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Abstract. A method is developed for the computation of depth maps, 
modulo scale, from one single image of a polyhedral scene. Only affine shape 
properties of the scene and image are used, hence no metrical information. 
Results from simple experiments show good performance, both what con- 
cerns exactness and robustness. It is also shown how the underlying theory 
may be used to single out and characterise certain singular situations that 
may occur in machine interpretation of line drawings. 

1 I n t r o d u c t i o n  

The topic of this paper is depth computation and scene reconstruction in the case when 
the scene is built up by planar surface patches, bounded by polygons. Having only this 
information, from one single image no quantitative information can be drawn. A common 
situation is that the scene contains patches which are parallelograms, often rectangles. 
It will be seen that under this rather weak assumption, without any knowledge about 
the sizes of these parallelograms, it is possible to compute a depth-map over the image, 
modulo a common scaling factor. The method may be used also for patches of other 
shapes. No camera calibration is needed. 

The approach is inspired by the subjective experience that depth information seems to 
be contained in the shape of an image of e.g. a rectangle. In a series of papers, e.g. [8], [9], 
[10], [11], this hypothesis has been verified in quantitative terms. In the present paper 
emphasis will be laid on examples and experiments, rather than on the mathematical 
theory. For a thorough treatment of the latter, see [9]. 

The organization of the paper is as follows. In Sect. 2, the concept of 'shape' is 
described, with examples. In Sect. 3 the same will be done for 'depth' ,  with some new 
theorems. In Sect. 4 is described a simple experiment, illustrating the applicability of 
the method for realistic data. Also the robustness properties are investigated. In Sect. 5, 
some degeneracies that may occur are treated. In Sect. 6, finally, the results and their 
relations to previous work are discussed. 

Throughout the paper, it is assumed that the correspondence problem is solved be- 
forehand, i.e. that a set of point matches between points in the image and in the scene 
is established. 

2 Shape 

Instead of working with individual points, we work with m-point configurations, by which 
is meant ordered sets of points, planar or non-planar, 

X = ( X ~ , . . . , X  m) . 

* The work has been supported by the Swedish National Board for Industrial and Technical 
Development, (NUTEK). 
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It turns out to be fruitful to work with a kind of duality (for motivations and proofs, 
see e.g. [9]), and consider the linear relations that  exist between the points belonging 
to a particular configuration. It  can be proved that  the set (1) below is independent of 
coordinate representations. The following definition plays a crucial role in the sequel. 

D e f i n i t i o n l .  The (aI~ne)  shape of 2, = ( X  1 . . . .  , X  m) is the linear space 

tl~ m 

s(2") = {s = (~1 . . . .  , s  l ~ , X '  = O, ~-'~s = O} , (1) 
1 1 

where X i, i = 1 , . . . ,  m,  stands for coordinates in an arbitrary affine coordinate system. 

We use the notation 

2,1 !_ 2," r 2" I and 2," have equal shape . 

It can be shown that  2, ~ ~- 2," if and only if 2, ~ and 2," can be mapped onto each other 
by an affine transformation. 

To get a geometric feeling for the notion of shape, consider the case of a planar 4-point 
configuration 2" = ( X 1 , . . . ,  X4). Suppose the configuration is non-degenerate, i.e. that  
it contains three non-collinear points, say X 1, X ~, X 3. Let ~2, ~3 be the coordinates of 
X 4 with respect to a coordinate system with origin in X z and basis vectors X 1 X  2 and 
X 1 X  3, cf. Fig. 1. The equation X 1 X  4 = ~ 2 X 1 X  9 + ~ 3 X 1 X  3 may then be written 

~-2r2-r  + ~2x~x  2 + ~3x~--r-~x + ( - 1 ) x ~ x  4 = 0 ,  ~1 = ] - ~2  - ~ 3  , 

where the coefficient ~1 of the null-vector X 1 X  1 is chosen so that  the coefficient sum 
vanishes. This construction determines the shape-vector (~1, ~2 ,~s , -1)  in the case of 
4-point configurations. Any multiple of this vector belongs to s (2 . )  too. 

