaced by the smallest resulting value. This causes the
distance values to propagate from the object boundaries in the direction of the scan and
yields, after the second pass, the correct DT-values.

* The following text presents research results of the Belgian Incentive Program "Information
Technology" - Computer Science of the future, initiated by the Belgian State - Prime Minis-
ter's Service - Science Policy Office. The scientific responsibility is assumed by its authors.

388

+4 i+3 +4

I+1 +11 +3 0 +3

+4i+3 +4

City Block distance Chamfer 3-4 distance

Fig. 1. These masks show for the indicated distance measures the distance between the central
pixel and the neighbouring pixels. The distance between two image points a and b is defined
as the sum of the distances between neighbouring pixels in the path connecting a and b, that
minimizes this sum.

City Block

i i i11 ii i i i i ::!!:::r:i !!

Chamfer 3-4

i
Fig. 2. The DT of an image with one foreground pixel centered in the middle of the image
for the City Block and Chamfer 3-4 distances. Growing distance is represented by a greytone
repeatedly varying from black to white (to accentuate the contours of the DT).

3 I n t r o d u c t i o n t o t h e P a r a l l e l A p p r o a c h

Parallelism is introduced by the 'divide-and-conquer' principle. This means that the im-
age is subdivided into as many subregions as there are processors available ; the operation
to be parallelized, in our case the DT, is computed on each subregion separately and
these local DTs have to be used to compute the global DT on the image. Let LDT (local
DT) denote the DT applied to a subregion or, where indicated, a union of neighbouring
subregions and let GDT (global DT)deno te the DT applied to the whole image.

The algorithm consists of the next three steps :

I. On each subregion the LDT is computed for the boundary pizels of that subregion.
II. The GDT values for the boundary pizels are computed out of the LDT values.

III. On each subregion the GDT values for the internal pixels are determined out of the
GDT values for the boundary pixels and the local image information. We call this
part IDT (internal DT).

The first step could be done by executing the sequential DT algorithm on each sub-
region and retaining the boundary values. However, in [3] we present a shorter one pass
algorithm which traverses each pixel at most once.

389

For step II we consider two possible solutions. In the first solution (hierarchical
algorithm) we consider a sequence of gradually becoming coarser partitions pl (l =
1 ,2 , . . . , L = log2p) of the image, with the finest partition Pl being the chosen parti-
tion of the image containing as many subregions as there are processors available. Each
of the other partitions p~ (l > 1) consists of subregions that are the union of two subre-
gions of P~-l. The coarsest partition PL contains as only subregion the image itself. The
LDT on partition Pz is defined as the result of the DT on each of the subregions of Pz
separately. In this approach we calculate from the LDT on Pz for the boundary pizel8 of
its subregions the corresponding values on Pl+l for l -- 1, 2 , . . . , L - 1. The values of the
LDT on partition PL are by definition the GDT values. Then the GDT values for the
boundary pixels of the subregions of Pz are computed for decreasing I. This approach is
similar to the hierarchical approach we used for component labelling [4].

These computations can be implemented in two ways. In the first approach (agglom-
erated cornputatio~t), on a particular recursion level l each subregion of pz is processed
by one processor. This means that processors become idle on higher recursion levels. In
an alternative implementation (distributed computation), pixel values of a subregion are
not agglomerated into one processor, but are distributed in a way that each processor
contains a part of the boundary of one subregion.

The second solution (directional algorithm) for step II consists of an inter-subregion
propagation in successive directions. The feasibility of this approach, however, and the
complexity of the resulting algorithm depend on the distance measure used.

The step III of the parallel algorithm is done by executing the sequential algorithm
on each subregion starting from the original image and the GDT values obtained in step
2.

We refer to [3] for a full description and correctness proof of the algorithms.

4 Asymptotical Complexity

The calculation of the LDT-values of the boundary pixels of a subregion, as well as the
IDT, is local and can be performed in an amount of time asymptotically proportional to
the number of pixels of the image.

The calculation of GDT-values out of LDT-values for the border pixels of the subre-
gions is global and consists of computation and communication. The latter can be divided
into the initiation and the actual transfer of messages. A summary of the complexity fig-
ures for the global operations, derived in this section, is shown in table 1. We assume an
image of n x r~ pixels and p processors.

hierarchical alg. direct, alg,
agglom, distrib.

t~ O(logp) O(log ~ p) O(logp)
0 n I~, f . , o(,~) (~) o (~)

to~p o(n) o " o " (~) (~)

Table 1. A summary of the complexity analysis of the global computations of the presented
DT algorithms for the CB distance.

3 9 0

T h e Hie r a r ch i ca l A l g o r i t h m .

Agglomerated Computation. Since the number of messages sent on each recursion level
is constant and since initiating a message takes constant time, the total start up time is
proportional to the number of recursion levels L = log 2 p.