X t X 3 

X 2 

Fig. 1. Atfine coordinates. 

X 1 X  4 = ~2X1X 2 + ~ s X 1 X  3 

X 4 = ~ I X  1 + ~2X 2 + ~3X 3, 

Above the points X 1, X 2, X 3 form what is called an affine basis for the plane. The 
coordinates {1,{2,{3, with ~ { i  -- 1, are called the aIfine coordinates of X 4. An analo- 
gous construction can be done in space. Thus, if X 1 , X 2, X 3, X 4 are vertices of a non- 
degenerate tetrahedron, they form an affine basis, and X 5 can be described by its affine 
coordinates {1 , . . .  ,{4, with ~-'~{i = 1. Again s(2.) is a one-dimensional linear space. 

For two-dimensional configurations with more than 4 points, and three-dimensional 
configurations with more than 5 points, s(2,) is a linear space of higher dimension. 
Generally, for the shape of an m-point configuration, the following can be said: 

dims(2,)  = m -  2 if the points are collinear, 
dims(2,)  = m -  3 if the points are coplanar, but  not collinear, 
dims(2,)  = m - 4 if the points are not coplanar. 

(2) 
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Example 1. In Fig. 2 are shown two 2D and one 3D configurations. The dotted lines have 
no other meaning than to indicate relationship between the points. 

In the left configuration, the point X 4 is the eentroid of the triangle with vertices 
in X 1, X 2 , X  a. In the middle one, two sides are parallel. The right configuration is a 
"joint" in 3D, consisting of two rectangular 4-point configurations. Bases for the shapes 
of these configurations are shown. They may be computed e.g. by means of the afline 
basis construction above. A natural way to select a basis for the joint is by means of the 
planar subconfigurations, as is done in the figure, hut other choices are possible too. 

3 5-- 

": '" 4 . . . . . . . . . .  " '. . . . . . . .  6 

" " ,  "'... " ' 3:, ". 
o#" "~ o . .  o ~ 1 7 6 1 7 6  

* �9 . . . . * ~  *=,~ . 
1" :  . . . . . .  " ' . ' , ,  ." . . . . . . .  :2 1-'.'.'.'~" ; ; ;3  4 

~  , 1 ~ . . . .  . - - "  . . . .  . . . . . ~  . . . . . .  :" 2 . . . . . .  2 " ' "  

(1, 1, 1,--3) (1, -1,  2, -2)  (Z,--1,--1, 1, 0, 0) 
(0,0, 1,--1,-1,1) 

Fig. 2. Two 2D and one 3D configurations, and bases for their shapes. 

To be of practical use, one needs algorithms for the computation of shape. One such 
algorithm suggests itself by the definition, namely the solving of a homogeneous system 
of linear equations. By means of e.g. a row echelon algorithm, a basis for s(X) can be 
computed. 

In the definition of shape, the coordinate invarianey is very important.  It makes it 
possible to compute the shape of an image configuration from intrinsic measurements 
in the image plane, in terms of an arbitrary coordinate representation. The same holds 
for the object configuration. These shapes can thus be computed independently, without 
reference to the imaging process. 

In the rest of this paper, point configurations defined by the vertices of polyhedral 
objects will be considered. (Here the word 'polyhedral' is used in a wide sense for con- 
figurations, not necessarily solid, built up by planar polygonal patches.) Besides being a 
point configuration of its own, 

X = ( X Z , . . . , X  ~)  , 

such a configuration has a lot of additional structure. In fact, each of the f polygonal 
faces of the object contributes with a sub-configuration, defined by the vertices of the 
polygon 

X~- - (X~ , . . . ,X '~ ' ) ,  i =  l , . . . , f  . 

The whole configuration may be considered as an ordered set of these sub-configurations 

o x = x j )  . 

We will work in parallel with both these representations X and 0 x,  and by abuse of 
notation write 0 x in both instances. 
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3 D e p t h  

In this section will be examined how the shape, as defined above, transforms under 
projective transformations. The results are fundamental for the applications below. 

By a perspectivity with center Z in 3-space is meant a mapping with the property 
that every point on a line through Z is mapped onto the intersection of the line with 
some plane lr, the image plane, where Z ~ ~r. For a perspectivity between two m-point 
configurations, X -----* y ,  there exist ai,  i = 1 , . . . ,  m, such that 

Z X  i = a I Z Y  i, i = l , . . . , m  . 

Here o~i is called the depth of Xi with respect to Y/, i = 1 , . . . , m ,  and the vector 
c~ = ( a l , . - - ,  am) is called the depth of X with respect to Y. 

By a projectivity is meant a composition of perspectivities. The product of the depths 
of these perspectivities defines the depth of the projectivity. (It can be shown, of. [9], 
that this product is independent of decomposition.) 

The following theorem shows how the knowledge of the shapes of two configurations 
X and y makes it possible to characterise all projectivities P such that y ~ P(X) .  In 
particular, pose information is attained about the location of X relative to y .  

Theorem2 .  The following conditions are equivalent: 

- There ezists a projectivity P such that P ( X )  ~ y ,  where X has depth c~ with respect 
to P(X), 

- diag(cOs(X) C s(y) ,  with equality i f X  is planar. 

Note that here a is determined up to proportionality only. In accordance with this, 
the depth will be considered as a homogeneous vector. 

The meaning of Theorem 2 is illustrated in Fig. 3, drawn for 4-point configurations. 
Let there be given two planes, containing the point configurations X and y respectively. 
Suppose it is possible to move around these planes in space. Take an arbitrary point 
Z, and form a pencil of rays connecting Z with the points of y .  The theorem says 
that whenever an X-configuration fits on this pencil, the depth-values a are given by the 
formula of the theorem, independently of the location of Z and y .  This is even true when 
X and y are replaced by configurations having the same respective shapes. Conversely, 
if instead a and y are given, and by means of them an X-configuration is constructed, 
then the shape of the latter is given by the theorem. 

Z 

Fig. 3. Perspective mapping of point configurations. 
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Example 2. The right hand configuration of Fig. 2 was said to illustrate a three-dimensio- 
nal figure, a joint, with rectangular faces. Looking upon the figure as it is printed on the 
paper, i.e. as a two-dimensional perspective image of the joint, measurements in the 
image give that its two parts have the following shapes: 

s((y1, y2,  y3, y4)) = (01, 02, r/s, 74) = (1.1, - 1 ,  -1.2,  1.1) , 
s((yS, y4,  yS, y6)) = (r/s, r/4, 75, 76) = (-1.2,  1.1, 1.1, - 1 )  . 

The result of applying Theorem 2 to the two parts separately may be summarised in a 
matrix equation 

i101 i11] -1 0 -1.0 

diag(0/) - 1  1 - 1 . 2 - 1 . 2  d iag(1 , -1)  (3) 
1 - 1  = 1.1 1.1 
0 - 1  1.1 
0 1 -1 .0  

Here the diagonal matrix on the right hand side is needed to adjust for the arbitrariness 
in the choice of the columns of the 6 x 2-matrices. The system has the depth solution 

0/T = [0/1 0/2 0/3 0/4 Ol5 0/6] = [1.1 1.0 1.2 1.1 1.1 1.0] 

(together with all multiples of this vector). 

In this example, a claim on depth-consistency is met, formulated in terms of the 
matrix-equation (3). The general situation is covered by the following theorem. 

Theorem 3. Let 0 x = (XI , . . . ,  XI) be a polyhedral point configuration, and let 0 y = 
(Y l , . .  ",YY) be its image. Let 

S x = [Sx ' , . . . ,  SX,] 

be a matrix with sub-matrices S x~, having columns that form a basis for s(Xi), and let 
S y~ be defined in the corresponding way, i = 1 , . . . , f .  Then holds, for some 0/ and c, 

diag (0/)S x = S y diag (c) . (4) 

For noisy data, the equation (4) can't be expected to be satisfied exactly. Moreover, 
the system in 0/is in general overdetermined. In the next section it will be solved in the 
least square sense. 