The transfer time is proportional to the amount of data sent. The amount of data
sent on recursion level l is proportional to the size of a subregion of pz being

s , : (1)

Therefore the total transfer time is t~,=~,/,~ = O(~"~= 1 Sz) : O(n). The computational
complexity is also O(n) as the data are processed in linear time.

Distributed Computation. On recursion level l processors cooperate in groups of 2 t pro-
cessors to compute the LDT on P~+I on the borders of the subregions of P~+I. If the
CB distance measure is used, the operations to be done on recursion level I can be done
in O(l) steps. In each of these steps an amount of data proportional to the boundary
length of the subregions of Pz divided by the number of processors 2 z is transferred and
processed :

O n 2 z/2 Dz-- (~ - - ~ -) . (2)

The total start up time is therefore t,t=,t_~,p = O (~ = ~ l) = O(log 2 p) and the total
L n amount of execution and transfer time Lt~=,~,/~r = tc,,mp -- O(~z= 1 Dzl) = 0 (: ~) .

T h e Di rec t iona l A l g o r i t h m . The directional algorithm consists of calculating a num-
ber of partial minima that can be done in O(logp) communication steps requiring in
total O(~r) transfer and processing time. See [3].

5 T i m i n g a n d E f f i c i e n c y R e s u l t s

We used as test images a number of realistic images and a few artificial images, among
which the one of Fig. 2. The execution time of the sequential DT algorithm on one node
of the iPSC/2 is proportional to the number of pixels of the image and is typically about
800 ms for a 256 x 256 image. For images of this size the LDT is typically 100 ms.

The parallel efficiency, as a function of the size of the image, is shown in Fig. 3 for
a sample image. From the asymptotical complexity figures of section 4 we learn that for
large image sizes the execution time of the global computations is negligible with respect
to the the execution time of the I D T and the LDT parts of the algorithm. The ratio of
the latter two mainly determines the parallel efficiency. For smaller images the LDT part
gets more important with respect to the IDT part. The image size for which the two
parts take an equal amount of time is typically 32 pixels for both distance measures. For
smaller images also the global computations get more important.

A factor that influences the efficiency too, is the load imbalance of the algorithm. It
occurs, when a part of the algorithm takes more time on one processor than on the others
and the processors have to wait for one another. A measure for the load imbalance of a
part of the algorithm is

1 = t-- (3)

391

processor configuration : 2 X 1 4 X 2 8 X 4

. 2 • 4 • 8 •

100

7 5 -

5 0 -

2 5 -

hierarchical algorithm

2-
I I I

I00

75

50

25

0

128 256 512 1024

size of the image

directional algorithm

, , o , . . , . . | , ; ~ . , . o ~ * . | ~ ; : I | I L L U -.:... :: - ...-..-- - ;
. ~ 1 7 6 1 7 6 1 7 6 1 7 6 . ' ~ 1 7 6 . ' " I " ~ ,~"

o~176176 . ~ 1 7 6 1 7 6 . . ~ . ~ ~, .~, ~176176176 . . . ~ , , . * " . - ~ -
~176176176 ~ �9 ~ ~ ~ .,,

�9 . o ~ 1 7 6 . ~ t , ~" / " ~ . ~ 1 7 6 o ~ / , ,s
~176 ~ 1 7 6 . " ,,. J

, " . s " ,~ f '
o , " . �9

r I

I I I

64 128 256 512

size of the image
1024

Fig. 3. The parallel efficiency, as a function of the image size, for the image of Fig. 2, when the
hierarchical algorithm with agglomerated calculation or the directional algorithm is used.

with t '~ffi and t ~ the maximal and average execution times of the part of the algorithm
under investigation. We can distinguish two sources of load imbalance.

A first source of load imbalance is caused by the data dependence of the LDT part of
the algorithm. This is practically unavoidable, because for most images at least one sub-
region contains a considerable amount of background pixels and determines the execution
time of the LDT part of the algorithm.

A second source of load imbalance is the data dependence of the IDT algorithm. This
part of the load imbalance I grows with the number of subregions. However, we can find
a hard upper limit for the possible load imbalance similar to the analysis in [4].

A c k n o w l e d g e m e n t s

We wish to thank Oak Ridge National Laboratory for letting us use their iPSC/2 machine.

R e f e r e n c e s

1. Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics
and Image Processing 27(3) (1984) 321-345

2. Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics and
Image Processing 34(3) (1988) 344-371

3. Embrechts, H., Roose, D.: Parallel algorithms for the distance transformation. Technical
Report TW151 (1991) Katholleke Universiteit Leuven

4. Embrechts, H., Roose, D., Wambacq, P.: Component labelling on an mired multiprocessor.
Computer Vision, Graphics and Image Processing : Image Understanding, to appear

This article was processed using the I~"I~X macro package with ECCV92 style