For projective mappings from one plane to another, the following theorem gives an 
analytic expression for the depth function. 

Theorem4.  Let the planar configuration X = ( X 1 , X 2 , X 3 , X )  be mapped onto 3) = 
(y1, y2, yS, y )  by a perspectivity, so that y1, y2, y3 have depths 0/1,0/2, 0/3 with respect 
to X 1 , X 2 , X  a. I f  s(y)  = (rh,r/2, r/a,O), then the depth 0/ of Y with respect to X is given 
by 

Y_L+ 0_Z+ 03+_~  = 0 " 
0/1 0/2 0/3 0/ 

If r/ E s(y)  is so normed that 0 = -1 ,  i.e. 01 + 02 + 03 = 1, then 01,r/2,03 are the 
affine coordinates of Y with respect to the affine basis y1,  y2, y3. The formula says that 
the depth 0/of Y is the weighted harmonic mean of 0/1, 0/2, 0/3, with the affine coordinates 
as weights. 
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4 A n  E x p e r i m e n t  

A simple experiment  will i l lustrate how the theory may  be used. In Fig. 4 is shown an 
image of a corridor scene, containing a number  of rectangular  objects:  two doors, par t  of 
a wall, a board  and the faces of a box. The doors are at  approx imate  distances 6 m and 
12 m from the camera. The dimensions of the box are 35 x 35 x 20 cm. The size of the 
image is about  300 x 400 pixels, where the box occupies about  50 • 50 pixels. 

Wall+doors 
1 2 3 4 5 6 7 8 

comp 1.00 1.01 1.19 1.20 2.08 2.09 2.23 2.23 
meas 1.00 1.02 1.20 1.22 2.07 2.08 2.21 2.22 

Board 
9 10 11 12 

comp 1.35 1.35 1.92 1.92 
meas 1.35 1.36 1.90 1.91 

Box 
A B C D E F G 

comp 1.02 1.01 1.02 1.00 1.07 1.05 1.05 
meas 1.03 1.01 1.03 1.00 1.07 1.05 1.05 

Fig.  4. A corridor scene. Measured and computed depth values. 

The purpose is to investigate the capacity of the method,  both  what  concerns exact- 
ness and robustness. The  pixel coordinates of the points  of interest were picked out  by 
hand from the image. The wall and the two doors form a configuration s imilar  to the jo int  
of Example  1, and may be t reated as in Example  2, by means  of Theorem 3. In the same 
way, the depth values for the box are computed.  Theorem 4 then gives the depth values 
for the board.  For the wall, the doors and the board,  the depth values were normalised 
against  Point 1, while for the box, the normal isa t ion was done against  Point D. The so 
normalised computed depth values are shown in the first lines of the respective tables in 
Fig. 4. 

For comparison, the distances from the camera  to the marked scene points  were 
measured by a measuring tape.  The values were normal ised as described above. Since 
these distance ratios are not exact ly the same as depth,  they have to be corrected by 
means of coefficients, which depend on the angle of sight relative to the focal line. The  so 
obtained measured depth values are pr inted in the second lines of the respective tables in 
Fig. 4. Since the distance to Point 1 is about  6 m, a deviat ion of 0.01 in depth  corresponds 
to about  6 cm in distance. This  is also the es t imated  uncer ta inty  in the measurements .  
As can be seen, the computed depth values show good agreement  with the measured 
ones. 
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To get a feeling for the robustness, rectangular ly  d is t r ibuted  noise of 4-1 pixels was 
added to each coordinate of the points  of interest above. New depth-values were then 
computed.  In order to compare homogeneous depth-vectors,  the normalised differences 

O/re f -- [OLnew-""~O/new 

were computed,  where aref s tands for the computed  depth  values of Fig. 4. Table 1 
shows the outcome of 10 random simulat ions.  For the wal l+doors ,  the results indicate  
good robustness propert ies,  while for the box the results are not  equally favourable. The  
la t te r  isn ' t  surprising, since the object  is small  and so dis tant  tha t  the perspective effects 
are small .  

Tab le  1. Effects of noise. 

Wall+doors Box 
1 2 3 4 5 6 7 8 A B C D E F G 

-0.01 0.00 0.00-0.01 0.02-0.01 0.00-0.01 0.00 0.00 0.00-0.06 0.01-0.03 0.08 
0.00 0.00 0.02 0.01 0.03-0.02 0.00-0.02 -0.04 0.02-0.01 0.00-0.01 0.00 0.04 
0.01 0.00-0.01 0.00-0.01 0.00 0.00 0.01 -0.02-0.06 0.02 0.02 0.02 0.05-0.03 

-0.01 0.00 0.00-0.01 0.02-0.01 0.02-0.01 0.03 0.01 0.05 0.05-0.05-0.02-0.05 
0.02-0.02 0.01-0.01-0.01 0.01 0.00 0.01 -0.02-0.04 0.03-0.01 0.06 0.00-0.03 
0.01 0.00 0.00 0.01 0.00-0.02 0.02-0.02 0.00-0.01 0.00 0.01 0.04 0.01-0.04 
0.00 0.00 0.00 0.01 0.00 0.02-0.01-0.01 0.01 0.01-0.04 0.01 0.09 0.02-0.09 

-0.01 0.01-0.01 0.01 0.00 0.04-0.03-0.01 -0.02 0.01-0.01 0.04-0.08 0.02 0.05 
-0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03-0.06-0.04 0.00 0.01 0.06 
�9 0.00-0.01 0.01 0.00 0.03-0.03 0.01-0.02 -0.03 0.01-0.01 0.02-0.02 0.02 0.02 

To summarise,  using only tha t  the scene contains paral le lograms,  nothing about  their  
sizes, i t  has been possible to compute  depths from the image. No knowledge at all is used 
about  the camera,  only tha t  the imaging process is projective.  In fact, the camera  used 
in the experiment  turned out  to give about  5 % deficiency in the width and height scales. 
However, since the method  only uses affine properties,  i t  is robust  also to such errors, as 
long as they can be modeled by affine t ransformat ions  in the image plane. They need not  
even be compensated for. The results of the experiment  are accurate and seem to have 
good robustness properties.  

5 D e g e n e r a t i o n  

When  analyzing an image of a polyhedral  scene, difficulties with the in terpre ta t ion may  
occur, even for human  observers. Some possible explanat ions are the occlusions and 
accidental  a l ignments  tha t  may  occur in the image, without  having a counterpar t  in the 
scene. A computa t iona l  algori thm, based on linear programming,  for the in terpre ta t ion 
of line drawings is given in [12]. 

In this  section, it  will be indicated how the concepts of shape and depth can be used 
to give a simple criterion for correctness. Fi rs t  some definitions. Let 0 y = ( Y l , . - . ,  Yl )  
be a p lanar  configuration, bui l t  up by a number  of polygonal  configurations. Then 0 y is 
called an impossible picture if 

P : 0 x ~ O y ,  P a project iv i ty  ==~ 0 x is a p lanar  configuration. 
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By construction, of. Theorem 3, all columns of S y belong to the shape s(OY). The 
same holds for S x , s (Ox) .  From the depth consistency (4) it follows tha t  S y and S x have 
the same ranks. Hence d i m s ( O  x )  > r a n k s  x = r a n k s  y .  From (2) it is known tha t  the 
m - p o i n t  configuration O x is non-planar if and only if d i m s ( O  x )  = m - 4. Combining 
these facts and definitions, we have proved the sufficiency par t  of the following theorem. 
The necessity is omit ted here. 

Theorem 5. C) y is an impossible picture i f  and only i f  ranicS y >_ m - 3. 

Having an image of a true three-dimensional polyhedral  scene, this rank condition 
must  be fulfilled. If  it is violated because of noise, it may  be possible to "deform" O y to 
fulfill the condition. In doing this, any deformation can ' t  be allowed. Let us say tha t  a 
deformation is admissible if it doesn' t  change the topological and shape properties of the 
configuration, where the latter claim may  be formulated Two configurations C) y and C) ~ 
are topologically shape-eq,ivalcnt iff for every choice of mat r ix  S y in Theorem 3, there 
exists a corresponding mat r ix  S ~ for C) ~, such tha t  their non-vanishing elements have the 
same distributions of signs. This gives a constructive criterion, possible to use in testing. 
As a final definition, we say tha t  C) y is a correctable impossible picture if there exists an 
admissible deformation which makes rank S y < m - 4. An example of a configuration 
with this property is given in Fig. 5. For a method  to find admissible deformations,  see 
[7]. 

I 0.65--0.60 0.00] 
-0.65 0.00 --0.61| 

0.00 0.60 0.54| 
--1.00 1.00 0.00| 

1.00 0.00 1.06| 
0.00 --1.00 - l .OOj 

% I 

J i%  
,, *" I % 

** I ~t 

P I % 

Fig. 5. A truncated tetrahedron and its shape. The Reutersv~rd-Penrose tribar. 

A more severe si tuation is met  when it is impossible to correct the picture by means 
of admissible deformations. We then talk about  an absolutely impossible picture. When 
dealing with such an image, one knows tha t  the topology of the object isn ' t  what  it 
seems to be in the image. Accidental al ignments or occlusions have occurred, and must  
be discovered and loosened. 

A celebrated example of an "impossible picture" in the human sense is the t r ibar  of 
Fig. 5. It  is alternately called the "Reutersv~rd tribar" or the "Penrose t r ibar" ,  after two 
independent discoveries (1934 and 1958 respectively.) For historical facts, see the article 
of Ernst in [1]. For this configuration it can be proved tha t  there exists no admissible 
deformation which makes the tr ibar fulfill the rank condition of Theorem 5. For more 
details, see [10], [11]. In terms of the concepts introduced above, the discussion of this 
section may  be summarised: 

- The  truncated tetrahedron is a correctable impossible picture. 
- The  Reutersvrd-Penrose tr ibar  is an absolutely impossible picture. 
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6 D i s c u s s i o n  

Above a method for the computation of depth, modulo scale, from one single image of a 
polyhedral scene has been presented, under the assumption of known point corresponden- 
ces between scene and image. Only affine information about the scene is used, e.g. that the 
objects contain parallelogram patches, nothing about their sizes. Other affine shapes may 
be used as well. In the image, no absolute measurements are needed, only relative (affine) 
ones. The image formation is supposed to be projective, but the method is insensitive to 
affine deformations in the image plane. No camera parameters are needed. The problem 
considered may be called an "affine calibration problem", with a solution in terms of 
relative depth values. The weak assumptions give them good robustness properties. All 
computations are linear. 

The relative depth values may be combined with metrical information to solve the full 
(metrical) calibration problem (cf. [8], [9]). That problem is usually solved by methods 
that make extensive use of distances and angles, cf. [3] for an overview. 

Relative depth information is also of interest in its own. For instance, in the case 
of rectangular patches in the scene, the relative depth values may be interpreted as the 
"motion" of the camera relative a location from which the patch looks like a rectangle. 
Looked upon in this way, our approach belongs to the same family as [2], [4], [6]. 

Crucial for the approach is the use of affine invariants (the 'shape'). In this respect 
the work is related to methods for recognition and correspondence, cf. [5]. 

In the last part of the paper is sketched an approach to the line drawing interpre- 
tation problem. Its relations to other methods, notably the one of [12], need further 
investigations. 
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